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Overview

⦁ Isospin breaking effects
⦁ Strong and electromagnetic isospin breaking
⦁ The expansion in md−mu and 𝛼

Crucial for
sub-percent accuracy

An excellent reference is the White Paper 2020: 
Phys.Rept. 887 (2020), 1-166. e-Print: 2006.04822 [hep-ph]
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The Hadronic Vacuum
Polarization

The basic ingredient of any lattice calculation of the 
HVP contribution to the muon anomalous magnetic 
moment is

Cµν (x) = jµ (x) jν (0)

Its Fourier transform is the Vacuum Polarization tensor

Πµν (Q) = d 4x  eiQ⋅x  Cµν (x)∫ Πµν (Q) = QµQν −δ µνQ
2( )  Π(Q2 )

where jµ (x) = 2

3
 uγ µu( )(x)− 1

3
 dγ µd( )(x)− 1

3
 sγ µs( )(x)+ ...

the electromagnetic 
current correlator



The Hadronic Vacuum 
Polarization

⦁ Traditionally, the leading hadronic contribution to the muon anomalous 
magnetic moment is expressed as

aµ
HVP, LO = α

π
⎛
⎝⎜

⎞
⎠⎟

2

dQ2
 f (Q2 )..Π̂(Q2 )

0

∞

∫

where Π̂(Q2 ) ≡ 4π 2
 Π(Q2 )−Π(0)⎡⎣ ⎤⎦ and f(Q2) is a known function.

Q2 f(Q2)



⦁ Most of recent lattice calculations of              , however, start from the 
so-called                                                                       . Choosing                            , 
the order of the integrals in d4x e dQ2 is inverted, and one finds:     

Qµ = ω ,  0,  0,  0( )time-momentum representation
aµ
HVP, LO

The Hadronic Vacuum 
Polarization
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⎠⎟
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 Π(Q2 )−Π(0)⎡⎣ ⎤⎦ and f(Q2) is a known function.

Q2 f(Q2)



The time-momentum 
representation

C(t) = − 1
3

 d 3x  jk (
!x,t) jk (0)

−∞

+∞

∫
k=1

3

∑aµ
HVP, LO = 8α 2

 dt   
!f (t)..C(t)

0

∞

∫

!f (t) / t 3

mµt

The large t region 
is important

!f (t)= t2
 

dω
4 +ω 2

 

4 +ω 2 −ω

4 +ω 2 +ω

⎛

⎝⎜
⎞

⎠⎟0

∞

∫
2

 1−
sin2 (mµω  t / 2)

(mµω  t / 2)2
⎡

⎣
⎢

⎤

⎦
⎥

This is the input 
from

lattice QCD



C(t) = − 1
3

 d 3x  jk (
!x,t) jk (0)

−∞

+∞

∫
k=1

3

∑

We now discuss how a QCD correlation functions, like 

which is intrinsically non-perturbative at long distance, 
is computed with a

Lattice QCD
numerical simulation

Lattice QCD and 
numerical simulations



The theoretical framework for Lattice QCD calculations 
is the path integral approach in Euclidean time:

G(x1,…, xn ) = ϕ(x1)…ϕ(xx ) = 1
Z

 [dϕ ]∫  ϕ(x1)…ϕ(xx ) e−S(ϕ )

Z =  [dϕ ]∫  e−S(ϕ )
with Wick rotation: t→−i  tE

The path integral

Essential for the numerical evaluation 
of the path integral: eiS(ϕ ) → e−S(ϕ )



The theoretical framework for Lattice QCD calculations 
is the path integral approach in Euclidean time:

G(x1,…, xn ) = ϕ(x1)…ϕ(xx ) = 1
Z

 [dϕ ]∫  ϕ(x1)…ϕ(xx ) e−S(ϕ )

⦁ A mathematical definition of the path integral is obtained by discretizing 
the space-time on a 4-dimensional lattice:

The path integral then reduces to an ordinary multidimensional integral 

,ϕ(x)→ϕn ≡ϕ(xn ) [dϕ ]→Πndϕn

The path integral

Z =  [dϕ ]∫  e−S(ϕ )
with Wick rotation: t→−i  tE

a



The lattice 
regularization

⦁ The fields are defined on a (hypercubic) 4-dimensional lattice

ϕ(x)→ϕ(a  n) 

∂µϕ(x) →  ∇µϕ(x) ≡  

ϕ(x + a  µ̂)−ϕ(x)
a

n = (nx ,ny ,nz ,nt )

⦁ Derivatives are replaced by finite differences

∇µ
*ϕ(x) ≡  

ϕ(x)−ϕ(x − a  µ̂)
a

⦁ Several discretizations are possible:

!∇µϕ(x) ≡  

ϕ(x + a  µ̂)−ϕ(x − a  µ̂)
2 a

,

ax

⦁ In the continuum limit a➞0: ∇µq→∂µq +O(a) !∇µq→∂µq +O(a
2 ),



The lattice 
regularization

The functional integral is only a formal definition, because of ultraviolet and 
infrared divergences.

