

Off-shell transport dynamics for strongly interacting systems

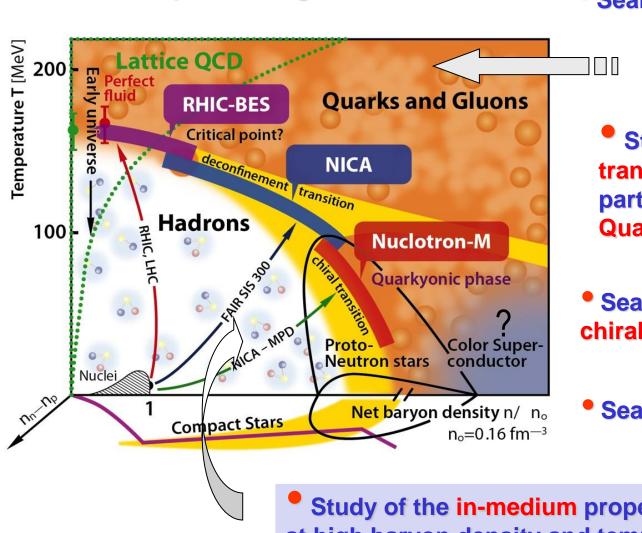
Elena Bratkovskaya

(GSI, Darmstadt & Uni. Frankfurt) for the PHSD/PHQMD group

The International Symposium on Nuclear Symmetry Energy (NuSym 2021) October 13–15, 2021 On-line

1

The ,holy grail' of heavy-ion physics:



The phase diagram of QCD

Search for the critical point

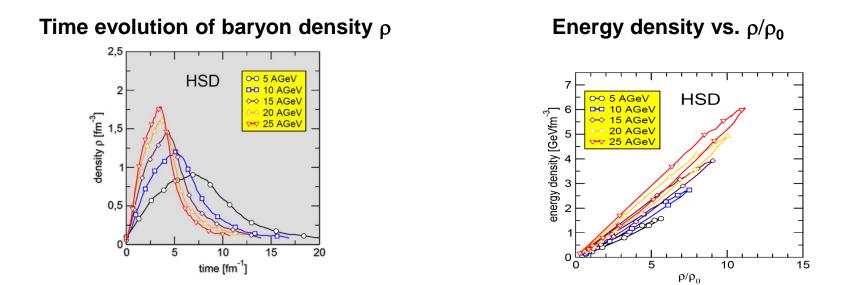
 Study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma

Search for signatures of chiral symmetry restoration

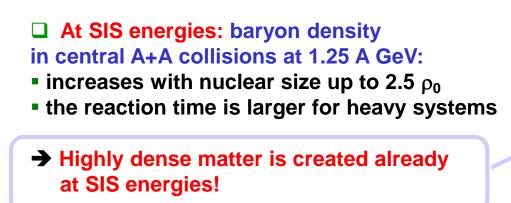
Search for the critical point

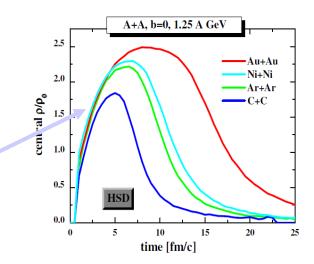
Study of the in-medium properties of hadrons at high baryon density and temperature

Dense and hot matter created in HICs



Large energy and baryon densities (even above critical $\varepsilon > \varepsilon_{crit} \sim 0.5 \text{ GeV/fm}^3$) are reached in the central reaction volume at CBM and BM@N/NICA energies (> 5 A GeV) \Rightarrow a phase transition to the QGP





From weakly to strongly interacting systems

In-medium effects (on hadronic or partonic levels!) = changes of particle properties in the hot and dense medium Examples: hadronic medium - vector mesons, strange mesons QGP – dressing of partons

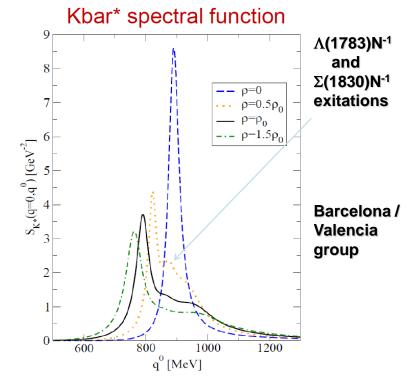
Many-body theory: Strong interaction → large width → broad spectral function → quantum object

Semi-classical on-shell BUU: applies for small width, i.e. for a weakly interacting systems of particles

How to describe the dynamics of broad strongly interacting quantum states in transport theory?

first order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations based on Kadanoff-Baym dynamics



Dynamical description of strongly interacting systems

Quantum field theory ->

Kadanoff-Baym dynamics for resummed single-particle Green functions S[<]

$$\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$$

(1962)

Green functions S[<]/self-energies Σ :

