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What do our theorist friends often show us about
the density dependence of the Symmetry Energy?
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The most popular theoretical constraint plot does not
provide S(p). Instead it provides values for parameters S,
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and L for various effective interactions that were used to g
describe data. These functions and their dependencies on S, = .
and L differ.
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Thrust of the talk:

| take seriously the published constraint curves.

| assume that the observable is probing S(p).

| let the constraint curves tell me what density the measurement is probing.

| use the authors’ symmetry energy functions and ask what is the symmetry
energy at the density the measurement probes. | plot the value for that
symmetry energy function at that sensitive density

| show what | get.



What do these contours really tell us?

Consider the analyses of masses by Alex Brown. e
The squares indicate the parameter values for his | 222 HIC(isodiff) V0000 1/
fits of doubly closed shell nuclei. Each nucleus 35+ O Mass(Skyrme) j)777/ 7

was fit under the constraint of three possible | 1 Mass(DFT) /) 47
values for neutron skin thicknesses of AR ,=0.16, | [ JIAS

0.20 and 0.24 fm. B O,

The dashed line and the other solid lines are lines
of constant 2. It describes how changes in S, in
S(S,,L,p) can be compensated by changesin L so
that the data are reproduced with the same y2.

Each of these “equiprobability” contours has an

T . __ASy ) o5 L. Al . . .
inclination T = Wk The value 7 is also relates the 0 50 100

partial derivatives of the symmetry energy at L, (MeV)
density p, where the symmetry energy remains

approximately constant along the straight r= —(5S(Ps )/aL)/(as(ps )/aso);

sections of the equiprobability contour. r depends monotonically on p,
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What density do these fits 5. Brown, Phs. Rev. Let, 144, 232502 (2013
constrain? |z

* Crossover technique:

* Alex Brown fit the masses of doubly closed shell
nuclei, while setting different values neutron
skin thicknesses of AR,,=0.16, 0.20 and 0.24 fm.
The functionals are shown in the upper panel.
All Brown fits provide S(p)=24.8+0.7 MeV at [
p/p,=0.63+.03 as shown at left. R
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S(p) (MeV)

03F y
— The inclination, t=0.100%£.006, of Brown’s contour in : )
the S, and L plane plus the form of the function is 02F 4
sufficient to determine p/p,=0.63+.03 and S(p)=24.8 k= . '
10.7 MeV. 0.1
— The values for Sy and L lie on a line in the S, and L '
plane along which S(0.63p,) remains constant. This 0.0 S T
line lies perpendicular to the gradient of S(0.63p,) in 0.0 0.5 1.0
the S, and L plane. p

We use the name “inclination” instead of “slope” for 1 so 7(p)= —(8S(p)/8L)/(GS(,0)/8SO);
that t will not be confused with L. 7 depends monotonically on p



ISObarIC Analog States :]IHIC(isodiff) I
g5l O Mass(Skyrm
* Danielewicz and Lee examined Isobaric Analog —————
States (IAS) and obtained constrain E == o,

* Inclination provides density. ;130_

* Danielewicz gave us their best fit functional S, ((S,,L,p)

* S.¢(Sq,L,ps) is plotted as the dark blue point in the
lower figure.
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* Pearson correlation technique: L (MeV)

’ Danie_lewicz and Lee .used the Pear§9n correlation P. Danielewicz, and J. Lee, Nucl. Phys. A 922, 1 (2014).
technique to determine what densities must be S —
“right” to reproduce IAS? E EXY 15 consteatute 3

50— . extrapolation ///i

* Light nuclei are more sensitive to lower densities. E specitic Skyrme: s

* They obtained the cross-hatched constraint in the R ik
lower figure. The best fit constrained value in their S sl T P T
Pearson correlation analysis is the same as the point w | /// r- e
obtained from the inclination analysis of the W B
constraint contour in the upper figure. The inclination m}/,//,:,/ -
point is shown as the dark blue point in the lower g N L e
flgure 800 0.05 0.10 0.15 0.20



Electrical dipole polarizability

* The dipole polarizability of a nucleus tells how
the ground state energy changes in a dipole
electric field. Perturbation theory tells us

* Large contribution from GDR

* Low energy non-collective excitations
have enhanced importance.

* Latter measured by (p,p’) coulex by Tamii
et al., PRL 107, 062502 (2011)..

Analyzed by Zhang and Chen using a Pearson
correlation technique.

This involves selectively varying S(p) at
various densities and deduce the optimal S(p)
and the sensitivity to specific densities.

We find that the sensitive density extracted
from the inclination of the constraint contour
from Roca-Maza PRC 88,024316 (2013) is also
p=0.05 fm-3
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The red contour shows the constraint on S(p)
consistent with the ay measurement. The
best determined value is S(p)=15.9+1.0MeV
at p=0.05 fm-3, which is marked as the yellow
square point in the figure.



Isospin Diffusion
S(p)=12.5(p/p,)** +C (p/p,)

Tsang, Zhang et al., PRL 102, 122701 (2009) oy - I
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e This observable reflects the exchange of neutrons and ASy  9S(p) /OS(p)
Tsang et al., PRL 92, 062701 (2004) between nuclei of different asymmetries. The observable ™~ A7 ~ ~ 5L 08,

provides the density at which a given functional reaches an
energy of 10.4+1 MeV and a density p/p, = 0.22 £+ .07.
(Stiffer S(p)’s reproduce the data at higher densities.)
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Single Ratio (SR)

Single Ratio (SR)
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132gn + 124g9n, F/A = 270 MeV

Dan Cozma: dcQMD

108gn + 112gp, F/A = 270 MeV
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The pion spectra at high p; reflect the
accelerations of the nucleons due to the
isovector mean field potentials that
control the symmetry energy.

The discrepancy may reflect the
contribution of non-resonant pion
production that is neglected in the
current calculations. The discrepancy is
independent of the asymmetry of the
system. This discrepancy is absent in the
pion spectral double ratio.

Raising the bombarding energy is an
important test of this interpretation
because it will decrease the relative
contributions of non-resonant pion
production and reduce the role of the A
potentials.

Collaboration: Pion production in rare isotope collisions
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Gray region show calculated
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Collaboration

Estee et al. PRI 126, 162701 (2021)
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The measurements provide a correlated constraint on L and Amy,,
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Conclusion — Some Astrophysws & Physics implications

So,=24.2+-0.5 MeV
Ly,=53.1+-6.1 MeV
Koy=-79.2+-37.6 MeV

R,,=0.23+-0.03 fm
pcc~0'5p0

S,=33.3+-1.3 MeV
L=59.6+-22.1 MeV
Kyym=-180+-96 MeV

Pym=3.2+-1.2 MeV

A(1.4)=500-720
R(1.4) =13.1+-0.6 km

More to come when the new density functional is included in NS calculations.



Summary

* We took every constraint contour seriously.

* We used the density function of the authors and asked what sensitive density
could give rise to the observed correlation between S_and L.

* We used the symmetry energy of the analysis to get the constraint.

* We conclude from the consistency of these constraints that we should take these
constraints seriously.