The lattice provides both an ultraviolet and an infrared cutoff

The momentum p is cutoff 
at the first Brillouin zone

!ϕ(p) = ϕ(x) 

x
∑ eip⋅x  =  ϕ(an) 

n
∑ eiap⋅n !ϕ p + 2π

a
⎛
⎝⎜

⎞
⎠⎟ =
!ϕ(p)

| p |  ≤ π
a

a1) The ultraviolet cutoff

1/a is the 
ultraviolet 

cutoff

x = a  n



The lattice 
regularization

pi =
2π
L

 ki

ki = 0,  1,  2,  …,  L / a −1

ϕ(x) = a
3

L3
!ϕ(p) 

p
∑ e− ip⋅x

2) The infrared cutoff

For periodic boundary conditions

pi = 0,  2π
L

 ,  4π
L

 ,  … ,  

2π
L

 (L / a −1)

φ(x + L) = φ(x)

p = 0 is just a single point, it can be removed

,

The lattice is defined 
in a finite volume

L

a



The lattice 
regularization

pi =
2π
L

 ki

ki = 0,  1,  2,  …,  L / a −1

ϕ(x) = a
3

L3
!ϕ(p) 

p
∑ e− ip⋅x

2) The infrared cutoff

For periodic boundary conditions

pi = 0,  2π
L

 ,  4π
L

 ,  … ,  

2π
L

 (L / a −1)

φ(x + L) = φ(x)

p = 0 is just a single point, it can be removed

,

The lattice is defined 
in a finite volume

L

a

The physical theory is obtained in the limits 
a ➞ 0   Continuum limit  , L➞∞  Thermodynamic limit



The lattice 
regularization

The simplest example: the scalar free theory on the lattice

The Euclidean free action in the continuum is:

S0 = d 4x  

1
2∫  ∂µϕ( )2 +m2ϕ 2⎡
⎣⎢

⎤
⎦⎥ = d 4x  

1
2∫  ϕ  −∂2+m2⎡⎣ ⎤⎦  ϕ

The scalar propagator is the inverse of the action operator:

S(x) = d 4 p
(2π )4 S(p) e− ip⋅x∫

S(p) = p2 +m2( )−1
−∂2+m2⎡⎣ ⎤⎦S(x,0) = δ (x) ,



The lattice 
regularization

⦁ On the lattice

−∇2 +m2⎡⎣ ⎤⎦S(x) = − S(x + aµ̂)− 2S(x)+ S(x − aµ̂)
a2

⎡
⎣⎢

⎤
⎦⎥µ

∑ +m2S(x) = δ x, 0

S(x) = 1
V

S(p) e− ip⋅x
p
∑

In the action, derivatives are replaced by discretized derivatives:

−∂2+m2⎡⎣ ⎤⎦S(x,0) = δ (x) −∇2 +m2⎡⎣ ⎤⎦S(x,0) = δ x, 0

Compare with continuum propagator: Scont (p) = p2 +m2( )−1
Slatt (p) = !p

2 +m2( )−1 , !pµ ≡
2
a
sen

apµ
2

⎛
⎝⎜

⎞
⎠⎟



The lattice 
QCD action

In lattice QCD, as in any other regularization of QCD, 
gauge invariance must be exactly preserved



The lattice 
QCD action

⦁ In the continuum, gauge 
invariance is preserved introducing 

the covariant derivative: 

In lattice QCD, as in any other regularization of QCD, 
gauge invariance must be exactly preserved

= q(x) ∂µ  + igAµ( )q(x)

q(x)∂µq(x) q(x)Dµq(x)

q(x)→V (x) q(x)
Dµq(x)→V (x) Dµq(x)

V (x)∈SU(3)



The lattice 
QCD action

⦁ On the lattice, finite differences 
are involved: 

q(x)∇µq(x) =

= 1
a

 q(x) q(x + aµ̂)− q(x)[ ]= q(x) ∂µ  + igAµ( )q(x)

q(x)∂µq(x) q(x)Dµq(x)

q(x)→V (x) q(x)
Dµq(x)→V (x) Dµq(x)

