

The ASYEOS experiment at GSI and how to proceed towards higher density constraints of the symmetry energy

Y. Leifels GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt NUSYM2021 online 13.-15.10.2021

Outline

Short introduction

Experiments at high densities

 Link to astrophysical observations

Experiments at higher densities

The FOPI collaboration

A. Andronic, R. Averbeck, Z. Basrak, N. Bastid, M.L. Benabderramahne, M. Berger, P. Bühler, R. Caplar, M. Cargnelli, M. Ciobanu, P. Crochet, I. Deppner, P. Dupieux, M. Dzelalija, L. Fabbietti, J. Frühauf, F. Fu, P. Gasik, O. Hartmann, N. Herrmann, K.D. Hildenbrand, B. Hong, T.I. Kang, J. Keskemeti, Y.J. Kim, M. Kis, M. Kirejczyk, R. Münzer, P. Koczon, M. Korolija, R. Kotte, A. Lebedev, K.S. Lee, Y. Leifels, A. LeFevre, P. Loizeau, X. Lopez, M. Marguardt, J. Marton, M. Merschmeyer, M. Petrovici, K. Piasecki, F. Rami, V. Ramillien, A. Reischl, W. Reisdorf, M.S. Ryu, A. Schüttauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion, K. Siwek-Wilczynska, K. Suzuki, Z. Tyminski, J. Weinert, K. Wisniewski, Z. Xiao, H.S. Xu, J.T. Yang, I. Yushmanov, V. Zimnyuk, A. Zhilin, Y. Zhang, J. Zmeskal and

J. Aichelin, E. Bratkovskaya, W. Cassing, C. Hartnack, T.Gaitanos, Q. Li

IPNE Bucharest, Romania, ITEP Moscow, Russia CRIP/KFKI Budapest, Hungary, Kurchatov Institute Moscow, Russia, LPC Clermont-Ferrand, France, Korea University, Seoul, Korea, GSI Darmstadt, Germany, IReS Strasbourg, France, FZ Rossendorf, Germany, Univ. of Heidelberg, Germany, Univ. of Warsaw, Poland, RBI Zagreb, Croatia, IMP Lanzhou, China, SMI Vienna, Austria, TUM, Munich, Germany, T.Yamazaki(RIKEN)

The ASY-EOS collaboration

P. Russotto¹, M. Chartier², E. De Filippo¹, A. Le Fèvre³, S. Gannon², I. Gašparić^{4,5}, M. Kiš^{3,4}, S. Kupny⁶, Y. Leifels³, R.C. Lemmon⁷, J. Lukasik⁸, P. Marini^{9,10}, A. Pagano¹, P. Pawłowski⁸, S. Santoro^{11,12}, W. Trautmann³, M. Veselsky¹³, L. Acosta¹⁴, M. Adamczyk⁶, A. Al-Ajlan¹⁵, M. Al-Garawi¹⁶, S. Al-Homaidhi¹⁵, F. Amorini¹⁴, L. Auditore^{11,12}, T. Aumann⁵, Y. Ayyad¹⁷, V. Baran^{14,18}, Z. Basrak⁴, J. Benlliure¹⁷, C. Boiano¹⁹, M. Boisjoli¹⁰, K. Boretzky³, J. Brzychczyk⁶, A. Budzanowski⁸, G. Cardella¹, P. Cammarata⁹, Z. Chajecki²⁰, A. Chbihi¹⁰, M. Colonna¹⁴, D. Cozma²¹, B. Czech⁸, M. Di Toro^{14,22}, M. Famiano²³, E. Geraci^{1,22} V. Greco^{14,22}, L. Grassi⁴, C. Guazzoni^{19,24}, P. Guazzoni^{19,25}, M. Heil³, L. Heilborn⁹, R. Introzzi²⁶, T. Isobe²⁷, K. Kezzar¹⁶, A. Krasznahorkay²⁸, N. Kurz³, E. La Guidara¹, G. Lanzalone^{14,29} P. Lasko⁶, Q. Li³⁰, I. Lombardo^{30,31}, W. G. Lynch²⁰, Z. Matthews², L. May⁹, T. Minniti^{11,12}, M. Mostazo¹⁷, M. Papa¹, S. Pirrone¹, G. Politi^{1,22}, F. Porto^{14,22}, R. Reifarth³, W. Reisdorf³, F. Riccio^{19,25} F. Rizzo^{14,22}, E. Rosato^{30,31}, D. Rossi³, H. Simon³, I. Skwirczynska⁸, Z. Sosin⁶, L. Stuhl²⁸, A. Trifirò^{11,12}, M. Trimarchi^{11,12}, M. B. Tsang²⁰ G. Verde¹, M. Vigilante^{30,31}, A. Wieloch⁶, P. Wigg², H. H. Wolter³² P. Wu², S. Yennello⁹, P. Zambon^{19,24}, L. Zetta^{19,25} and M. Zoric⁴

