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History of aµ measurements
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aµ, QED and the SM

World Average (before FNAL)

aexp
µ = (116 592 089± 63)× 10−11

I The bulk of the difference between ae and aµ is due to
QED and originates from large logs of mµ/me

aQED
µ − aQED

e = 619 500.2× 10−11

I Hadronic contributions are large

ahad
µ ' 7000× 10−11

“Seen” at the 5σ level already in 1979
I Weak contributions to aµ

aEW
µ = 154× 10−11 ' 2.5∆aexp

µ
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Present status of (g − 2)µ, experiment vs SM

aµ(BNL) = 116 592 089(63)× 10−11

aµ(FNAL) = 116 592 040(54)× 10−11

aµ(Exp) = 116 592 061(41)× 10−11
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Present status of (g − 2)µ, experiment vs SM

Before the Fermilab result
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Present status of (g − 2)µ, experiment vs SM

After the Fermilab result
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White Paper (2020): (g − 2)µ, experiment vs SM

Contribution Value ×1011

HVP LO (e+e−) 6931(40)
HVP NLO (e+e−) −98.3(7)
HVP NNLO (e+e−) 12.4(1)
HVP LO (lattice , udsc) 7116(184)
HLbL (phenomenology) 92(19)
HLbL NLO (phenomenology) 2(1)
HLbL (lattice, uds) 79(35)
HLbL (phenomenology + lattice) 90(17)

QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (e+e−, LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116 591 810(43)
Experiment 116 592 061(41)
Difference: ∆aµ := aexp

µ − aSM
µ 251(59)
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HVP LO (lattice BMW(20), udsc) 7075(55)
HLbL (phenomenology) 92(19)
HLbL NLO (phenomenology) 2(1)
HLbL (lattice, uds) 79(35)
HLbL (phenomenology + lattice) 90(17)

QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (e+e−, LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116 591 810(43)
Experiment 116 592 061(41)
Difference: ∆aµ := aexp

µ − aSM
µ 251(59)



Introduction HVP to (g − 2)µ HLbL to (g − 2)µ Conclusions Present status

White Paper (2020): (g − 2)µ, experiment vs SM
White Paper:
T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g − 2 Theory Initiative
Steering Committee:
GC
Michel Davier (vice-chair)
Simon Eidelman
Aida El-Khadra (chair)
Martin Hoferichter
Christoph Lehner (vice-chair)
Tsutomu Mibe (J-PARC E34 experiment)
(Andreas Nyffeler until summer 2020)
Lee Roberts (Fermilab E989 experiment)
Thomas Teubner
Hartmut Wittig
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White Paper (2020): (g − 2)µ, experiment vs SM
White Paper:
T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g − 2 Theory Initiative
Workshops:

I First plenary meeting, Q-Center (Fermilab), 3-6 June 2017

I HVP WG workshop, KEK (Japan), 12-14 February 2018

I HLbL WG workshop, U. of Connecticut, 12-14 March 2018

I Second plenary meeting, Mainz, 18-22 June 2018

I Third plenary meeting, Seattle, 9-13 September 2019

I Lattice HVP workshop, virtual, 16-20 November 2020

I Fourth plenary meeting, KEK (virtual), 28 June-02 July 2021
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White Paper executive summary (my own)

I QED and EW known and stable, negligible uncertainties

I HVP dispersive: consensus number, conservative
uncertainty (KNT19, DHMZ19, CHS19, HHK19)

I HVP lattice: consensus number, ∆aHVP,latt
µ ∼ 5 ∆aHVP,disp

µ

(Fermilab-HPQCD-MILC18,20, BMW18, RBC/UKQCD18, ETM19,SK19, Mainz19, ABTGJP20)

I HVP BMW20: central value→ discrepancy < 2σ;
∆aHVP,BMW

µ ∼ ∆aHVP,disp
µ published 04/21→ not in WP

I HLbL dispersive: consensus number, w/ recent
improvements ⇒ ∆aHLbL

µ ∼ 0.5 ∆aHVP
µ

I HLbL lattice: single calculation, agrees with dispersive
(∆aHLbL,latt

µ ∼ 2 ∆aHLbL,disp
µ ) → final average (RBC/UKQCD20)
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Theory uncertainty comes from hadronic physics

I Hadronic contributions responsible for most of the theory
uncertainty

I Hadronic vacuum polarization (HVP) is O(α2), dominates
the total uncertainty, despite being known to < 1%

I unitarity and analyticity⇒ dispersive approach
I ⇒ direct relation to experiment: σtot(e+e− → hadrons)
I e+e− Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
I alternative approach: lattice, becoming competitive

(BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD)



Introduction HVP to (g − 2)µ HLbL to (g − 2)µ Conclusions Present status

Theory uncertainty comes from hadronic physics

I Hadronic contributions responsible for most of the theory
uncertainty

I Hadronic vacuum polarization (HVP) is O(α2), dominates
the total uncertainty, despite being known to < 1%

I Hadronic light-by-light (HLbL) is O(α3), known to ∼ 20%,
second largest uncertainty (now subdominant)

I earlier: “it cannot be expressed in
terms of measurable quantities”

I recently: dispersive approach⇒
data-driven, systematic treatment

I lattice QCD is becoming competitive
(Mainz, RBC/UKQCD)
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Hadronic vacuum polarization

Πµν(q) = i
∫

d4xeiqx〈0|Tjµ(x)jν(0)|0〉 =
(

qµqν − gµνq2
)

Π(q2)

where jµ(x) =
∑

i Qi q̄i(x)γµqi(x), i = u,d , s is the em current

I Lorentz invariance: 2 structures
I gauge invariance: reduction to 1 structure
I Lorentz-tensor defined in such a way that the function

Π(q2) does not have kinematic singularities or zeros
I Π̄(q2) := Π(q2)− Π(0) satisfies

Π̄(q2) =
q2

π

∫ ∞

4M2
π

dt
ImΠ̄(t)

t(t − q2)
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Hadronic vacuum polarization

Πµν(q) = i
∫

d4xeiqx〈0|Tjµ(x)jν(0)|0〉 =
(

qµqν − gµνq2
)

Π(q2)

where jµ(x) =
∑

i Qi q̄i(x)γµqi(x), i = u,d , s is the em current

I Lorentz invariance: 2 structures
I gauge invariance: reduction to 1 structure
I Lorentz-tensor defined in such a way that the function

Π(q2) does not have kinematic singularities or zeros
I Π̄(q2) := Π(q2)− Π(0) satisfies

Π̄(q2) =
q2

π

∫ ∞

4M2
π

dt
ImΠ̄(t)

t(t − q2)

Easy!
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HVP contribution: Master Formula
Unitarity relation: simple, same for all intermediate states

ImΠ̄(q2) ∝ σ(e+e− → hadrons) = σ(e+e− → µ+µ−)R(q2)

Analyticity
[
Π̄(q2) = q2

π

∫
ds ImΠ̄(s)

s(s−q2)

]
⇒ Master formula for HVP

Bouchiat, Michel (61)

⇔ ahvp
µ =

α2

3π2

∫ ∞

sth

ds
s

K (s)R(s)

K (s) known, depends on mµ and K (s) ∼ 1
s for large s
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Comparison between DHMZ19 and KNT19

DHMZ19 KNT19 Difference

π+π− 507.85(0.83)(3.23)(0.55) 504.23(1.90) 3.62
π+π−π0 46.21(0.40)(1.10)(0.86) 46.63(94) −0.42

π+π−π+π− 13.68(0.03)(0.27)(0.14) 13.99(19) −0.31
π+π−π0π0 18.03(0.06)(0.48)(0.26) 18.15(74) −0.12

K +K− 23.08(0.20)(0.33)(0.21) 23.00(22) 0.08
KSKL 12.82(0.06)(0.18)(0.15) 13.04(19) −0.22
π0γ 4.41(0.06)(0.04)(0.07) 4.58(10) −0.17

Sum of the above 626.08(0.95)(3.48)(1.47) 623.62(2.27) 2.46

[1.8, 3.7] GeV (without cc̄) 33.45(71) 34.45(56) −1.00
J/ψ, ψ(2S) 7.76(12) 7.84(19) −0.08

[3.7,∞) GeV 17.15(31) 16.95(19) 0.20

Total aHVP, LO
µ 694.0(1.0)(3.5)(1.6)(0.1)ψ(0.7)DV+QCD 692.8(2.4) 1.2
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2π: comparison with the dispersive approach
The 2π channel can itself be described dispersively⇒ more
constrained theoretically Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18)

Energy range ACD18 CHS18 DHMZ19 KNT19

≤ 0.6 GeV 110.1(9) 110.4(4)(5) 108.7(9)
≤ 0.7 GeV 214.8(1.7) 214.7(0.8)(1.1) 213.1(1.2)
≤ 0.8 GeV 413.2(2.3) 414.4(1.5)(2.3) 412.0(1.7)
≤ 0.9 GeV 479.8(2.6) 481.9(1.8)(2.9) 478.5(1.8)
≤ 1.0 GeV 495.0(2.6) 497.4(1.8)(3.1) 493.8(1.9)