V (x)∈SU(3)

⦁ In the continuum, gauge 
invariance is preserved introducing 

the covariant derivative: 

a
It must be 
rendered 

gauge invariant

In lattice QCD, as in any other regularization of QCD, 
gauge invariance must be exactly preserved



⦁ The solution is known: introduce a “parallel transporter”

q(x) V (x)+  V (x) P(x, y) V (y)+⎡⎣ ⎤⎦  V (y) q(y)⦁ Under gauge transformation:

q(x) q(y) q(x) P(x, y) q(y)

⦁ The explicit form of P(x,y) can be derived by observing that, for 
infinitesimal transport, it defines the covariant derivative:

lim
a→0

 
1
a

 P(x, x + aµ̂) q(x + aµ̂)− q(x)[ ]= Dµq(x) = ∂µ+ igAµ (x)( )q(x)

lim
a→0

 
1
a

 P(x, x + aµ̂)−1[ ]= igAµ (x) P(x, x + aµ̂) ! eiagAµ (x)

The lattice 
QCD action



⦁ On the lattice, the parallel transporter 
on a single lattice site, called   link   ,
is the dynamical gauge variable

Uµ (x) = e
iagAµ (x)

x x+a

∇µq(x) ≡  

1
a
Uµ (x) q(x + a  µ̂)− q(x)⎡⎣ ⎤⎦

⦁ Using the links one can define the lattice covariant derivatives

⦁ In the continuum limit a➞0:

!∇µq(x) ≡  

1
2

∇µ +∇µ
*( )q(x) =  

1
2a

 Uµ (x) q(x + a  µ̂)−Uµ (x)+q(x − a  µ̂)⎡⎣ ⎤⎦

∇µq→ Dµq +O(a) !∇µq→ Dµq +O(a
2 ),

The lattice 
QCD action

∇µ
*q(x) ≡  

1
a
q(x)−Uµ (x)+  q(x − a  µ̂)⎡⎣ ⎤⎦



SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)

The quark action

a

⦁ By having a definition of the lattice covariant derivative, the construction of 
a gauge invariant fermionic action is “almost” straightforward:

SF = q(x) 

1
2
γ µ

!
Dµ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)∫
lattice covariant derivative

LatticeContinuum



SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)

The quark action

a

⦁ By having a definition of the lattice covariant derivative, the construction of 
a gauge invariant fermionic action is “almost” straightforward:

SF = q(x) 

1
2
γ µ

!
Dµ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)∫
lattice covariant derivative

LatticeContinuum

⦁ The previous form of the action is incorrect, however, because of the 
doublers problem (not discussed here). The correct form is

K. Wilson 
1975

SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ −

a  r
2
∇2 +m⎡

⎣⎢
⎤
⎦⎥

 q(x)

Wilson term



The pure 
gauge action

Pµν (x) =Uµ (x) Uν (x + aµ̂) Uµ (x + aν )+  Uν (x)+  

⦁ On the lattice, the simplest pure gauge operator which transforms as Gμ𝜈 is 
the plaquette, i.e. the smallest closed loop

⦁ In the continuum, the gauge action is written in terms of the field tensor

SG = 1
2

d 4x∫  Tr GµνGµν( ) Gµν (x)→V (x) Gµν (x) V (x)+

x μ
ν

Pµν (x)→V (x) Pµν (x) V (x)+ Tr Pµν (x)⎡⎣ ⎤⎦→ Tr Pµν (x)⎡⎣ ⎤⎦

Same as Gμ𝜈 The trace of the plaquette is gauge invariant



The pure 
gauge action

Pµν (x) =Uµ (x) Uν (x + aµ̂) Uµ (x + aν )+  Uν (x)
+ =

= eiagAµ (x )eiagAν (x+aµ̂ )e− iagAµ (x+aν̂ )e− iagAν (x ) = eia
2g ∂µ Aν −∂ν Aµ+ig Aµ ,Aν⎡⎣ ⎤⎦+O(a)( )

eAeB = e
A+B+1

2
A,B[ ]+…

⦁ Expanding the plaquette up to O(a2), using

Pµν (x) = ei  a2g  Gµν (x) +  O(a)( ) Re Pµν( ) ! 1− 12 a
4g2GµνGµν +…

x
μ

ν



The pure 
gauge action

Pµν (x) =Uµ (x) Uν (x + aµ̂) Uµ (x + aν )+  Uν (x)
+ =

= eiagAµ (x )eiagAν (x+aµ̂ )e− iagAµ (x+aν̂ )e− iagAν (x ) = eia
2g ∂µ Aν −∂ν Aµ+ig Aµ ,Aν⎡⎣ ⎤⎦+O(a)( )