 $iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$ $iS_{xy}^{>} = \langle \{ \Phi(y) \Phi^{+}(x) \} \rangle$ $iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$ $iS_{xy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle - anticausal$

$$S_{xy}^{adv} = S_{xy}^{c} - S_{xy}^{>} = S_{xy}^{<} - S_{xy}^{a} - advanced$$

$$\eta = \pm 1(bosons / fermions)$$

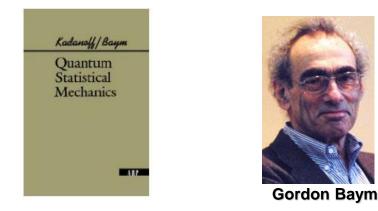
$$T^{a}(T^{c}) - (anti-)time - ordering operator$$

 $S_{rv}^{ret} = S_{rv}^{c} - S_{rv}^{<} = S_{rv}^{>} - S_{rv}^{a} - retarded$

$$\hat{S}_{\theta x}^{-1} \equiv -(\partial_{x}^{\mu}\partial_{\mu}^{x} + M_{\theta}^{2})$$

Integration over the intermediate spacetime

Leo Kadanoff



1st application for spacially homodeneous system with deformed Fermi sphere: P. Danielewicz, Ann. Phys. 152, 305 (1984); ... H.S. Köhler, Phys. Rev. 51, 3232 (1995); ...

From Kadanoff-Baym equations to generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

<u>Backflow term</u> incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit $A_{XP} \rightarrow \delta(p^2 \cdot M^2) \rightarrow BUU$ equations

GTE: Propagation of the Green's function $iS_{XP}^{<}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}), but also on their properties, interactions and correlations (via A_{XP})

Botermans-Malfliet (1990)

Spectral function:

Life time $\tau = \frac{nc}{r}$

$$A_{XP} = rac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

4-dimentional generalizaton of the Poisson-bracket:

 $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} = 2 p_0 \Gamma$ – ,width' of spectral function = reaction rate of particle (at space-time position X)

 $\diamond \{F_1\}\{F_2\} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 \Box Employ testparticle Ansatz for the real valued quantity *i* $S_{XP}^{<}$

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \ \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \ \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

Generalized testparticle Cassing-Juchem off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[\frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \text{with } F_{(i)} &\equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[\frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial\epsilon_{i}} \right]. \end{split}$$

Note: the common factor $1/(1-C_{(i)})$ can be absorbed in an ,eigentime' of particle (i) !

Collision term for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2 Tr_3 Tr_4 \underline{A(X,\vec{P},M^2)} A(X,\vec{P}_2,M_2^2) A(X,\vec{P}_3,M_3^2) A(X,\vec{P}_4,M_4^2) \\ & |G((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2 \ \delta^{(4)}(P + P_2 - P_3 - P_4) \\ & [N_{X\vec{P}_3M_3^2} N_{X\vec{P}_4M_4^2} \, \bar{f}_{X\vec{P}M^2} \, \bar{f}_{X\vec{P}_2M_2^2} - N_{X\vec{P}M^2} \, N_{X\vec{P}_2M_2^2} \, \bar{f}_{X\vec{P}_3M_3^2} \, \bar{f}_{X\vec{P}_4M_4^2} \,] \\ & , \text{gain' term} , \text{loss' term} \end{split}$$

with $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$ and $\eta = \pm 1$ for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly for fermions $Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dM_{2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}} Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dP_{0,2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}}$

The transport approach and the particle spectral functions are fully determined once the in-medium transition amplitudes G are known in their off-shell dependence!

Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Initial A+A collisions :

 $N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons$

Partonic phase

Partonic phase - QGP:

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

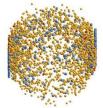
QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

 Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential

dissolution of pre-hadrons \rightarrow partons

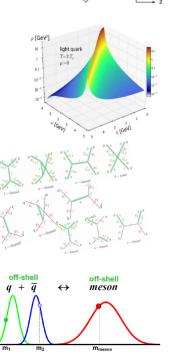
- Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase



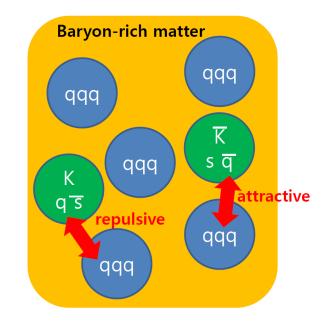
Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD



UND string mo

In-medium effects at SIS energies: I. Kaons – repulsive potential II. Antikaons – G-matrix



cf. talks by Dan Cozma

In-medium effects

The hadrons - in particular strange mesons (K, Kbar and K*) - modify their properties in the dense and hot nuclear medium due to the strong interaction with the environment

Models:

□ chiral SU(3) model, chiral perturbation theory, relativistic mean-field models: KN-potential → ,dropping' of K⁻ mass and ,enhancement' of K⁺ mass

> Kaplan and Nelson, PLB 175 (1986) 57; Weise, Brown, Schaffner, Krippa, Oset, Lutz, Mishra, ... et al.

... long history ...

