

Christian Drischler

September 23, 2021 | International Symposium on Nuclear Symmetry Energy

MICHIGAN STATE UNIVERSITY

Recent review article

CD, Holt, and Wellenhofer, ARNPS 71, 403

Chiral Effective Field Theory and the High-Density Nuclear Equation of State

C. Drischler,^{1,2,3} J. W. Holt,⁴ and C. Wellenhofer,^{5,6}

¹Department of Physics, University of California, Berkeley, California 94720, USA

 ${}^{\mathbf{2}}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³Facility for Rare Isotope Beams, Michigan State University, Michigan 48824, USA; email: drischler@frib.msu.edu

 ⁴Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA; email: holt@physics.tamu.edu
⁵Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany; email: wellenhofer@theorie.ikp.physik.tu-darmstadt.de

 $^{6}\mathrm{ExtreMe}$ Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

invited contribution to Annu. Rev. Nucl. Part. Sci. **71**, 403 see also: Lattimer, Annu. Rev. Nucl. Part. Sci. **71**, 433

See also: Burgio, Schulze, Vidaña & Wei, PPNP **120**, 103879

Annu. Rev. Nucl. Part. Sci. 2021. 71:1-30 This article's doi:

10.1146/annurev-nucl-102419-041903

Copyright © 2021 by Annual Reviews. All rights reserved

Annu. Rev. Nucl. Part. Sci. in press.

Keywords

chiral effective field theory, nuclear matter, neutron stars, many-body perturbation theory, bayesian uncertainty quantification

Abstract

Multi-messenger astronomy

+ Virgo + GEO600 + KAGRA

What is the secondary object in GW190425 and GW190814

MICHIGAN STATE UNIVERSITY

ligo.caltech.edu

Binary neutron star merger GW170817

> $R_{1.4} \lesssim 13.6 \,\mathrm{km}$ $M_{\mathrm{max}} \lesssim 2.3 \,\mathrm{M}_{\odot}$

e.g., see: Margalit, Metzger, APJ **850**, 19 Rezzolla *et. al.*, APJ **852**, L25 De *et al.*, PRL **121**, 091102 Lim and Holt, EPJ A **55**, 209 Capano *et al.*, NA **4**, 625 Al-Mamun *et al.*, PRL **126**, 061101

Recent neutron star observations

MICHIGAN STATE

NICER

+ eXTP

+ STROBE-X

NASA

 $R_{2.0} = 12.39^{+1.30}_{-0.98} \text{ km}$ $R_{2.0} = 13.70^{+2.6}_{-1.5} \text{ km}$

Riley *et al.*, arXiv:2105.06980 Miller *et al.*, arXiv:2105.06979

 $R_{1.4} = 12.71^{+1.14}_{-1.19} \text{ km}$ $R_{1.4} = 13.02^{+1.24}_{-1.19} \text{ km}$

Riley *et al.*, APJL **887**, L21 Miller *et al.*, APJL **887**, L24

PSR J0740+6620 PSR J0030+0451 see Cole Miller's talk Neutron Star Measurements with NICER

precise mass measurements

 $M_{\rm max} \gtrsim 2 \, {\rm M}_{\odot}$

Cromartie *et al.*, Nat. Astron. **4**, 72 Antoniadis *et al.*, Science **340**, 6131 Demorest *et al.*, Nature **467**, 1081

MICHIGAN STATE

frib.msu.edu

Nuclear experiments: neutron-rich nuclei, collisions...

