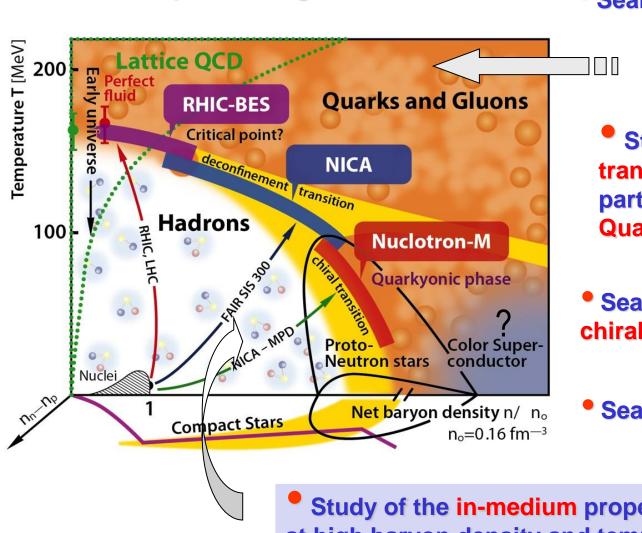


# Off-shell transport dynamics for strongly interacting systems

### Elena Bratkovskaya

# (GSI, Darmstadt & Uni. Frankfurt) for the PHSD/PHQMD group




The International Symposium on Nuclear Symmetry Energy (NuSym 2021) October 13–15, 2021 On-line



1

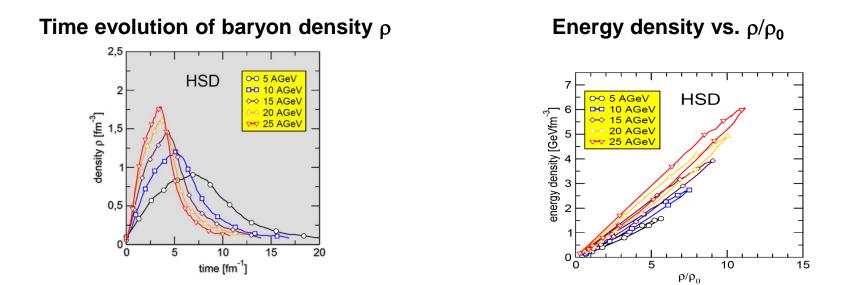
### The ,holy grail' of heavy-ion physics:



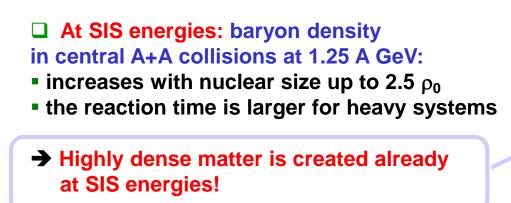
The phase diagram of QCD

### Search for the critical point




 Study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma

Search for signatures of chiral symmetry restoration


Search for the critical point

Study of the in-medium properties of hadrons at high baryon density and temperature

# **Dense and hot matter created in HICs**



Large energy and baryon densities (even above critical  $\varepsilon > \varepsilon_{crit} \sim 0.5 \text{ GeV/fm}^3$ ) are reached in the central reaction volume at CBM and BM@N/NICA energies (> 5 A GeV)  $\Rightarrow$  a phase transition to the QGP

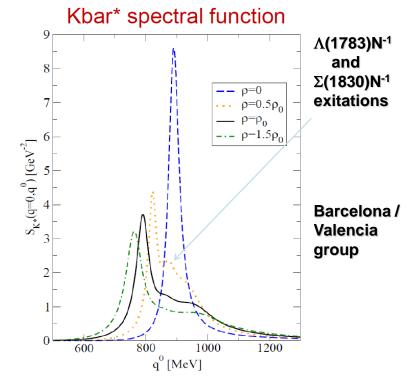




### From weakly to strongly interacting systems

In-medium effects (on hadronic or partonic levels!) = changes of particle properties in the hot and dense medium Examples: hadronic medium - vector mesons, strange mesons QGP – dressing of partons

Many-body theory: Strong interaction → large width → broad spectral function → quantum object


Semi-classical on-shell BUU: applies for small width, i.e. for a weakly interacting systems of particles

How to describe the dynamics of broad strongly interacting quantum states in transport theory?



first order gradient expansion of quantum Kadanoff-Baym equations

generalized transport equations based on Kadanoff-Baym dynamics



### **Dynamical description of strongly interacting systems**

#### Quantum field theory ->

Kadanoff-Baym dynamics for resummed single-particle Green functions S<sup><</sup>

$$\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$$

(1962)

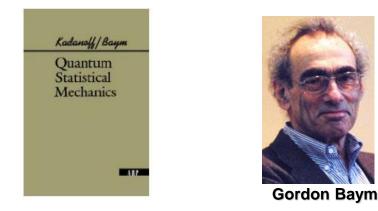
#### Green functions S<sup><</sup>/self-energies $\Sigma$ :

 $iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$   $iS_{xy}^{>} = \langle \{ \Phi(y) \Phi^{+}(x) \} \rangle$   $iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$  $iS_{xy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle - anticausal$ 

$$S_{xy}^{adv} = S_{xy}^{c} - S_{xy}^{>} = S_{xy}^{<} - S_{xy}^{a} - advanced$$
  

$$\eta = \pm 1(bosons / fermions)$$
  

$$T^{a}(T^{c}) - (anti-)time - ordering operator$$


 $S_{rv}^{ret} = S_{rv}^{c} - S_{rv}^{<} = S_{rv}^{>} - S_{rv}^{a} - retarded$ 

$$\hat{S}_{\theta x}^{-1} \equiv -(\partial_{x}^{\mu}\partial_{\mu}^{x} + M_{\theta}^{2})$$

Integration over the intermediate spacetime



Leo Kadanoff



1<sup>st</sup> application for spacially homodeneous system with deformed Fermi sphere: P. Danielewicz, Ann. Phys. 152, 305 (1984); ... H.S. Köhler, Phys. Rev. 51, 3232 (1995); ...