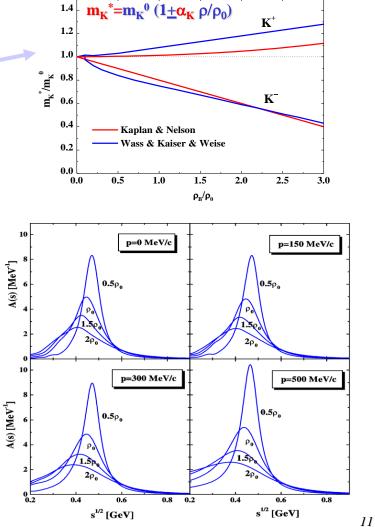
self-consistent coupled-channel approach - G-matrix:

→ momentum, density and temperature dependent spectral function of antikaons A(p_κ,ρ,T): in-medium modification of the real and imaginary part of the self-energy (mass and width)

L. Tolos et al., NPA 690 (2001) 547

→ off-shell HSD: W. Cassing et al., Nucl.Phys.A 727 (2003) 59

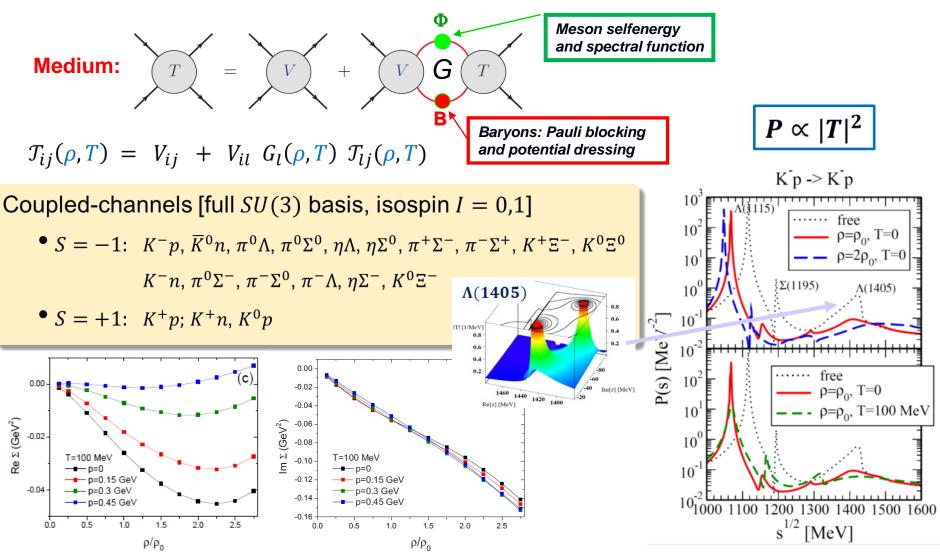
Cf. review: C. Hartnack et al., Phys.Rept. 510 (2012) 119



In-medium masses:

The coupled-channel G-matrix approach

Solution of the Bethe-Salpeter equation in coupled channels:



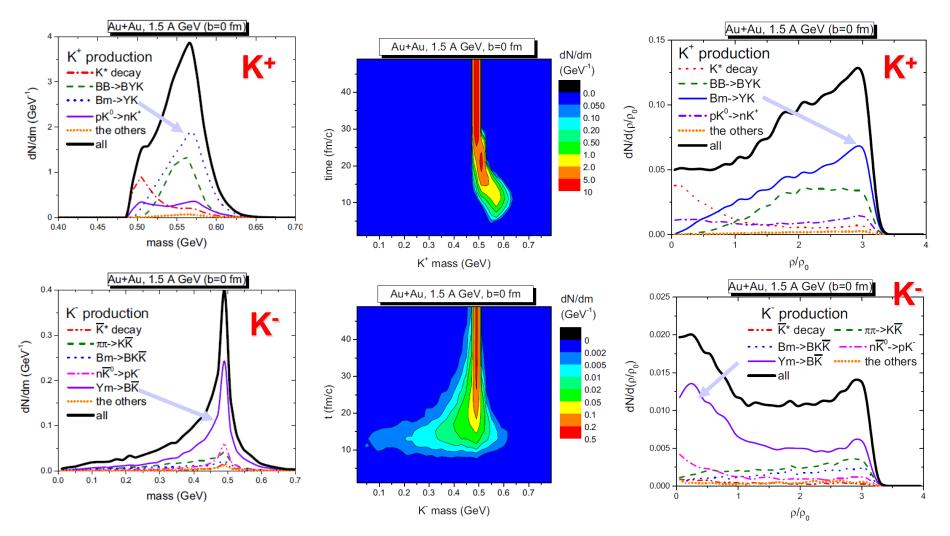
1) 1st G-matrix (based on the Jülich meson-exchange model): L. Tolos et al., NPA 690 (2001) 547

2) * Improved (based on SU(3) mB chiral Lagrangian): D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC90 (2014) 055207