[0.6, 0.7] GeV 104.7(7) 104.2(5)(5) 104.4(5)
[0.7, 0.8] GeV 198.3(9) 199.8(0.9)(1.2) 198.9(7)
[0.8, 0.9] GeV 66.6(4) 67.5(4)(6) 66.6(3)
[0.9, 1.0] GeV 15.3(1) 15.5(1)(2) 15.3(1)

≤ 0.63 GeV 132.9(8) 132.8(1.1) 132.9(5)(6) 131.2(1.0)
[0.6, 0.9] GeV 369.6(1.7) 371.5(1.5)(2.3) 369.8(1.3)[√
0.1,
√

0.95
]

GeV 490.7(2.6) 493.1(1.8)(3.1) 489.5(1.9)

WP(20)
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Combination method and final result
Complete analyses DHMZ19 and KNT19, as well as CHS19
(2π) and HHK19 (3π), have been so combined:

I central values are obtained by simple averages (for each
channel and mass range)

I the largest experimental and systematic uncertainty of
DHMZ and KNT is taken

I 1/2 difference DHMZ−KNT (or BABAR−KLOE in the 2π
channel, if larger) is added to the uncertainty

Final result:

aHVP, LO
µ = 693.1(2.8)exp(2.8)sys(0.7)DV+QCD × 10−10

= 693.1(4.0)× 10−10

WP(20)
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The BMW result Borsanyi et al. Nature 2021

State-of-the-art lattice calculation of aHVP, LO
µ based on

I current-current correlator, summed over all distances,
integrated in time with appropriate kernel function

I using staggered fermions on an L ∼ 6 fm lattice (L ∼ 11fm
used for finite volume corrections)

I at (and around) physical quark masses

I including isospin-breaking effects
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The BMW result Borsanyi et al. Nature 2021

2  |  Nature  |  www.nature.com

Article

(up, down, strange and charm), in a lattice formulation that takes  
into account all dynamical effects. We also consider the tiny contribu-
tions of the bottom and top quarks, as discussed in Supplementary  
Information.

We compute aμ
LO HVP‐  in the so-called time–momentum representa-

tion8, which relies on the following two-point function with zero 
three-momentum in Euclidean time t:

∫∑G t
e

x J t J( ) =
1

3
d ⟨ ( , ) (0)⟩, (1)

μ
μ μ2

=1,2,3

3 x

where Jμ is the quark electromagnetic current, with uγ u= −
J

e μ
2
3

μ  
d γ d s γ s cγ c− +μ μ μ

1
3

1
3

2
3

. u, d, s and c are the up, down, strange and charm 
quark fields, respectively, and the angle brackets stand for the 
QCD + QED expectation value to order e2. It is convenient to decompose 
G(t) into light, strange, charm and disconnected components, which 
have very different statistical and systematic uncertainties. Integrating 
the one-photon-irreducible part of the two-point function (equa-
tion (1)), G1γI, yields the LO-HVP contribution to the magnetic moment 
of the muon8–11:

‐ ∫a α tK t G t= d ( ) ( ), (2)μ γ
LO HVP 2

0

∞

1 I

with weight function

























∫K t

Q
m

ω
Q
m

t
Q

Qt
( ) =

d
−

4
sin

2
, (3)

μ μ0

∞ 2

2

2

2
2

2
2

and where ω r r r r r r( ) = [ + 2 − ( + 4) ] / ( + 4)2 , α is the fine-structure 
constant in the Thomson limit and mμ is the muon mass. Because we 
consider only the LO-HVP contribution, for brevity we drop the super-
script and multiply the result by 1010, that is, aμ stands for ‐a × 10μ

LO HVP 10 
in the following.

The subpercent precision that we are aiming for represents a huge 
challenge for lattice QCD. To reach that goal, we must address four 
critical issues: scale determination; noise reduction; QED and strong–
isospin symmetry breaking; and infinite-volume and continuum extrap-
olations. We discuss these one by one.