# From Kadanoff-Baym equations to generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

<u>Backflow term</u> incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit  $A_{XP} \rightarrow \delta(p^2 \cdot M^2) \rightarrow BUU$  equations

**GTE:** Propagation of the Green's function  $iS_{XP}^{<}=A_{XP}N_{XP}$ , which carries information not only on the number of particles ( $N_{XP}$ ), but also on their properties, interactions and correlations (via  $A_{XP}$ )

**Botermans-Malfliet (1990)** 

Spectral function:

**Life time**  $\tau = \frac{nc}{r}$ 

$$A_{XP} = rac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$$

4-dimentional generalizaton of the Poisson-bracket:

 $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} = 2 p_0 \Gamma$  – ,width' of spectral function = reaction rate of particle (at space-time position X)

 $\diamond \{F_1\}\{F_2\} := \frac{1}{2} \left( \frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$ 

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

# General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

 $\Box$  Employ testparticle Ansatz for the real valued quantity *i*  $S_{XP}^{<}$ 

$$F_{XP} = A_{XP}N_{XP} = i S_{XP}^{<} \sim \sum_{i=1}^{N} \delta^{(3)}(\vec{X} - \vec{X}_{i}(t)) \ \delta^{(3)}(\vec{P} - \vec{P}_{i}(t)) \ \delta(P_{0} - \epsilon_{i}(t))$$

insert in generalized transport equations and determine equations of motion !

Generalized testparticle Cassing-Juchem off-shell equations of motion for the time-like particles:

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[ 2\vec{P}_{i} + \vec{\nabla}_{P_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{P_{i}} \Gamma_{(i)} \right], \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[ \vec{\nabla}_{X_{i}} Re\Sigma_{i}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \vec{\nabla}_{X_{i}} \Gamma_{(i)} \right], \\ \frac{d\epsilon_{i}}{dt} &= \frac{1}{1-C_{(i)}} \frac{1}{2\epsilon_{i}} \left[ \frac{\partial Re\Sigma_{(i)}^{ret}}{\partial t} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial t} \right], \\ \text{with } F_{(i)} &\equiv F(t, \vec{X}_{i}(t), \vec{P}_{i}(t), \epsilon_{i}(t)) \\ C_{(i)} &= \frac{1}{2\epsilon_{i}} \left[ \frac{\partial}{\partial\epsilon_{i}} Re\Sigma_{(i)}^{ret} + \underbrace{\frac{\epsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - Re\Sigma_{(i)}^{ret}}{\Gamma_{(i)}} \frac{\partial \Gamma_{(i)}}{\partial\epsilon_{i}} \right]. \end{split}$$

Note: the common factor  $1/(1-C_{(i)})$  can be absorbed in an ,eigentime' of particle (i) !



### **Collision term** for reaction 1+2->3+4:

$$\begin{split} \underline{I_{coll}(X,\vec{P},M^2)} &= Tr_2 Tr_3 Tr_4 \underline{A(X,\vec{P},M^2)} A(X,\vec{P}_2,M_2^2) A(X,\vec{P}_3,M_3^2) A(X,\vec{P}_4,M_4^2) \\ & |G((\vec{P},M^2) + (\vec{P}_2,M_2^2) \rightarrow (\vec{P}_3,M_3^2) + (\vec{P}_4,M_4^2))|_{\mathcal{A},\mathcal{S}}^2 \ \delta^{(4)}(P + P_2 - P_3 - P_4) \\ & [N_{X\vec{P}_3M_3^2} N_{X\vec{P}_4M_4^2} \, \bar{f}_{X\vec{P}M^2} \, \bar{f}_{X\vec{P}_2M_2^2} - N_{X\vec{P}M^2} \, N_{X\vec{P}_2M_2^2} \, \bar{f}_{X\vec{P}_3M_3^2} \, \bar{f}_{X\vec{P}_4M_4^2} \,] \\ & , \text{gain' term} , \text{loss' term} \end{split}$$

with  $\bar{f}_{X\vec{P}M^2} = 1 + \eta N_{X\vec{P}M^2}$  and  $\eta = \pm 1$  for bosons/fermions, respectively.

# The trace over particles 2,3,4 reads explicitly for fermions $Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dM_{2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}} Tr_{2} = \sum_{\sigma_{2},\tau_{2}} \frac{1}{(2\pi)^{4}} \int d^{3}P_{2} \underbrace{\frac{dP_{0,2}^{2}}{\sqrt{\vec{P}_{2}^{2} + M_{2}^{2}}}}_{\text{additional integration}}$

The transport approach and the particle spectral functions are fully determined once the in-medium transition amplitudes G are known in their off-shell dependence!