INFN-Sezione di Catania, Catania, Italy ²University of Liverpool, Liverpool, UK ³GSI Helmholtzzentrum, Darmstadt, Germany ⁴Ruder Bošković Institute, Zagreb, Croatia ⁵Technische Universität, Darmstadt, Germany ⁶Jagiellonian University, Krakòw, Poland ⁷STFC Laboratory, Daresbury, UK ⁸IFJ-PAN, Krakow, Poland ⁹Texas A&M University, College Station, USA ¹⁰GANIL, Caen, France ¹¹INFN-Gruppo Collegato di Messina, Messina, Italy ¹²Università di Messina, Messina, Italy ¹³Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia ¹⁴INFN-Laboratori Nazionali del Sud, Catania, Italy ¹⁵KACST Riyadh, Riyadh, Saudi Arabia ¹⁶King Saud University, Riyadh, Saudi Arabia ¹⁷University of Santiago de Compostela, Santiago de Compostela, Spain ¹⁸University of Bucharest, Bucharest, Romania ¹⁹INFN-Sezione di Milano, Milano, Ialy ²⁰NSCL Michigan State University, East Lansing, USA ²¹IFIN-HH, Magurele-Bucharest, Romania ²²Università di Catania, Catania, Italy

²¹Western Michigan University, USA
 ²⁴Politecnico di Milano, Milano, Italy
 ²⁵Università degli Studi di Milano, Milano, Italy
 ²⁶INFN, Politecnico di Torino, Torino, Italy
 ²⁷RIKEN, Wako, Japan
 ²⁸Institute of Nuclear Research, Debrecen, Hungary
 ²⁹Università Kore, Enna, Italy
 ³⁰Huzhou Teachers College, China
 ³⁰INFN-Sezione di Napoli, Napoli, Italy
 ³¹Università di Napoli, Napoli, Italy

³²LMU, München, Germany

Motivation: Equation of state of nuclear matter

EOS in thermodynamics pressure $P(\rho,T)$

$$P = \rho^{2} \frac{\partial E/A}{\partial \rho} \Big|_{T=const}$$
Nuclear physics EOS
$$\frac{E}{A} = E/A(\rho) \Big|_{T=0}$$
Nuclear incompressibility K
$$K = 9 \rho^{2} \frac{\partial^{2} E/A}{\partial^{2} \rho} \Big|_{\rho=\rho_{0}}$$
Asymmetry parameter $\delta = \frac{\rho_{n}-\rho_{p}}{\rho_{n}+\rho_{p}}$

$$E(\rho, \delta) = E_{SNM}(\rho, \delta = 0) + \delta^{2} E_{Sym}(\rho) + O(\delta^{4})$$
mit
$$E_{sym} = E_{sym,0} + \frac{L}{3} \left(\frac{\rho-\rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18} \left(\frac{\rho-\rho_{0}}{\rho_{0}}\right)^{2} + \cdots$$
Slope $L = 3\rho_{0} \frac{\partial E_{sym}}{\partial \rho}$

$$DBHF (BonA)$$

$$BHF AV_{18}+3-BF$$

$$Var AV_{18}+3-BF$$

$$Summetry parameter \delta = \frac{\rho_{n}-\rho_{p}}{\rho_{n}+\rho_{p}}$$

$$DD-TW$$

$$ChPT$$
Neutron matter
$$\delta=0$$

$$0$$

$$100$$

$$\frac{Fuchs and Wolter, EPJA 30 (2006)$$

$$BHF AV_{19}+3BF$$

$$Var AV_{18}+3-BF$$

$$Sum etry parameter \delta = \frac{\rho_{n}-\rho_{p}}{\rho_{n}+\rho_{p}}$$

$$DD-TW$$

$$ChPT$$

$$Neutron matter
$$\delta=0$$

$$0$$

$$\frac{\delta=0}{1}$$

$$\frac{\delta=0}{1}$$

$$\frac{\delta=0}{1}$$$$

Probing the EOS of symmetric matter with Kaon production

Probing the EOS of symmetric matter with flow

Yvonne Leifels - NUSYM2021

Probing the EOS of symmetric matter with flow

Yvonne Leifels - NUSYM2021

Parametrization of elliptic flow

A. LeFevre et al, Nucl. Phys. A 876 (2012) 1

Parametrization of elliptic flow

- sensitive to EOS over a large energy range
- v_{2n}(E_{beam}) varies by a factor ≈1.6, >> measured uncertainty (≈1.1)