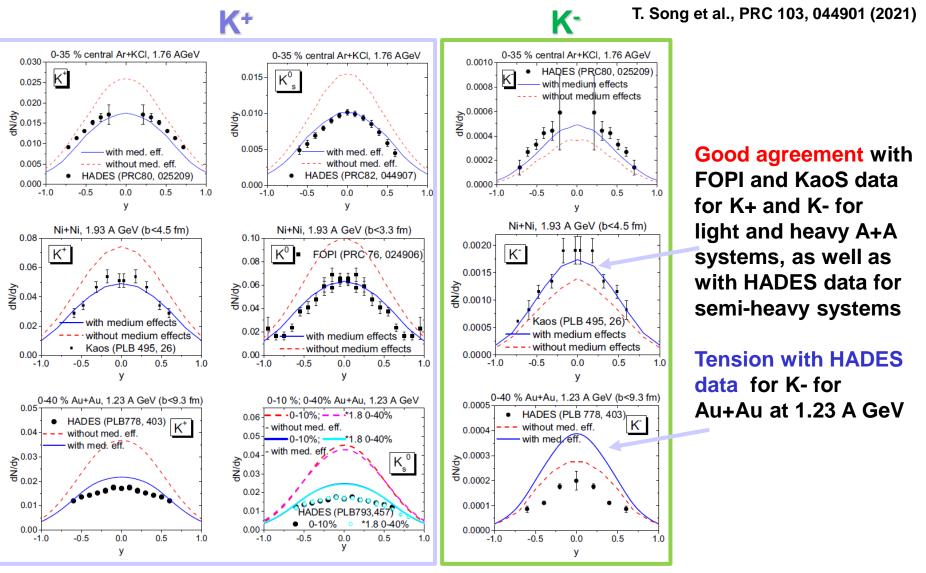
Time evolution of produced (anti)kaons

Mass distribution of K+, Kat the production points Time evolution of the K+, K- masses

Density distribution of K+, K- at the production point



Rapidity distributions of (anti)kaons

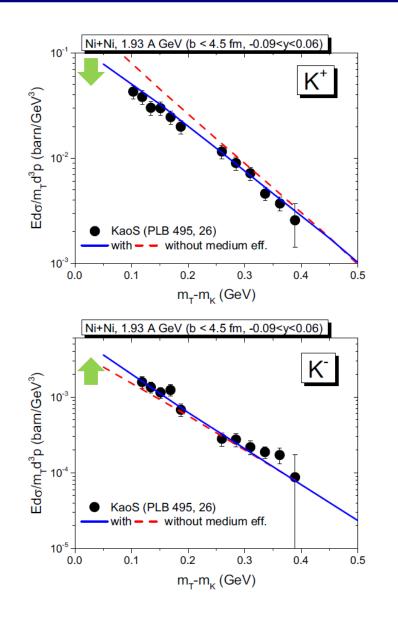


Nuclear matter effects suppress kaon production

Nuclear matter effects enhance antikaon production

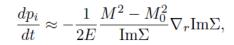
m_T spectra of (anti)kaons in central Ni+Ni collisions at 1.93 A GeV

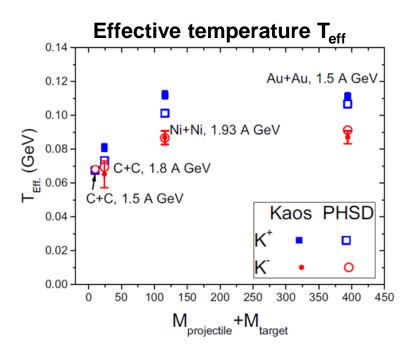
T. Song et al., PRC 103, 044901 (2021)



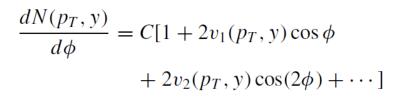
In-medium effects:

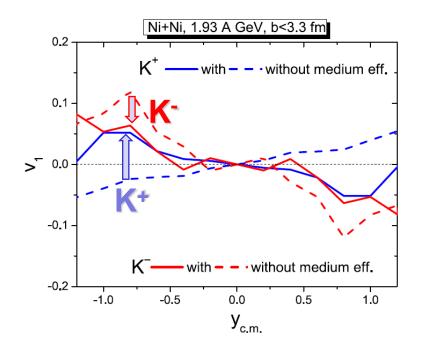
- suppresses kaon production
- hardens kaon spectrum
- enhances antikaon production
- □ softens antikaon spectrum since for $M < M_0$, $Re\Sigma \rightarrow 0$ and



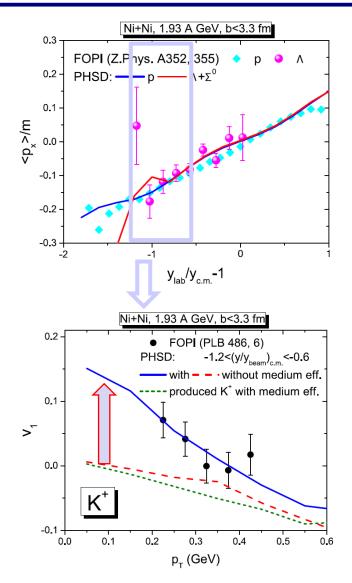


Directed flow (v₁)