### **Parton-Hadron-String-Dynamics (PHSD)**



**PHSD** is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions







Initial A+A collisions :

 $N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons$ 

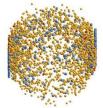
Partonic phase



Partonic phase - QGP:

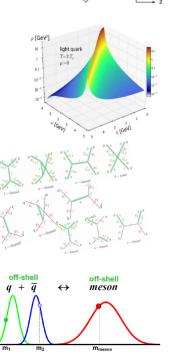
**Given Stage** Formation of QGP stage if local  $\varepsilon > \varepsilon_{critical}$ :

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and  $\mu_B$  (crossover)



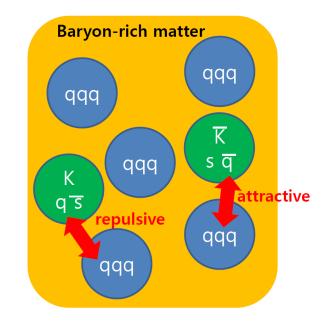

 Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q<sub>bar</sub>) with sizeable collisional widths in a self-generated mean-field potential

dissolution of pre-hadrons  $\rightarrow$  partons


- Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase




Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD



UND string mo

# In-medium effects at SIS energies: I. Kaons – repulsive potential II. Antikaons – G-matrix



### cf. talks by Dan Cozma

# **In-medium effects**

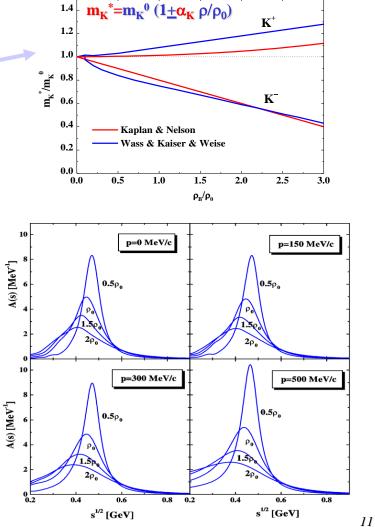
The hadrons - in particular strange mesons (K, Kbar and K\*) - modify their properties in the dense and hot nuclear medium due to the strong interaction with the environment

#### Models:

□ chiral SU(3) model, chiral perturbation theory, relativistic mean-field models: KN-potential → ,dropping' of K<sup>-</sup> mass and ,enhancement' of K<sup>+</sup> mass

> Kaplan and Nelson, PLB 175 (1986) 57; Weise, Brown, Schaffner, Krippa, Oset, Lutz, Mishra, ... et al.

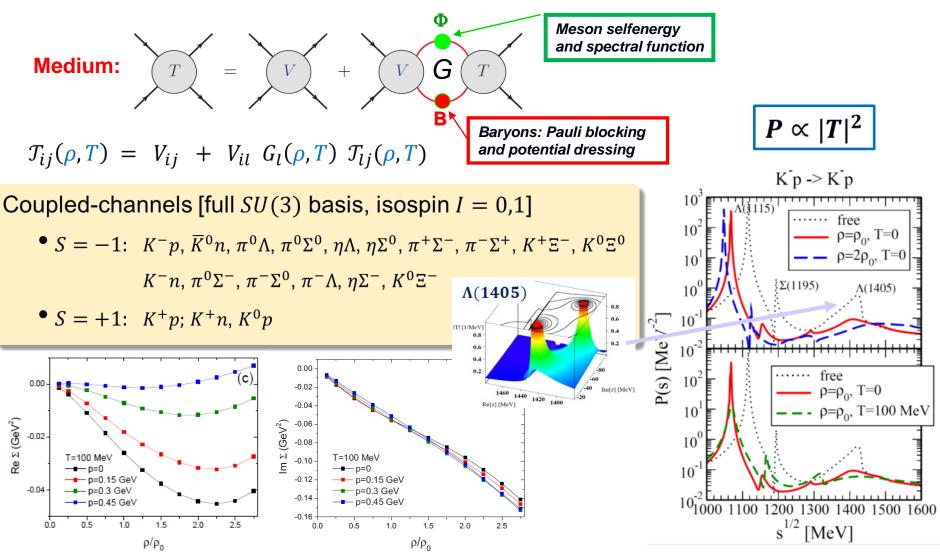
... long history ...


#### self-consistent coupled-channel approach - G-matrix:

→ momentum, density and temperature dependent spectral function of antikaons A(p<sub>κ</sub>,ρ,T): in-medium modification of the real and imaginary part of the self-energy (mass and width)