• relevant density range $\rho \simeq (1 - 3) \rho_0$

A. LeFevre et al, Nucl. Phys. A 876 (2012) 1

Some comparisons

- consistent to former results *P. Danielewicz* et al. Science 298, 1592 (2002)
- elliptic flow is less sensitive to stiffness of EOS at higher energies
- a possible 1. order phase transition would lead to a softening of the EOS and vanishing directed flow: STAR, PRL 112, 162301 (2014), Y. Nara et al., PLB 769, 543 (2017)

Constraints for K₀ from elliptic flow

A. LeFevre et al, Nucl. Phys. A 876 (2012) 1

Symmetry energy at supra-normal densities

Differential elliptic flow v_2 of n/p UrQMD* (Q. Li et al.) predicts "hard" E_{svm} protons unchanged

neutron and proton flow

"soft" E_{sym} inverted

Towards model invariance:

tested stability with different models:

- soft vs. hard EOS 190<K<280 MeV</p>
- \blacktriangleright density dependence of $\sigma_{NN,elastic}$
- > asymmetry dependence of $\sigma_{NN,elastic}$
- optical potential
- momentum dependence of isovector potential
- M.D. Cozma et al., arXiv:1305.5417
- P. Russotto et al., PLB 267 (2010)
- Y. Wang et al., PRC 89, 044603 (2014)

ASY – EOS Experiment

Elliptic flow ratio of neutrons and charged particles

ASY-EOS: constraints on symmetry energy

Comparison to results from neutron star merger event GW 170817

Collaboration)

Gravitational Wave 170817

B. P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo

 $\rho \left[\text{g/cm}^3 \right]$

How can we combine FOPI, AsyEOS and ALADiN results to deduce the pressure in a neutron star?

- Have $(P_{NN}^{sym}(K_0) + P_{asy}(L))\delta$ $\delta = 0.9(5\% protons + degenerate e^{-})$
- L as from AsyEOS at 1-2p₀
- K₀ as from FOPI flow data

 $6\rho_{nuc}$

Comparison of HIC results to recent astrophysical findings

- Have $(P_{NN}^{sym}(K_0) + P_{asy}(L))\delta$ $\delta = 0.9(5\% protons + degenerate e^{-})$
- L as from AsyEOS at 1-2p₀
- K₀ as from FOPI flow data

S. Huth, P.T.H. Pang et al., arXiv:2107.06229 (2021)[nucl-th]

Combining HIC and astrophysical results in the same Bayesian analysis to constrain neutron matter EOS

Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions Sabrina Huth, arXiv:2107.06229 (2021)[nucl-th]

« **HIC** » = FOPI+ASY-EOS+AGS - « **Astro** » = GW, NICER (pulsar X-ray hot spots)

Yvonne Leifels - NUSYM2021

Combining HIC and astrophysical results in the same Bayesian analysis to constrain neutron matter EOS

Constraining Neutron-Star Matter with Microscopic and Macroscopic Collisions Sabrina Huth, arXiv:2107.06229 (2021)[nucl-th]

« HIC » = FOPI+ASY-EOS+AGS - « Astro » = GW, NICER (pulsar X-ray hot spots)

Advancing to higher densities

Other observables

ASY-EOS II

NEW ASY-EOS proposal:

Study of

Au+Au 250, 400, 600, 1000 MeV/u

measure neutron / proton / hydrogen elliptic flow :

NeuLAND

charged particles:

Kratta, Califa

impact parameter vector:

CHIMERA, KRAB

Aim

Measure n, p, d, t flow with NeuLAND to access not only slope of symmetry energy but also the **curvature**

ASY-EOS II in the R3B cave at GSI

ASY-EOS II next steps

- part of an LOI of the R3B collaboration to the G-PAC of GSI
- participate in the next call for proposals in autumn 2022 for beam times in 2023 and 2024
- tests of the KRAB detector
- preparation for beam time
- working group on transport models together with HADES/CBM

Experiments

Kaon production probe the symmetry energy

Summary and conclusions

YM202

FAIR construction site in June First science experiments planned end 2025 Start of operation SIS100 end of 2026

Summary and conclusions

Heavy ion collisions are a powerful tool to constrain the nuclear matter EOS Studied a wide range of energies and systems at SIS18

Combination of FOPI and ASY-EOS results allows to predict a density dependence of the pressure in a neutron star between 0.5 to 2 ρ_0 , with similar accuracy than astrophysical data

To access higher densities a new experiment ASY-EOS II is planned at GSI Beyond 3 to 4 ρ_0 new observables are needed to constraint NS EOS Beam energy scan BES at RHIC and new experimental set-ups will be available at Nuclotron at JINR and at FAIR

Benchmarking transport models for the energy regime between 1 - 5 GeV/u