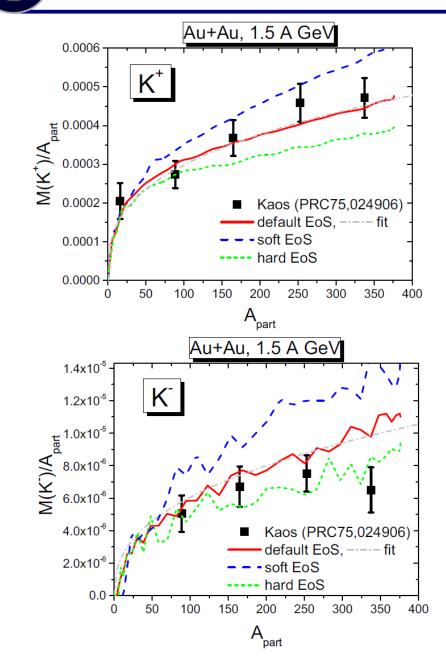




- v₁ of initial kaon follows that of nucleons while kaon is mostly produced by NN scattering
- repulsive force pushes v₁ of kaons upward
- □ attractive force pulls down v₁ of antikaon



Equation of State (EoS) of nuclear matter



Skyrme potential

$$U(\rho) = a\left(\frac{\rho}{\rho_0}\right) + b\left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

where a = -153 MeV, b = 98.8 MeV, $\gamma = 1.63$.

Compression modulus K :

$$K = -V \frac{dP}{dV} = 9\rho^2 \frac{\partial^2 (E/A)}{\partial \rho^2} \bigg|_{\rho_0}$$

Hard EoS: K=380 MeV \rightarrow hard to be compressed, less NN collisions to produce (anti)kaons

Default EoS: K=300 MeV

Soft EoS: K= 210 MeV → easy to be compressed, more NN collisions to produce (anti)kaons

Summary – I

Dynamical description of strongly interaction hadronic (and partonic) matter:

- → off-shell dynamics based on Kadanoff-Baym equations
- → Parton-Hadron-String Dynamics (PHSD)

Application: study of the in-medium effects within a G-matrix approach for antikaons and by a linear repulsive nuclear potential for kaons: T. Song et al., PRC 103, 044901 (2021)

- □ The repulsive kaon nuclear potential increases the threshold energy for kaon production \rightarrow suppression of kaon production, hardening of m_T spectra
- □ The broadening of Kbar spectral function in a medium decreases the threshold energy for kaon production \rightarrow enhancement of Kbar production, softening of m_T spectra
- \Box Modification of v₁, v₂ of (anti-)kaons due to the in-medium effects
- Selectivity to EoS: soft EoS enhances and hard EoS suppresses the production of (anti)kaons; moderate EoS (K=300 MeV) reproduces experimental data better within the PHSD
- □ ... still tension in the description of HADES data for Au+Au at 1.23 A GeV Further robust experimental data are needed (HADES, CBM, BMN,...)!

Consistent transport description of strongly interaction systems based on Kadanoff-Baym theory

requires

a knowledge on the in-medium properties of all degrees-of-freedom (complex self-energies) and their interactions (in-medium cross sections)

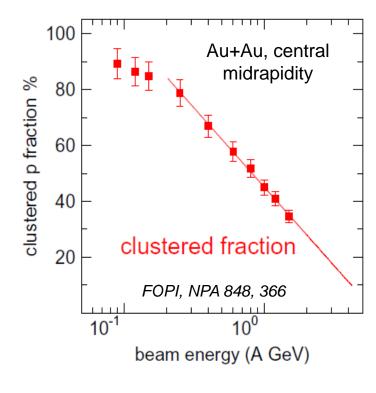
→ 'Ab initio' many-body calculations are needed! Cf. Bruckner theory for G-matrix

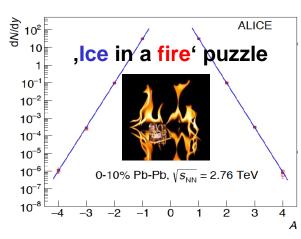
Clusters and hypernuclei in PHQMD

MF vs QMD

Jörg Aichelin, E.B., Arnaud Le Fèvre, Yvonne Leifels, Viktar Kireyeu, Vadim Kolesnikov, Vadim Voronyuk, Gabriele Coci, Michael Winn, Susanne Gläßel, Christoph Blume (SUBATECH, Nantes & GSI, Darmstadt & JINR, Dubna & Uni. Frankfurt)