A CONTRACTOR OF THE PARTY Facility for Rare Isotope Beams at Michigan State University Estimated by theory Produced at FRIB sotopes 80 60 of 40 Number ~80% of all predicted isotopes up to FAIR 20 Uranium + RHIC + GANIL 80 90 20 70 10 30 60 0 40 50 **Atomic Number** -Gade, Sherrill, Phys. Scripta 91, 053003 Balantekin, Carlson et. al., Mod. Phys. Lett. A 29, 1430010

Direct correspondence: *M*–*R* relation and EOS

Bayesian modeling of the EOS

Lim & Holt, PRL **121**, 062701

Microscopic nuclear forces

e.g., Machleidt, Entem, Phys. Rep. 503, 1

MICHIGAN STATE

UNIVERSITY

Chiral EFT: modern approach to deriving *microscopic* nuclear forces consistent with the symmetries of low-energy QCD

- use relevant instead of the fundamental degrees of freedom: *e.g.*, **nucleons** and **pions**
- pion exchanges and short-range contact interactions (∝ LECs)
- **systematic expansion** enables improvable **uncertainty estimates**

$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\right) \ge \frac{1}{3}$$

e, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

September 23, 2021 | NuSym21 | Christian Drischler | 9

Hierarchy of nuclear forces in chiral EFT

3N forces NN forces 4N forces LO (Q⁰) $NLO(Q^2)$ S. Weinberg $N^{2}LO(Q^{3})$ no unknown $N^{3}LO(Q^{4})$ parameters not (completely) **X** ... N⁴LO (Q⁵) worked out

Many-body forces

Expansion

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

September 23, 2021 | NuSym21 | Christian Drischler | 10

MICHIGAN STATE UNIVERSITY

e.g., Machleidt, Entem, Phys. Rep. 503, 1

Microscopic calculations of the nuclear EOS

MICHIGAN STATE UNIVERSITY

e.g., Hebeler, Holt et al., ARNP 65, 457

great progress in predicting the **EOS** of infinite matter and the structure of **neutron stars** at densities $\leq 2n_0$

Many-body frameworks

treatment of 3N forces improved order-by-order calculations

Uncertainty quantification

development of Bayesian methods quantification of EFT truncation errors

Hebeler, Lattimer et al., APJ 773, 11

see also Anthea Fantina's talk Modelling inhomogeneous matter at finite temperature in compact stars

Lonardoni, Tews *et al.*, PRR **2**, 022033(R) Piarulli, Bombaci *et al.*, PRC **101**, 045801

MICHIGAN STATE

Improved many-body calculations

great progress in predicting the **EOS** of infinite matter and the structure of **neutron stars** at densities $\leq 2n_0$

Improved many-body calculations

Efficient Monte Carlo framework

CD, Hebeler, Schwenk, PRL **122**, 042501

- acceleration: openMP, MPI, and CUDA
- controlled computation of arbitrary interaction and many-body diagrams

High-order MBPT

Stevenson, Int. J. Mod. Phys. C 14, 1135

The number of diagrams increases rapidly!

Integer sequence A064732:

Number of labeled Hugenholtz diagrams with *n* nodes.

ADG: Automated generation and evaluation of many-body diagrams I. Bogoliubov many-body perturbation theory

Pierre Arthuis, Thomas Duguet, Alexander Tichai, Raphaël-David Lasseri, Jean-Paul Ebran Comput. Phys. **240**, 202 fully automated approach to MBPT

New framework for UQ of EFT calculations

MICHIGAN STATE

buqeye.github.io

CD, Furnstahl, Melendez, and Phillips

Effective Field Theory Convergence Pattern of Infinite Nuclear Matter, PRC **102**, 054315

> See also: Melendez *et al.*, PRC **100**, 044001 Wesolowski *et al.*, JPG **43**, 074001