L. Tolos et al., NPA 690 (2001) 547

→ off-shell HSD: W. Cassing et al., Nucl.Phys.A 727 (2003) 59


Cf. review: C. Hartnack et al., Phys.Rept. 510 (2012) 119

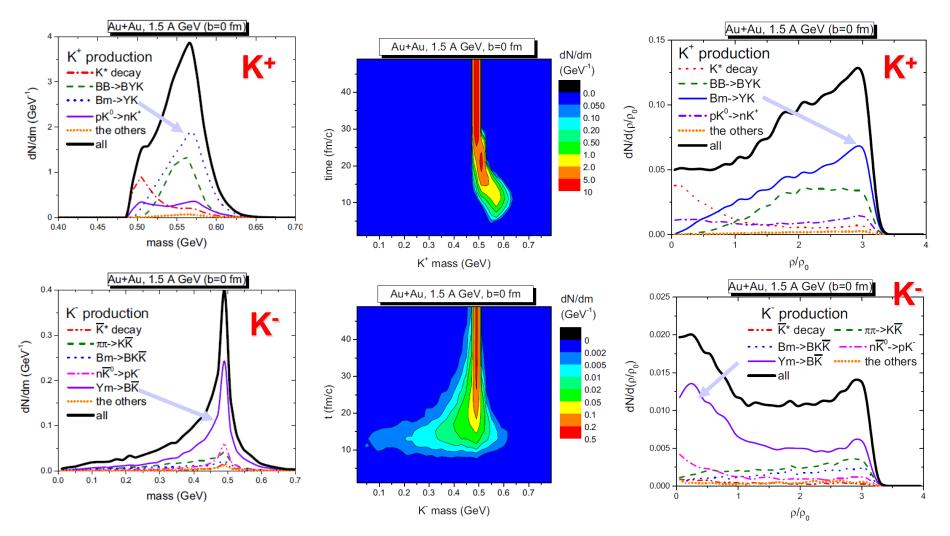


In-medium masses:

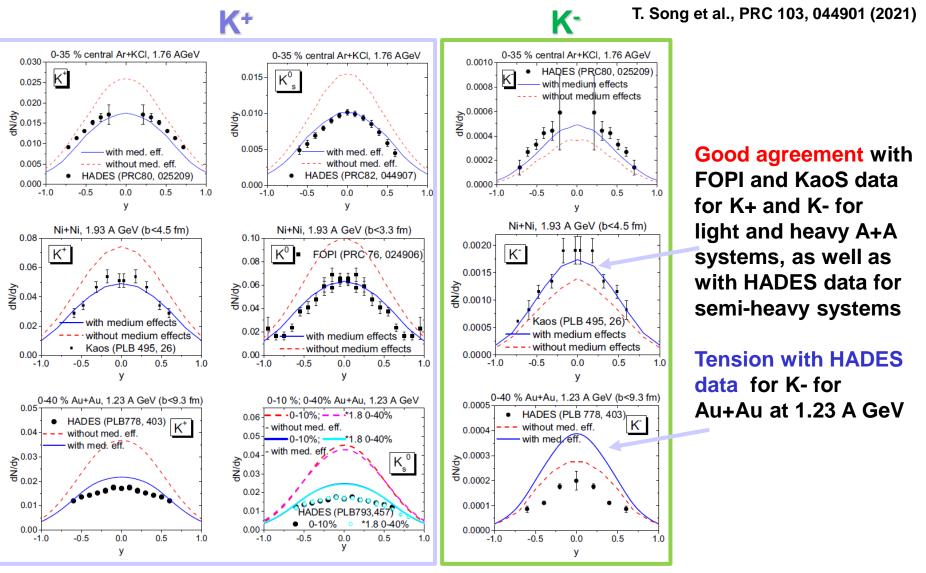
# **The coupled-channel G-matrix approach**

Solution of the Bethe-Salpeter equation in coupled channels:




1) 1st G-matrix (based on the Jülich meson-exchange model): L. Tolos et al., NPA 690 (2001) 547

2) \* Improved (based on SU(3) mB chiral Lagrangian): D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC90 (2014) 055207


# Time evolution of produced (anti)kaons

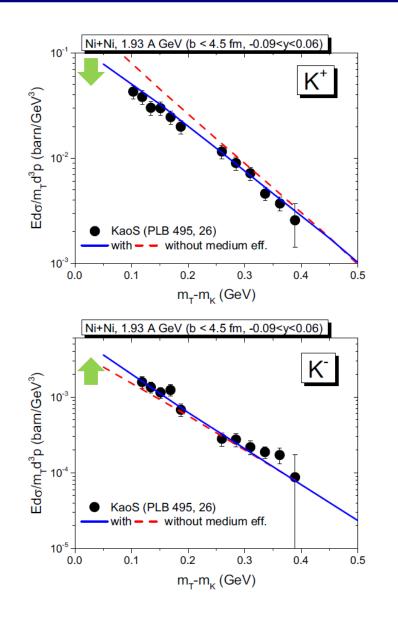
Mass distribution of K+, Kat the production points Time evolution of the K+, K- masses

Density distribution of K+, K- at the production point



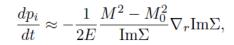
# **Rapidity distributions of (anti)kaons**