Clusters and hypernuclei in HICs

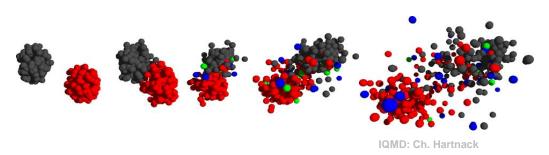




- □ Clusters are very abundant at low energy:
 - at **3 AGeV** in central Au+Au collisions
 - ~20% of the baryons are in clusters!
- → Understanding of cluster formation is needed:
- for proper description of nucleon observables (v₁,v₂, dn/dp_T)

to probe EoS

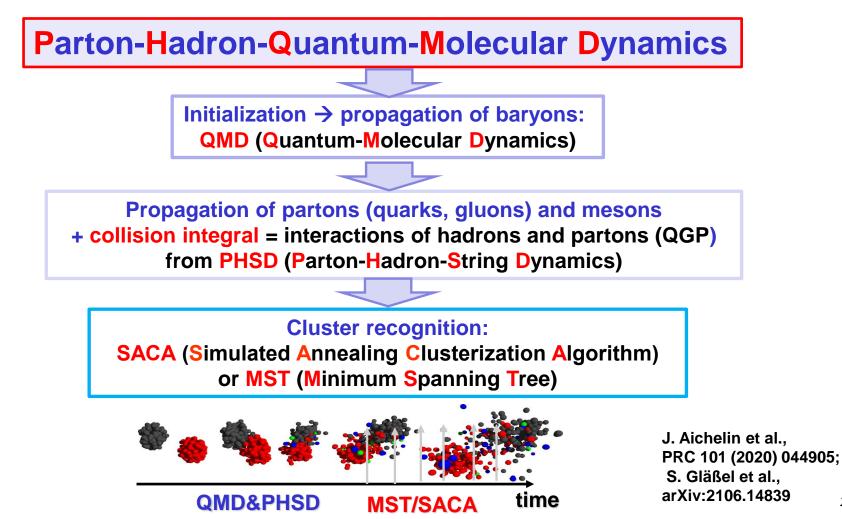
- to explore new physics opportunities like
- hypernucleus formation
- possible signals of the 1st order phase transition
- cluster formation at midrapidity (RHIC, LHC)



PHQMD

PHQMD: a unified n-body microscopic transport approach for the description of heavy-ion collisions and dynamical cluster formation from low to ultra-relativistic energies

<u>Realization:</u> combined model **PHQMD** = (PHSD & QMD) & (MST/SACA)



22

QMD propagation

Generalized Ritz variational principle: $\delta \int_{t_1}^{t_2} dt < \psi(t) |i \frac{d}{dt} - H|\psi(t) >= 0.$ Assume that $\psi_N = \prod_{i=1}^N \psi_i(q_i, q_{0i}, p_{0i})$ for N particles (neglecting antisymmetrization !)

Ansatz: trial wave function for one particle "*i*": Gaussian with width *L* centered at r_{i0} , p_{i0}

$$\psi_i(q_i, q_{0i}, p_{0i}) = Cexp[-(q_i - q_{0i} - \frac{p_{0i}}{m}t)^2/4L] \cdot exp[ip_{0i}(q_i - q_{0i}) - i\frac{p_{oi}^2}{2m}t] \qquad L=4.33 \text{ fm}^2$$

Equations-of-motion (EoM) for Gaussian centers in coordinate and momentum space:

$$\dot{r_{i0}} = \frac{\partial \langle H \rangle}{\partial p_{i0}} \qquad \dot{p_{i0}} = -\frac{\partial \langle H \rangle}{\partial r_{i0}}$$

nian:
$$H = \sum_{i} H_{i} = \sum_{i} (T_{i} + V_{i}) = \sum_{i} (T_{i} + \sum_{j \neq i} V_{i,j})$$
$$V_{i,j} = V(\mathbf{r_{i}}, \mathbf{r_{j}}, \mathbf{r_{i0}}, \mathbf{r_{j0}}, t) = V_{\text{Skyrme}} + V_{\text{Coul}}$$

QMD interaction potential and EoS

The expectation value of the Hamiltonian:

$$\langle H \rangle = \langle T \rangle + \langle V \rangle = \sum_{i} (\sqrt{p_{i0}^2 + m^2} - m) + \sum_{i} \langle V_{Skyrme}(\mathbf{r_{i0}}, t) \rangle$$

Skyrme potential - scalar ('static') * :

$$\langle V_{Skyrme}(\mathbf{r_{i0}},t)\rangle = \alpha \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right) + \beta \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right)^2$$

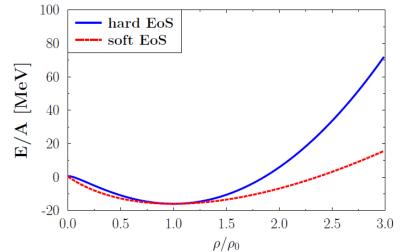
modifed interaction density (with relativistic extension):

$$\begin{split} \rho_{int}(\mathbf{r_{i0}},t) &\to C \sum_{j} (\frac{4}{\pi L})^{3/2} \mathrm{e}^{-\frac{4}{L} (\mathbf{r_{i0}^{T}}(t) - \mathbf{r_{j0}^{T}}(t))^{2}} \\ &\times \mathrm{e}^{-\frac{4\gamma_{cm}^{2}}{L} (\mathbf{r_{i0}^{L}}(t) - \mathbf{r_{j0}^{L}}(t))^{2}}, \end{split}$$