eAeB = e
A+B+1

2
A,B[ ]+…

⦁ Expanding the plaquette up to O(a2), using

Pµν (x) = ei  a2g  Gµν (x) +  O(a)( ) Re Pµν( ) ! 1− 12 a
4g2GµνGµν +…

SG = β 1− 1
N
ReTr Pµν (x)( )⎡

⎣⎢
⎤
⎦⎥x, µ>ν

∑ β = 2N
g2

K. Wilson 
1974

x
μ

ν



SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ −

a  r
2
∇2 +m⎡

⎣⎢
⎤
⎦⎥

 q(x)SG = β  1− 1
N

Re Tr P( )⎡
⎣⎢

⎤
⎦⎥P

∑

⦁ Summarizing: the lattice QCD Wilson action is S = SG +  SF with:

In the limit              :a→ 0

SG = 1
2

d 4x∫  Tr Gµν (x) Gµν (x)( ) SF = q(x) 

1
2
γ µ

!
Dµ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)∫

We may define an infinite number of lattice actions which all converge to 
the same continuum action but with different rate and symmetries

Wilson-clover, Twisted mass, Staggered, Domain Wall, Overlap …

The lattice 
QCD action



lattice actions



Numerical 
simulations

Montecarlo methods

O(U,  q,   q ) = 1
Z

 [dU ][dq][dq ] O(U,  q,   q ) e−  SG [U ] −  SF [U , q, q ]∫  

The QCD path integral on the lattice is reduced to an 
ordinary multidimensional integral 

It can be evaluated, numerically, with



Integral over 
fermionic variables

q(x) q(y) = Z −1
 [dU ][dq][dq ] q(x) q(y) e

−  SG [U ] − qx 'M [U ]x 'y 'qy '
x ',y '
∑

∫ =

                 = Z −1
 [dU ] M[U ]x  y

−1∫  detM[U ] e−SG [U ]

⦁ Fermions in the path integral are represented by anticommuting 
Grassmann variables.

⦁ The action is quadratic in the quark fields and the integral over the 
Grassmann variables can be performed analytically.  For example:

q(x) q(y)  = 

1
Z

 [dU ] M[U ]x  y
−1

 ∫ e−SG [U ] +  Tr logM [U ]

⦁ For products of more quark fields the Wick theorem holds

Effective action



⦁ Its dimension is L4 for each scalar field (for L=32 ➞ L4 ≈106 ). 
It can be only evaluated with a Montecarlo method

The Montecarlo 
method

O(x, y  …)  = 

1
Z

 [dU ] O[U ](x, y…) ∫ e−S[U ]

This is like a statistical Boltzmann system with S = β H 

The fields are extracted 
with uniform weight

I = dx f (x)
0

1

∫ !
1
N

f (xk )
k=1

N
∑ xk = Random[0,1]

For a 1–D 
function: ,

O = 1
Z

[dU ] O(U∫ ) e−S(U ) !
1
NC

O(UC ) 

C=1

NC

∑ e−S(UC )

⦁ The remaining integral is over gauge fields:



The importance
sampling

⦁ Because of the Boltzmann weight exp[-S(U)], only 
a small region of the configuration space gives a 
relevant contribution to the functional integral. 
The procedure is highly inefficient

f(U) exp[-S(U)]

Use the importance sampling technique 

O = 1
Z

[dU ] O(U∫ ) e−S(U ) !
1
NC

O(UC ) 

c=1

NC

∑ e−S(UC )

O = 1
Z

[dU ] O(U∫ ) e−S(U ) !
1
NC

O(UC )
C=1

NC

∑

The fields are extracted 
with uniform weight

The fields are extracted 
with weight ~ exp[-S(U)]



Statistical 
errors

O = 1
Z

[dU ] O(U∫ ) e−S(U ) !
1
NC

O(UC )
C=1

NC

∑

The multidimensional integral is replaced by a sum over a finite number of 
field configurations sampled with weight exp[-S]:

ΔO2 = 1
NC

O(UC )− O( )2
C=1

NC

∑

The estimate is affected by statistical error which decrease like               :1/ NC

In order to ensure enough statistical precision, many gauge field configurations must 
be generated