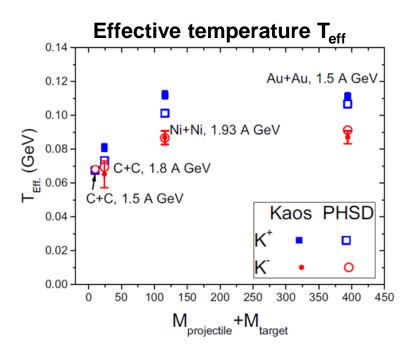



Nuclear matter effects suppress kaon production

#### Nuclear matter effects enhance antikaon production

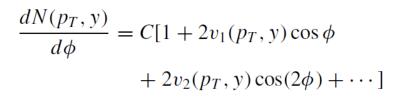


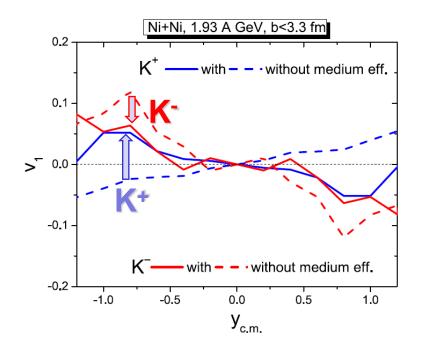

# m<sub>T</sub> spectra of (anti)kaons in central Ni+Ni collisions at 1.93 A GeV


T. Song et al., PRC 103, 044901 (2021)

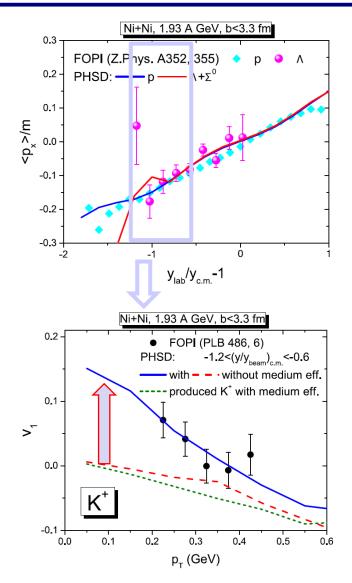


In-medium effects:

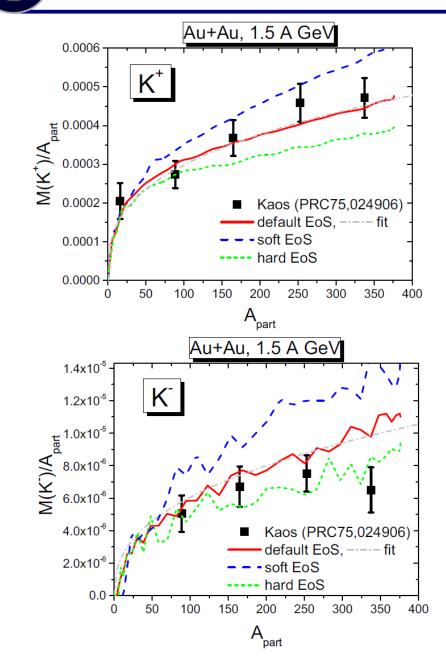

- suppresses kaon production
- hardens kaon spectrum
- enhances antikaon production
- □ softens antikaon spectrum since for  $M < M_0$ ,  $Re\Sigma \rightarrow 0$  and






# **Directed flow (v<sub>1</sub>)**






- v<sub>1</sub> of initial kaon follows that of nucleons while kaon is mostly produced by NN scattering
- repulsive force pushes v<sub>1</sub> of kaons upward
- □ attractive force pulls down v<sub>1</sub> of antikaon



# Equation of State (EoS) of nuclear matter



#### **Skyrme potential**

$$U(\rho) = a\left(\frac{\rho}{\rho_0}\right) + b\left(\frac{\rho}{\rho_0}\right)^{\gamma}$$

where a = -153 MeV, b = 98.8 MeV,  $\gamma = 1.63$ .

#### **Compression modulus K :**

$$K = -V \frac{dP}{dV} = 9\rho^2 \frac{\partial^2 (E/A)}{\partial \rho^2} \bigg|_{\rho_0}$$

Hard EoS: K=380 MeV  $\rightarrow$  hard to be compressed, less NN collisions to produce (anti)kaons

Default EoS: K=300 MeV

Soft EoS: K= 210 MeV → easy to be compressed, more NN collisions to produce (anti)kaons



# Summary – I

Dynamical description of strongly interaction hadronic (and partonic) matter:

- → off-shell dynamics based on Kadanoff-Baym equations
- → Parton-Hadron-String Dynamics (PHSD)

Application: study of the in-medium effects within a G-matrix approach for antikaons and by a linear repulsive nuclear potential for kaons: T. Song et al., PRC 103, 044901 (2021)

- □ The repulsive kaon nuclear potential increases the threshold energy for kaon production  $\rightarrow$  suppression of kaon production, hardening of m<sub>T</sub> spectra
- □ The broadening of Kbar spectral function in a medium decreases the threshold energy for kaon production  $\rightarrow$  enhancement of Kbar production, softening of m<sub>T</sub> spectra
- $\Box$  Modification of v<sub>1</sub>, v<sub>2</sub> of (anti-)kaons due to the in-medium effects
- Selectivity to EoS: soft EoS enhances and hard EoS suppresses the production of (anti)kaons; moderate EoS (K=300 MeV) reproduces experimental data better within the PHSD
- □ ... still tension in the description of HADES data for Au+Au at 1.23 A GeV Further robust experimental data are needed (HADES, CBM, BMN,...)!