- ♦ HIC \leftarrow → EoS for infinite matter at rest
- compression modulus K of nuclear matter:

$$K = -V\frac{dP}{dV} = 9\rho^2 \frac{\partial^2 (E/A(\rho))}{(\partial\rho)^2}|_{\rho=\rho_0}$$

EoS for infinite matter at rest



Work in progress: implementation of momentum dependent potential + symmetry energy (M. Winn)

Cluster recognition: Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the (asymptotic) final states where coordinate space correlations may only survive for bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

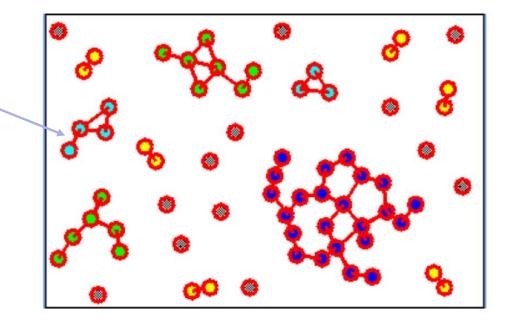
1. Two particles are 'bound' if their distance in coordinate space fulfills

$$\left| \vec{r}_i - \vec{r}_j \right| \le 2.5 \, fm$$

2. Particle is bound to a cluster if it binds with at least one particle of the cluster.

* Remark:

inclusion of an additional momentum cut (coalescence) lead to small changes: particles with large relative momentum are mostly not at the same position (Cf. V. Kireyeu, Phys.Rev.C 103 (2021))5

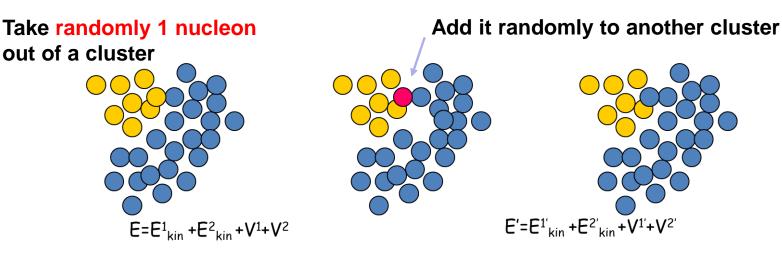


Simulated Annealing Clusterization Algorithm (SACA)

Basic ideas of clusters recognition by SACA:

Based on idea by Dorso and Randrup (Phys.Lett. B301 (1993) 328)

- > Take the positions and momenta of all nucleons at time t
- Combine them in all possible ways into all kinds of clusters or leave them as single nucleons
- > Neglect the interaction among clusters
- Choose that configuration which has the highest binding energy:



If E' < E take a new configuration

If E' > E take the old configuration with a probability depending on E'-E Repeat this procedure many times

→ Leads automatically to finding of the most bound configurations

(realized via a Metropolis algorithm)

R. K. Puri, J. Aichelin, PLB301 (1993) 328, J.Comput.Phys. 162 (2000) 245-266; P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390

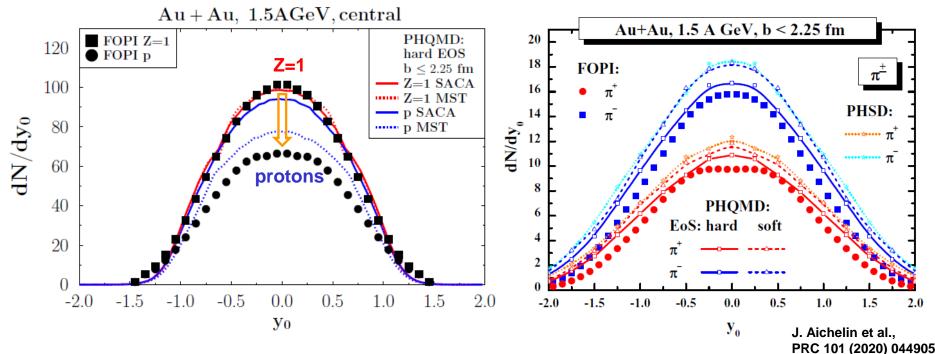
- ❑ Cluster formation is sensitive to nucleon dynamics
- → One needs to keep the nucleon correlations (initial and final) by realistic nucleon-nucleon interactions in transport models:
- QMD (quantum-molecular dynamics) allows to keep correlations
- MF (mean-field based models) correlations are smeared out
- Cascade no correlations by potential interactions

Example: Cluster stability over time:



PHQMD: light clusters and ,bulk' dynamics at SIS

Scaled rapidity distribution $y_0 = y/y_{proj}$ in central Au+Au reactions at 1.5 AGeV