UQ framework available at <u>https://buqeye.github.io</u>

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

predict observable y_k order by order in EFT

$$y_k = y_{ ext{ref}} \sum_{n=0}^k c_n Q^n$$

c_n are not the EFT's LEC

treat all *c_n* as independent draws from a Gaussian Process

learn GP's hyperparameters & infer EFT truncation error

$$\delta y_k = y_{ ext{ref}} \sum_{n=k+1}^\infty c_n Q^n$$

geometric sum

For example: $y_k = E/A$ in SNM at chiral order k

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

For example: $y_k = E/A$ in SNM at chiral order k

predict observable y_k order by order in EFT

$$y_k = y_{ ext{ref}} \sum_{n=0}^k c_n Q^n$$

c_n are not the EFT's LEC

treat all *c_n* as independent draws from a Gaussian Process

learn GP's hyperparameters & infer EFT truncation error

$$\delta y_k = y_{ ext{ref}} \sum_{n=k+1}^\infty c_n Q^n$$

geometric sum

MICHIGAN STATE UNIVERSITY

Parameters of the low-density EOS

CD, Holt, and Wellenhofer, ARNPS. 71, 403

Parameters of the low-density EOS

CD, Holt, and Wellenhofer, ARNPS. 71, 403

MICHIGAN STATE

Parameters of the low-density EOS

CD, Holt, and Wellenhofer, ARNPS. 71, 403

MICHIGAN STATE UNIVERSITY

Confronting chiral EFT with empirical constraints CD, Furnstahl et al., PRL 125, 202702

$$S_2(n) \equiv S_2(n) \approx \frac{E}{N}(n) - \frac{E}{A}(n)$$

Excellent agreement with experiment
Lattimer and Lim, APJ 771, 51
$$pr(S_v, L \mid D) = \int dn_0 pr(S_2, L \mid n_0, D) pr(n_0 \mid D)$$
$$pr(n_0 \mid D) \approx 0.17 \pm 0.01 \text{ fm}^{-3}$$

 2σ ellipse (light yellow) is completely within the *conjectured* unitary gas limit

predicted range in S_v agrees with other theoretical constraints; but ~15 MeV stronger density-dependence of $S_2(n_0)$

GP-B (500): two-dimensional Gaussian

 $\begin{bmatrix} \mu_{S_v} \\ \mu_L \end{bmatrix} = \begin{bmatrix} 31.7 \\ 59.8 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1.11^2 & 3.27 \\ 3.27 & 4.12^2 \end{bmatrix}$

Compilation of recent terrestrial and astrophysical **constraints on S_v and L**

GP–B (500): two-dimensional Gaussian

$\left[\mu_{S_v} \right]$	[31.7]	$\Sigma = \begin{bmatrix} 1.11^2 \end{bmatrix}$	3.27
$\lfloor \mu_L \rfloor$ –	59.8	$^{\square}- \begin{bmatrix} 3.27 \end{bmatrix}$	4.12^{2}

MICHIGAN STATE UNIVERSITY

PREX–II vs theory and observation

see also Yue et al., arXiv:2102.05267

Take away from PREX-II-informed results:

- uncertainties are still large
- allows for stiffer EOS at ~n₀, but within the large uncertainties consistent with chiral EFT
- tension between A_{PV} and α_D

Parity violating elastic e scattering $R_{\rm skin} (^{208} {\rm Pb}) = 0.283 \pm 0.071 \, {\rm fm}$ PREX collaboration, PRL **126**, 172502

Exploiting strong correlations (EDFs)

 $S_v = 38.1 \pm 4.7 \,\mathrm{MeV}$ $L = 105.9 \pm 36.9 \,\mathrm{MeV}$

Reed et al., PRL 126, 172503

Astron. data + chiral EFT only (incl. GP-B)

 $R(^{208}\text{Pb}) = 0.18^{+0.04}_{-0.04} \text{ fm}$ $S_v = 34^{+3}_{-2} \text{ MeV} \quad L = 52^{+20}_{-18} \text{ MeV}$

Essick et al., arXiv:2102.10074

Different set of modern EDFs

 $R(^{208}\text{Pb}) = 0.19 \pm 0.02 \,\text{fm}$

 $S_v = 32 \pm 1 \,\mathrm{MeV}$ $L = 54 \pm 8 \,\mathrm{MeV}$

Reinhard, Roca-Maza et al., arXiv:2105.15050

see also: Piekarewicz, PRC 104, 024329

PREX–II vs theory and observation

see also Yue et al., arXiv:2102.05267

Take away from PREX-II-informed results:

- uncertainties are still large
- allows for stiffer EOS at ~n₀, but within the large uncertainties consistent with chiral EFT
- tension between A_{PV} and α_D

Parity violating elastic e scattering $R_{\rm skin} \left({}^{208}{\rm Pb} \right) = 0.283 \pm 0.071 \, {\rm fm}$ PREX collaboration, PRL **126**, 172502

Exploiting strong correlations (EDFs)

 $S_v = 38.1 \pm 4.7 \,\mathrm{MeV}$ $L = 105.9 \pm 36.9 \,\mathrm{MeV}$

Reed et al., PRL 126, 172503

Astron. data + chiral EFT only (incl. GP-B)

 $R(^{208}\text{Pb}) = 0.18^{+0.04}_{-0.04} \text{ fm}$ $S_v = 34^{+3}_{-2} \text{ MeV} \quad L = 52^{+20}_{-18} \text{ MeV}$

Essick et al., arXiv:2102.10074

Different set of modern EDFs

 $R(^{208}\text{Pb}) = 0.19 \pm 0.02 \,\text{fm}$

 $S_v = 32 \pm 1 \,\mathrm{MeV}$ $L = 54 \pm 8 \,\mathrm{MeV}$

Reinhard, Roca-Maza et al., arXiv:2105.15050

see also: Piekarewicz, PRC 104, 024329

PREX–II vs theory and observation

see also Yue et al., arXiv:2102.05267

Take away from PREX-II-informed results:

- uncertainties are still large
- allows for stiffer EOS at ~n₀, but within the large uncertainties consistent with chiral EFT
- tension between A_{PV} and α_D

Different set of modern EDFs

 $R(^{208}\text{Pb}) = 0.19 \pm 0.02 \,\text{fm}$

 $S_v = 32 \pm 1 \,\mathrm{MeV}$ $L = 54 \pm 8 \,\mathrm{MeV}$

Reinhard, Roca-Maza et al., arXiv:2105.15050

see also: Piekarewicz, PRC 104, 024329

Nonquadratic contributions to the nuclear symmetry energy

Kaiser, PRC **91**, 065201 Wellenhofer, Holt, and Kaiser, PRC **93**, 055802 Somasundaram, CD, Tews *et al.*, PRC **103**, 045803

$$\frac{E}{A}(n,\delta) = \frac{E}{A}(n,\delta=0) + S_2(n)\delta^2$$
$$+ \sum_{i>1} \left(A_{2i}(n) + A_{2i,l}(n)\log|\delta|\right)\delta^{2i}$$

MBPT beyond Hartree-Fock gives rise to (nonanalytic) logarithmic contributions

Precision MBPT calculations can **extract** high-order symmetry energy **coefficients**

Overall small contribution from nonquadratic terms (but can impact β-equilibrium)

MICHIGAN STATE UNIVERSITY

New developments: symmetric nuclear matter

Functional Renormalization Group: *complementary* constraints at > $3n_0$ (beyond the range of chiral EFT) from the QCD action New insights into the high-density EOS: remarkable consistency between the constraints, which suggests that they can be combined via simple extrapolations

MICHIGAN STATE UNIVERSITY

Conclusion

Microscopic EOS constraints *statistically* robust uncertainties

- excellent agreement of predicted S_v -L correlation with experiment
- PNM and SNM show a regular EFT convergence pattern with increasing order
- extracted Λ_b is consistent with NN scattering N²LO coefficient may be an outlier

full Bayesian UQ: sample over LECs & hyperparameters

- in future: consistently include uncertainties in the LECs of chiral interactions
- promising: new potentials up to N²LO by Wesolowski et al., arXiv:2104.04441

thanks to my collaborators:

R. Furnstahl **J. Melendez K. McElvain** D. Phillips **S. Han** J. Lattimer M. Prakash S. Reddy **T. Zhao**