The HVP correlation 
function

C(t) = − jk (
!x,t) jk (0)!x

∑

We now have all the ingredients required to discuss the numerical 
calculation of the

jk (x) = Qf qfγ kq f( )(x)
f
∑

HVP correlation function in Lattice QCD



The integral over fermionic fields is evaluated analytically1

C(t) =  − jk (x) jk (0)
!x
∑ = − QfQf ' qfγ kq f( )(x) qf 'γ kq f '( )(0)!x

∑
f , f '
∑  =  

=  −   

0 x
f’f

x0
f

f

where denotes the average over gauge fields.… U

=  QfQf ' δ f  f ' Tr Sf (x,0) γ k  Sf (0, x) γ k( )
U
− Tr Sf (x, x) γ k( )Tr Sf (0,0) γ k( )

U
⎡
⎣

⎤
⎦!x

∑
f , f '
∑  

Performing the Wick contractions:

Connected and 
disconnected diagrams



⦁ For the connected diagram only Sf (x,0) is needed. Solve the equation 

0 x
f’f

= Tr Sf (x, x) γ k( )  Tr Sf (0,0) γ k( )!x
∑

=  Tr Sf ( x,0) γ k  Sf (0, x) γ k( )
U!x

∑x0
f

f

for x = 0 only. For the disconnected contribution, Sf (x,x) is needed for each x. A 
factor F = L4 ≃ 107 more expensive. With stochastic methods: F ≃ 103 - 104

Connected 
diagram

Disconnected 
diagram

Δ f (z, y) Sf (y, x) = δ (z, x)
y∑

Connected and 
disconnected diagrams



The integral over gauge fields is performed numerically with
the Montecarlo method:

2

0 x
f’f

=  

1
NC

Tr Sf (UC;  x, x) γ k( )  Tr Sf (UC;  0,0) γ k( )!x
∑

C=1

NC

∑

=  

1
NC

 Tr Sf (UC;  x,0) γ k  Sf (UC;  0, x) γ k( )!x
∑

C=1

NC

∑
x0

f

f

Sum over gauge 
configurations

The propagator is computed
for each gauge configuration 

Connected

Disconnected

Connected and 
disconnected diagrams



The HVP correlation 
function

We now discuss the main sources of

UNCERTAINTIES

in the lattice calculation of the correlation function

1) Statistical errors and noise reduction

2) Scale setting and continuum extrapolation

3) Finite size effects



Statistical errors 
and noise reduction

ETMC 2017

uu  + dd ss

t (fm)t (fm)

aµ
HVP, LO = 8α 2

 dt   
!f (t)..C(t)

0

∞

∫

Integral over all times

Large statistics and dedicated techniques are required

⦁ For light quark (u,d) contribution to the HVP, statistical errors increase 
rapidly at large times and the signal/noise ratio in C(t) becomes small

Specific of aµ
HVP, LO



BMW 2020 BMW 2020

Upper and lower bounds

Statistical errors 
and noise reduction

An example, from the BMW Collab.

For t < tc For t > tc



Scale setting and 
continuum extrapolation

⦁ In a lattice simulation, any dimensionful physical quantity 
turns out to be expressed in units of the lattice scale. 
For example:

A (precise) determination of the lattice spacing is thus required.

a
Mh

latt = a  mh
phys



Scale setting and 
continuum extrapolation

⦁ In a lattice simulation, any dimensionful physical quantity 
turns out to be expressed in units of the lattice scale. 
For example:

g0
2 = g0

2 (a)

A (precise) determination of the lattice spacing is thus required.

⦁ In a mass independent renormalization scheme, the bare coupling is only 
a function of the UV cutoff:

a = a  (g0
2 ) a  = Mh

latt /mh
phys

At fixed g0
2

a
Mh

latt = a  mh
phys



Scale setting and 
continuum extrapolation

⦁ In a lattice simulation, any dimensionful physical quantity 
turns out to be expressed in units of the lattice scale. 
For example:

Mh
latt = a  mh

phys

g0
2 = g0

2 (a)

A (precise) determination of the lattice spacing is thus required.

a = a  (g0
2 ) a  = Mh

latt /mh
phys

At fixed g0
2

⦁ Note: aμ is dimensionless, but it depends on a through a* mμ in the kernel.
It is found that                                                   High precision on a is requiredδaµ

HVP /aµ
HVP ≈1.8 δa/a

a

⦁ In a mass independent renormalization scheme, the bare coupling is only 
a function of the UV cutoff:



Scale setting and 
continuum extrapolation

⦁ Once the lattice spacing has been determined for each 𝛽, the 
physical result is obtained after a continuum extrapolation:

BMW 2020

Improved lattice actions and other techniques may help in better controlling 
the extrapolation

Mainz coll.@Lattice 2021

a



Finite size 
effects

L

𝜉

⦁ In order to keep finite size effects (FSE) small: 

L≫ ξ ! 1/m m  L≫1

In QCD                  , the lightest particle in the spectrumm→ mπ

⦁ For a large class of physical amplitudes, including         , FSE are 
exponentially small:

aµ
HVP

C(L)−C(∞)[ ]∼ exp(−mπL)
mπ  L ∼ 4 L ∼ 6 fm
is typically required for 

percent accuracy

⦁ Finite volume effects are controlled by long distance dynamics
Chiral Perturbation Theory (ChPT) may help in their evaluation 



Finite size 
effects

⦁ It turns out that for  the condition                  is not sufficient: 
FSE are exponentially small, but the prefactor is large 

aµ
HVP mπ  L ∼ 4

ETMC 2018

⦁ For FSE in         , NLO ChPT is not sufficient             N2LO ChPT and other 
phenomenological models have been studied and tested with simulations 
on very large lattices (L ≃ 11 fm) 

aµ
HVP

ETMC 2018



Finite size 
effects

From B. C. Tóth
BMW Collab.

@ Lattice 2021



Isospin breaking 
effects

In a theoretical determination of          which aims at a sub-percent accuracy, 
isospin breaking (IB) effects cannot be neglected

aµ
HVP

Isospin symmetry is an almost exact property of the strong 
interactions whose breaking effects are induced by

mu ≠ md1 “STRONG”O[(md −mu ) /ΛQCD ]! 1/100

qu ≠ qd2 “ELECTROMAGNETIC”O(α ) ! 1/100

Since electromagnetic interactions renormalize mu and md in a different way, the 
two effects are actually intrinsically related



Isospin breaking 
effects

In a theoretical determination of          which aims at a sub-percent accuracy, 
isospin breaking (IB) effects cannot be neglected

aµ
HVP

⦁ A strategy for evaluating IB effect on the lattice consists in
treating the IB part of the Lagrangian as a perturbation and

The “RM123” method
2011-2013

⦁ Since                                                  , only the leading term in the expansion is 
required when aiming at 0.1-1.0 % accuracy

O(md −mu ) !O(α ) ! 10
−2

⦁ This approach has been followed by all present lattice calculations of IB 
effects in aµ

HVP

md −mu αExpand in and



Strong IB effects: 
the md -mu expansion

2) Expand the functional integral in powers of Δm = md − mu:

1) Identify the IB term in the action:

O =
Dϕ  O  e−S0+Δm  Ŝ∫
Dϕ   e−S0+Δm  Ŝ∫

1st

!
Dϕ  O  e−S0 1+ Δm Ŝ( )∫
Dϕ   e−S0 1+ Δm Ŝ( )∫

!
O

0
+ Δm O  Ŝ

0

1+ Δm Ŝ
0

= O
0
+ Δm O  Ŝ

0

Sm = muuu +mddd⎡⎣ ⎤⎦
x
∑ = 1

2
mu +md( ) uu + dd( )− 1

2
md −mu( ) uu − dd( )⎡

⎣
⎢

⎤

⎦
⎥

x
∑ =

    = mud uu + dd( )− Δm uu − dd( )⎡⎣ ⎤⎦
x
∑ = S0 − Δm  Ŝ , Ŝ ≡ uu − dd( )x∑



Ŝ ≡ uu − dd( )x∑O = O
0
+ Δm O  Ŝ

0
+… Δm = 1

2
(md −mu ),

Strong IB effects: 
the md -mu expansion

The small IB 
parameter is 

factorized out 

Correlation functions are 
computed with the standard 

isospin symmetric QCD action 
ADVANTAGES



Ŝ ≡ uu − dd( )x∑O = O
0
+ Δm O  Ŝ

0
+… Δm = 1

2
(md −mu ),

Strong IB effects: 
the md -mu expansion

The small IB 
parameter is 

factorized out 

Correlation functions are 
computed with the standard 

isospin symmetric QCD action 
ADVANTAGES

3) At leading order in Δm, the 
corrections only appear in the 
valence quark propagators:

(disconnected contractions of ūu and ƌd vanish due to isospin symmetry)