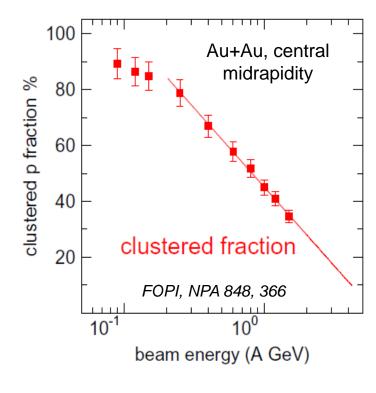


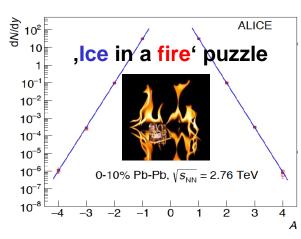
Consistent transport description of strongly interaction systems based on Kadanoff-Baym theory

### requires

a knowledge on the in-medium properties of all degrees-of-freedom (complex self-energies) and their interactions (in-medium cross sections)

→ 'Ab initio' many-body calculations are needed! Cf. Bruckner theory for G-matrix

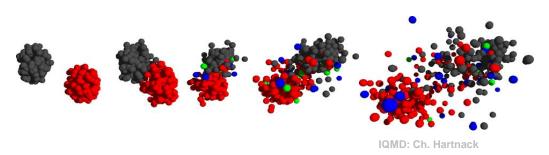

# **Clusters and hypernuclei in PHQMD**


# MF vs QMD



Jörg Aichelin, E.B., Arnaud Le Fèvre, Yvonne Leifels, Viktar Kireyeu, Vadim Kolesnikov, Vadim Voronyuk, Gabriele Coci, Michael Winn, Susanne Gläßel, Christoph Blume (SUBATECH, Nantes & GSI, Darmstadt & JINR, Dubna & Uni. Frankfurt)

### **Clusters and hypernuclei in HICs**



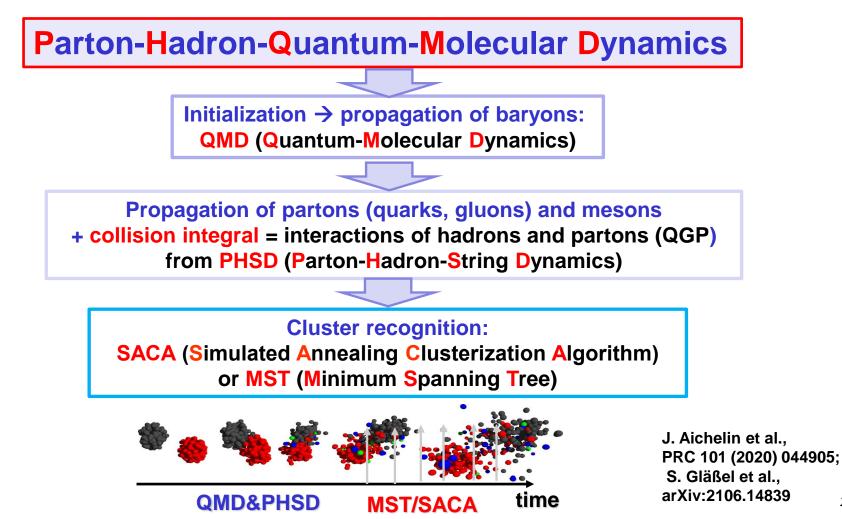



- □ Clusters are very abundant at low energy:
  - at **3 AGeV** in central Au+Au collisions
  - ~20% of the baryons are in clusters!
- → Understanding of cluster formation is needed:
- for proper description of nucleon observables (v<sub>1</sub>,v<sub>2</sub>, dn/dp<sub>T</sub>)

#### **to probe EoS**

- to explore new physics opportunities like
- hypernucleus formation
- possible signals of the 1<sup>st</sup> order phase transition
- cluster formation at midrapidity (RHIC, LHC)






### PHQMD



**PHQMD:** a unified n-body microscopic transport approach for the description of heavy-ion collisions and dynamical cluster formation from low to ultra-relativistic energies

<u>Realization:</u> combined model **PHQMD** = (PHSD & QMD) & (MST/SACA)



22

### **QMD** propagation

Generalized Ritz variational principle:  $\delta \int_{t_1}^{t_2} dt < \psi(t) |i \frac{d}{dt} - H|\psi(t) >= 0.$ Assume that  $\psi_N = \prod_{i=1}^N \psi_i(q_i, q_{0i}, p_{0i})$  for N particles (neglecting antisymmetrization !)

Ansatz: trial wave function for one particle "*i*": Gaussian with width *L* centered at  $r_{i0}$ ,  $p_{i0}$ 

$$\psi_i(q_i, q_{0i}, p_{0i}) = Cexp[-(q_i - q_{0i} - \frac{p_{0i}}{m}t)^2/4L] \cdot exp[ip_{0i}(q_i - q_{0i}) - i\frac{p_{oi}^2}{2m}t] \qquad L=4.33 \text{ fm}^2$$

Equations-of-motion (EoM) for Gaussian centers in coordinate and momentum space:

$$\dot{r_{i0}} = \frac{\partial \langle H \rangle}{\partial p_{i0}} \qquad \dot{p_{i0}} = -\frac{\partial \langle H \rangle}{\partial r_{i0}}$$

nian: 
$$H = \sum_{i} H_{i} = \sum_{i} (T_{i} + V_{i}) = \sum_{i} (T_{i} + \sum_{j \neq i} V_{i,j})$$
$$V_{i,j} = V(\mathbf{r_{i}}, \mathbf{r_{j}}, \mathbf{r_{i0}}, \mathbf{r_{j0}}, t) = V_{\text{Skyrme}} + V_{\text{Coul}}$$