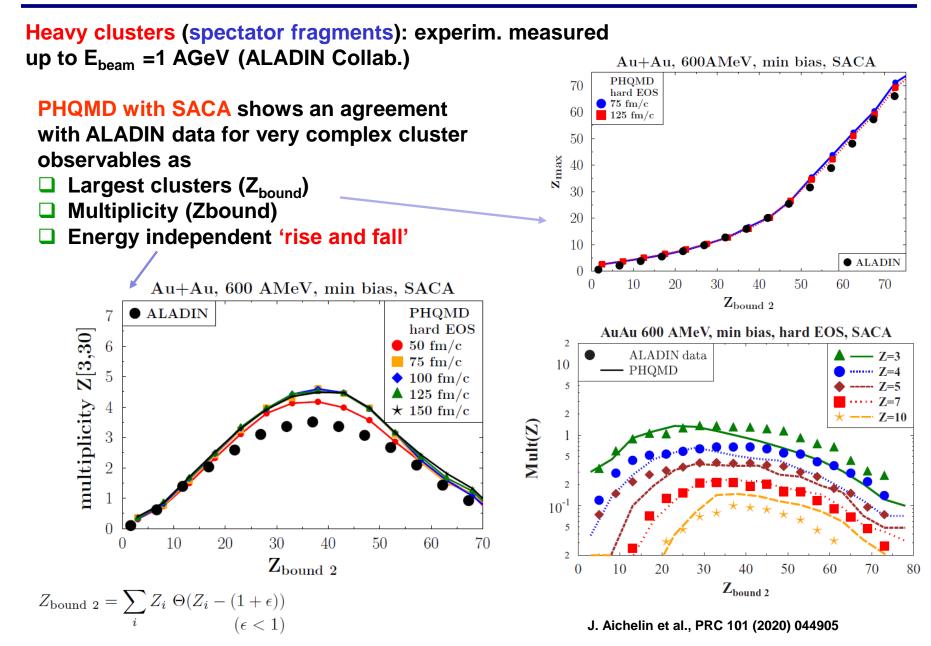


> 30% of protons are bound in clusters at 1.5 A GeV

- Presently MST is better identifying light clusters than SACA
 - → To improve in SACA: more realistic potentials for small clusters, quantum effects

Pion spectra are sensitive to EoS: better reproduced by PHQMD with a 'hard' EoS
 PHQMD with soft EoS is consistent with PHSD (default – middle soft EoS)

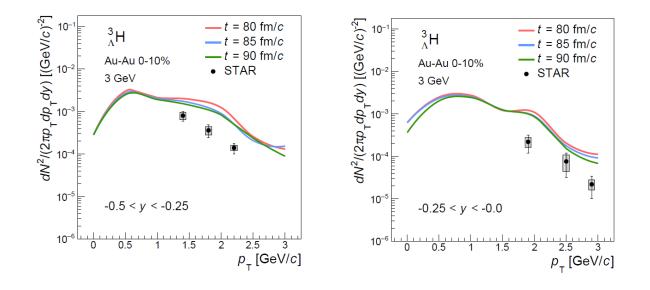
* To improve in PHQMD: momentum dependent potentials + symmetry energy (M. Winn)



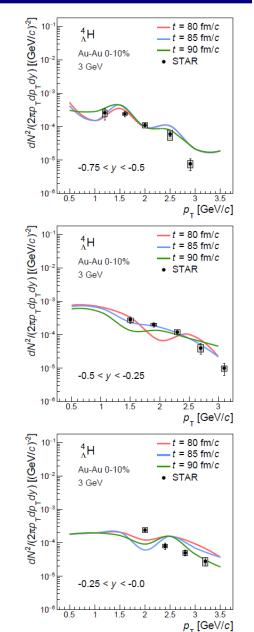
Hypernuclei production at $s^{1/2} = 3 \text{ GeV}$

The PHQMD comparison with most recent (preliminary!) STAR fixed target p_T distribution of ${}^{3}H_{\Lambda}$, ${}^{4}H_{\Lambda}$ from Au+Au central collisions at $\sqrt{s} = 3$ GeV

• Assumption for nucleon-hyperon potential: $V_{NA} = 2/3 V_{NN}$



→ Reasonable description of hypernuclei production at $\sqrt{s} = 3$ GeV



The PHQMD is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster formation

combined model PHQMD = (PHSD & QMD) & (MST | SACA)

- provides a good description of hadronic 'bulk' observables from SIS to RHIC energies
- predicts the dynamical formation of clusters from low to ultra-relativistic energies due to the interactions
- allows to study the origin as well as the properties of cluster formation (rapidity and p_T spectra)
- allows to study the formation of hypernuclei originating from ΛN interactions
- QMD dynamics allows to keep clusters 'bound' better than MF

Outlook-II

*Work in progress: implementation of momentum dependent potential + symmetry energy (M. Winn)