Δm

Δm



QED IB effects: 
the expansion in 𝛼

QED interactions are introduced through a full covariant derivative which 
contains both QCD and QED links: 

Eµ (x) = e− i  a  e  Aµ (x)∇µqf (x) ≡  

1
a

 Eµ (x)( )ef Uµ (x) q(x + a  µ̂)− q(x)⎡
⎣⎢

⎤
⎦⎥

QED QCD

Since

the expansion in 𝛼 for the quark propagator leads to:

Eµ (x) = e− i  e  Aµ (x ) = 1− i  e  Aµ (x)− 1
2

 e2Aµ
2(x) +…

+ counterterms

Tadpole diagrams 
are required by 

gauge invariance 
(in QCD and QED) 



Isospin breaking 
effects

⦁ For             , the expansion at leading order in        and     has the form:aµ
HVP, LO Δm α

These corrections are essentials when aiming at  < 1% accuracy

O(md −mu ) O(α )O(1)

+ + ...

QED sea-quark diagrams+ + disconnected diagrams ...



Summing up all the various contributions:

aµ
HVP, LO = aµ

HVP, LO (ud)+ aµ
HVP, LO (s)+ aµ

HVP, LO (c)+ aµ , disc
HVP, LO +δaµ

HVP, LO

∼90% ∼1%∼2%∼2%∼8%

Only in the light-quark connected 
contribution the sub-percent 

accuracy is required

LO-HVP 
Lattice results

( < 0 )



From H. Wittig
@ Lattice HVP 

Workshop 
Nov 2020

LO-HVP 
Lattice results



From H. Wittig
@ Lattice HVP 

Workshop 
Nov 2020 One calculation 

has reached the 
sub-percent 

accuracy

LO-HVP 
Lattice results



LO-HVP 
Lattice results

From B. C. Tóth
BMW Collab.

@ Lattice 2021

Final result

Nature 593 (2021) 
7857, 51-55 

[arxiv:2002.12347]



LO-HVP 
Lattice results

From B. C. Tóth
BMW Collab.

@ Lattice 2021

Final result
Accuracy 0.8%

Nature 593 (2021) 
7857, 51-55 

[arxiv:2002.12347]

The technology 
and methods 
to reach the 
sub-percent 

accuracy 
are available !

First message:



LO-HVP 
Lattice results

⦁ Compatible with other lattice results

aµ
HVP, LO = 707.5 ±  5.5( ) ⋅10−10Lattice QCD

BMW Collab.

aµ
HVP, LO = 711.6 ±  18.4( ) ⋅10−10Lattice QCD

WP prev. average

The BMW result is:
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LO-HVP 
Lattice results

⦁ Compatible with other lattice results

aµ
HVP, LO = 707.5 ±  5.5( ) ⋅10−10Lattice QCD

BMW Collab.

aµ
HVP, LO = 711.6 ±  18.4( ) ⋅10−10Lattice QCD

WP prev. average

aµ
HVP, LO = 693.1 ±  4.0( ) ⋅10−10

R-ratio - WP average

The BMW result is:

⦁ Consistent with the experiment
within 1.5 𝜎

⦁ 2.1 𝜎 higher than the R-ratio value

It is important to test the BMW 
result with other lattice calculations



The window 
observable

⦁ A very useful crosscheck: the window observable: B.C.Tóth @ Lattice 2021

aµ
win = 8α 2

 dt   
!f (t)..C(t)

t0

t1

∫
t0 = 0.4 fm
t1 = 1.0 fm

Euclidean time

Less challenging than full for 
lattice calculation (signal/noise, finite 
size effects, discretization errors)

aµ
HVP, LO



The hadronic 
light-by-light

Hadronic 
Vacuum 

Polarization 
(HVP) 

Hadronic 
Light-by-Light 

scattering 
(HLbL)

α 2 α 3

There are 2 relevant hadronic 
contributions to the muon 

anomalous magnetic moment 



The hadronic 
light-by-light

Hadronic 
Vacuum 

Polarization 
(HVP) 

Hadronic 
Light-by-Light 

scattering 
(HLbL)

α 2 α 3

There are 2 relevant hadronic 
contributions to the muon 

anomalous magnetic moment 

⦁ The lattice calculation of HLbL is 
essentially analogous to the one 
discussed for HVP

jµ (x) jν (y) jρ (z) jσ (0)

⦁ The basic ingredient is the 4-point 
correlator of the e.m. current:

⦁ The calculation is much more 
challenging. However, being HLbL 
of O(𝛼3), an accuracy of ∼ 10% is 
sufficient