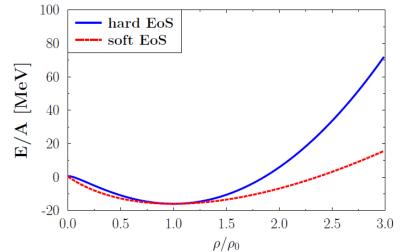
### **QMD** interaction potential and EoS

The expectation value of the Hamiltonian:

$$\langle H \rangle = \langle T \rangle + \langle V \rangle = \sum_{i} (\sqrt{p_{i0}^2 + m^2} - m) + \sum_{i} \langle V_{Skyrme}(\mathbf{r_{i0}}, t) \rangle$$

Skyrme potential - scalar ('static') \* :

$$\langle V_{Skyrme}(\mathbf{r_{i0}},t)\rangle = \alpha \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right) + \beta \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right)^2$$


modifed interaction density (with relativistic extension):

$$\begin{split} \rho_{int}(\mathbf{r_{i0}},t) &\to C \sum_{j} (\frac{4}{\pi L})^{3/2} \mathrm{e}^{-\frac{4}{L} (\mathbf{r_{i0}^{T}}(t) - \mathbf{r_{j0}^{T}}(t))^{2}} \\ &\times \mathrm{e}^{-\frac{4\gamma_{cm}^{2}}{L} (\mathbf{r_{i0}^{L}}(t) - \mathbf{r_{j0}^{L}}(t))^{2}}, \end{split}$$

- ♦ HIC  $\leftarrow$  → EoS for infinite matter at rest
- compression modulus K of nuclear matter:

$$K = -V\frac{dP}{dV} = 9\rho^2 \frac{\partial^2 (E/A(\rho))}{(\partial\rho)^2}|_{\rho=\rho_0}$$

#### EoS for infinite matter at rest



Work in progress: implementation of momentum dependent potential + symmetry energy (M. Winn)

### **Cluster recognition:** Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the (asymptotic) final states where coordinate space correlations may only survive for bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

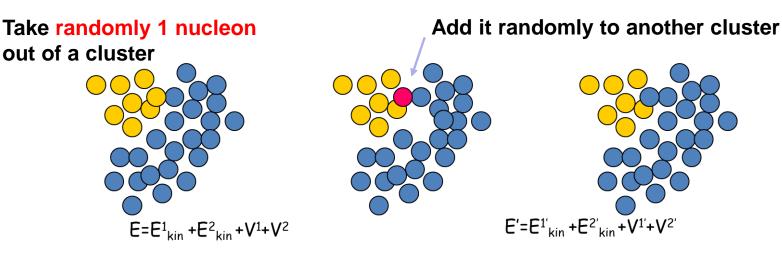
1. Two particles are 'bound' if their distance in coordinate space fulfills

$$\left| \vec{r}_i - \vec{r}_j \right| \le 2.5 \, fm$$

2. Particle is bound to a cluster if it binds with at least one particle of the cluster.

\* Remark:

inclusion of an additional momentum cut (coalescence) lead to small changes: particles with large relative momentum are mostly not at the same position (Cf. V. Kireyeu, Phys.Rev.C 103 (2021) )5




### **Simulated Annealing Clusterization Algorithm (SACA)**

### **Basic ideas of clusters recognition by SACA:**

Based on idea by Dorso and Randrup (Phys.Lett. B301 (1993) 328)

- > Take the positions and momenta of all nucleons at time t
- Combine them in all possible ways into all kinds of clusters or leave them as single nucleons
- > Neglect the interaction among clusters
- Choose that configuration which has the highest binding energy:



If E' < E take a new configuration

If E' > E take the old configuration with a probability depending on E'-E Repeat this procedure many times

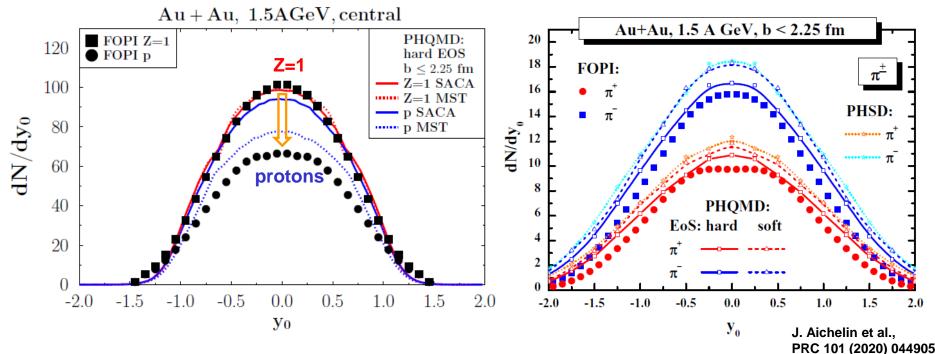
#### → Leads automatically to finding of the most bound configurations

(realized via a Metropolis algorithm)


R. K. Puri, J. Aichelin, PLB301 (1993) 328, J.Comput.Phys. 162 (2000) 245-266; P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390



- ❑ Cluster formation is sensitive to nucleon dynamics
- → One needs to keep the nucleon correlations (initial and final) by realistic nucleon-nucleon interactions in transport models:
- QMD (quantum-molecular dynamics) allows to keep correlations
- MF (mean-field based models) correlations are smeared out
- Cascade no correlations by potential interactions