The hadronic 
light-by-light

⦁ The calculation involves both connected and disconnected diagrams

Leading Sub-leading
and there is a large cancellation between connected and disconnected

⦁ At present, two complete lattice calculations: 

aµ
HLbL = 7.87 ±  3.54( ) ⋅10−10RBC 2019

aµ
HLbL = 10.68 ±  1.47( ) ⋅10−10Mainz 2021

aµ
HLbL = 9.2 ±  1.9( ) ⋅10−10

Dispersive approach

[WP average]



Conclusions

⦁ Tremendous progress of lattice 
calculation of HVP and HLdL in the 
last few years

⦁ The first calculation of HVP with sub-
percent accuracy presented by the 
BWM collab. It must be checked by 
other lattice calculations 

⦁ Two complete lattice calculations of 
HLbL are available, in agreement within
each other and the data driven result

GRAZIE PER L’ATTENZIONE !



SLIDES DI 
RISERVA

TITOLO



The Hadronic Vacuum 
Polarization

Most of recent lattice calculations of               use the so-calledaµ
HVP, LO

Qµ = ω ,  0,  0,  0( )

Πkk (ω ) = QkQk −δ kkQ
2( )Π(Q2 ) = −Q2

 Π(Q2 ) = −ω 2
 Π(ω 2 ) k = 1,2,31) ,

Q2 =ω 2

dt
−∞

+∞

∫  eiωt  C(t) =ω 2Π ω 2( )1) + 2)
aµ
HVP, LO = 4α em

2
 dω 2

 f (ω 2 ).. Π(ω 2 )−Π(0)( )
0

∞

∫,

Πkk (ω ) = dt  eiωt  d 3x  Ckk (x)
−∞

+∞

∫
−∞

+∞

∫ = − dt
−∞

+∞

∫  eiωt  C(t)( C(t) ≡ − 1
3

 d 3x  Ckk (
!x,t)

−∞

+∞

∫
k=1

3

∑ (2) ,

It is the Fourier transform in time

,

Time-momentum representation



The lattice 
regularization

| p |  ≤ π
a

1) The ultraviolet cutoff

This problem is common to all regularizations, like for example Pauli-Villars, 
dimensional regularization etc. 

The cutoff can be in conflict with important symmetries of the theory,
as for example Lorentz invariance or chiral invariance

Some of the symmetries are not 
recovered in the infinite cutoff limit

(continuum limit)
Anomalies

a



The quark action

a
⦁ By having a definition of the lattice covariant derivatives, the 

construction of a gauge invariant fermionic action seems trivial:

SF = q(x) 

1
2
γ µ

!
Dµ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)∫
covariant 
derivative

SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)



The quark action

a
⦁ By having a definition of the lattice covariant derivatives, the 

construction of a gauge invariant fermionic action seems trivial:

SF = q(x) 

1
2
γ µ

!
Dµ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)∫
covariant 
derivative⦁ However, already in the free theory (g=0, Uμ=1):

 

1
2

γ µ
!∇µ

µ
∑ +m

⎡

⎣
⎢

⎤

⎦
⎥S(x) = 1

2a
γ µ S(x + aµ̂)− S(x − aµ̂)[ ]

µ
∑ +m  S(x) = δ (x)

with p̂µ ≡
1
a
sin(apµ )

SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ +m

⎡
⎣⎢

⎤
⎦⎥

 q(x)

S(p) = i  p̂ +m
p̂2 +m2

The propagator for m=0
has 16 poles (doublers) 

rather than 1 !!

The poles are located at a p = (0,0,0,0), (π,0,0,0), …, (π,π,0,0), …, (π,π,π,π).



K. Wilson 
1975

SF = a
4 q(x)

x
∑  

1
2
γ µ
!∇µ −

a  r
2
∇2 +m⎡

⎣⎢
⎤
⎦⎥

 q(x)

⦁ The free quark propagator now is:

withS(p) = i  p̂ +M (p)
p̂2 +M (p)2

,

M(p)=m+ 2r
a

sen2
ap

µ

2
⎛

⎝
⎜

⎞

⎠
⎟

µ
∑

The quark action

a
⦁ The solution proposed by K. Wilson, consists in adding to the 
action a formally irrelevant (d=5) operator, the “Wilson term”:

M(0,0,0,0)=m M(π ,0,0,0)=m+ 2r
a

M(π ,π ,0,0)=m+ 4r
a

, ,  …

The mass of the doublers is at the cutoff scale. They decouple from the theory.