#### Example: Cluster stability over time:

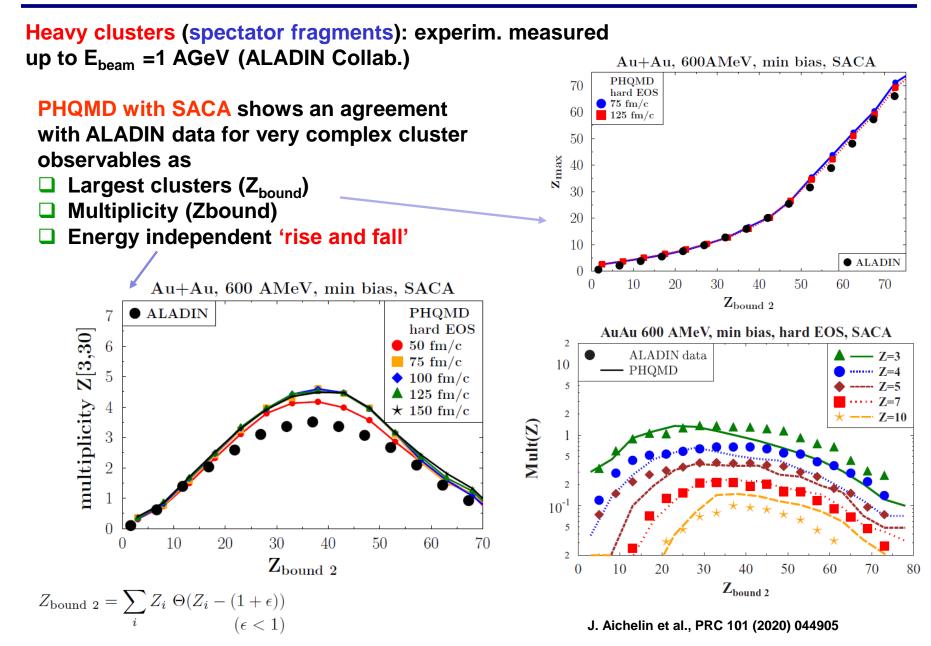




# PHQMD: light clusters and ,bulk' dynamics at SIS

Scaled rapidity distribution  $y_0 = y/y_{proj}$  in central Au+Au reactions at 1.5 AGeV



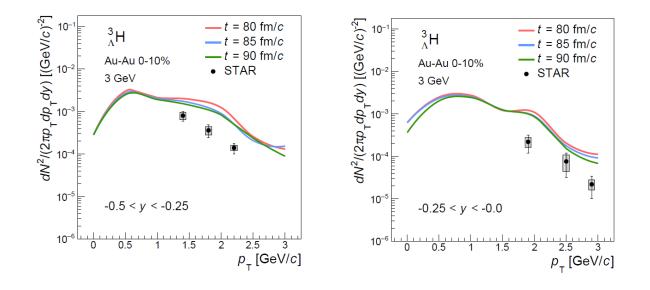

> 30% of protons are bound in clusters at 1.5 A GeV

- Presently MST is better identifying light clusters than SACA
  - → To improve in SACA: more realistic potentials for small clusters, quantum effects

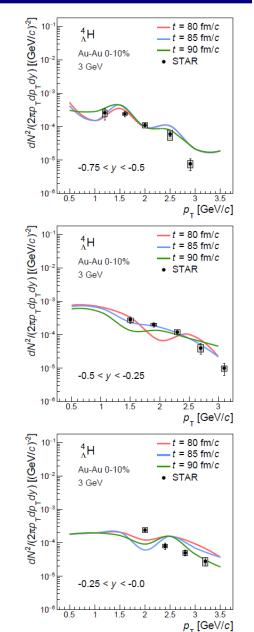
Pion spectra are sensitive to EoS: better reproduced by PHQMD with a 'hard' EoS
 PHQMD with soft EoS is consistent with PHSD (default – middle soft EoS)

\* To improve in PHQMD: momentum dependent potentials + symmetry energy (M. Winn)









### Hypernuclei production at $s^{1/2} = 3 \text{ GeV}$

The PHQMD comparison with most recent (preliminary!) STAR fixed target  $p_T$  distribution of  ${}^{3}H_{\Lambda}$ ,  ${}^{4}H_{\Lambda}$ from Au+Au central collisions at  $\sqrt{s} = 3$  GeV

• Assumption for nucleon-hyperon potential:  $V_{NA} = 2/3 V_{NN}$ 



# → Reasonable description of hypernuclei production at $\sqrt{s} = 3$ GeV





The PHQMD is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster formation

combined model PHQMD = (PHSD & QMD) & (MST | SACA )

- provides a good description of hadronic 'bulk' observables from SIS to RHIC energies
- predicts the dynamical formation of clusters from low to ultra-relativistic energies due to the interactions
- allows to study the origin as well as the properties of cluster formation (rapidity and  $p_T$  spectra)
- allows to study the formation of hypernuclei originating from  $\Lambda N$  interactions
- QMD dynamics allows to keep clusters 'bound' better than MF

## Outlook-II

\*Work in progress: implementation of momentum dependent potential + symmetry energy (M. Winn)