The first issue is scale determination. The quantity aμ depends 
on the muon mass. When computing equation (2) on the lattice, mμ 
must be converted into lattice units, amμ, where a is the lattice spac-
ing. A relative error of the lattice spacing propagates into about a 
twice-as-large relative error on aμ, so that a must be determined with a 
precision of few parts per thousand. We use the mass of the Ω baryon, 
MΩ = 1,672.45(29) MeV, from ref. 1 to set the lattice spacing, where the 
uncertainty in the parentheses denotes one standard deviation. We 
also use a scale based on the gradient flow from ref. 12, denoted as w0, 
to define an isospin decomposition of our observables. Although w0 
can be determined with sub-per-thousand precision on the lattice, it 
is inaccessible experimentally. In this work we determine the physical 
value of w0 by including QED and strong–isospin symmetry-breaking 
effects: w0 = 0.17236(29)stat(63)syst(70)tot fm, where the first error is 
statistical, the second is systematic and the third is the total error. 
In total, we reach a relative accuracy of 4‰, which is better than the 
error of the previous best determination13, the value of which agrees 
with ours. There the pion decay constant was used as experimental 

Strong–isospin breaking

Connected light Connected strange Connected charm Disconnected

633.7(2.1)stat(4.2)syst 53.393(89)stat(68)syst –13.36(1.18)stat(1.36)syst

0.11(4)tot

Bottom; higher-order;
perturbative

Other

Finite-size effects

Disconnected

–4.67(54)stat(69)syst

aLO-HVP (×1010) = 707.5(2.3)stat(5.0)syst(5.5)tot

QED isospin breaking: valence 

Isospin-symmetric

Connected Disconnected

Connected Disconnected

Connected

DisconnectedConnected

–0.55(15)stat(10)syst

–0.040(33)stat(21)syst

0.011(24)stat(14)syst

–1.23(40)stat(31)syst

–0.0093(86)stat(95)syst

0.37(21)stat(24)syst

6.60(63)stat(53)syst

QED isospin breaking: sea

QED isospin breaking: mixed

Isospin-symmetric

Isospin-breaking

18.7(2.5)tot

0.0(0.1)tot

14.6(0)stat(1)syst

Fig. 1 | Contributions to aμ, including examples of the corresponding 
Feynman diagrams. Solid lines are quarks and curly lines are photons. Gluons 
are not shown explicitly, and internal quark loops are shown only if they are 
attached to photons. Dots represent coordinates in position space, boxes 
denote the mass insertion relevant for strong–isospin symmetry breaking.  
The numbers give our result for each contribution; they correspond to our 

‘reference’ system size defined by Lref = 6.272 fm spatial and Tref = 9.408 fm 
temporal lattice extents. We also explicitly compute the finite-size corrections 
that must be added to these results, which are given separately in the lower 
right panel. The first error is the statistical and the second is the systematic 
uncertainty, except for the contributions for which only a single, total error is 
given. Central values are medians; errors are s.e.m.
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The BMW result Borsanyi et al. Nature 2021
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input, and the isospin-symmetry-breaking effects were included only 
as an estimate.

The second issue is noise reduction. Our result for aμ is obtained 
as an integral over the conserved current–current correlation func-
tion, from zero to infinite time separation, as shown in equation (2). 
For large separations the correlator is noisy, and this noise manifests 
itself as a statistical error in aμ. To reach the desired accuracy on aμ, one 
needs high precision at every step. Over 20,000 configurations were 
accumulated for our 27 ensembles on L ≈ 6 fm lattices (L is the spatial 
extent of the lattice). In addition, we include a lattice with L ≈ 11 fm. 
The most important improvement over our earlier aμ determination 
in ref. 14 is the extensive use of analysis techniques that are based on the 
lowest eigenmodes of the Dirac operator; see, for example, refs. 15–18.  
An accuracy gain of about an order of magnitude can be reached using 
this technique for aμ (refs. 19,20).

The third issue is isospin-symmetry breaking. The precision needed 
cannot be reached with pure, isospin-symmetric QCD. Thus, we 
include QED effects and allow the up and down quarks to have differ-
ent masses. These effects are included both in the scale determination 
and in the current–current correlators. We note that the separation 
of isospin-symmetric and isospin-symmetry-breaking contributions 
requires a convention, which we discuss in detail in Supplementary 
Information. Strong–isospin breaking is implemented by taking deriva-
tives of QCD + QED expectation values with respect to up/down quark 
masses and computing the resulting observables on isospin-symmetric 
configurations21. We note that the first derivative of the fermionic 
determinant vanishes. We also implement derivatives with respect 
to the electric charge22. It is useful to distinguish between the electric 
charge in the fermionic determinant (es or sea electric charge) and in 
the observables (ev or valence electric charge). The complete list of 
graphs that should be evaluated are shown in Fig. 1 with our numerical 
results for them.

The final observable is given as a Taylor expansion around the 
isospin-symmetric, physical-mass point with zero sea and valence 
charges. Instead of the quark masses, we use the pseudoscalar meson 
masses of pions and kaons, which can be determined with high preci-
sion. Using the expansion coefficients, we extrapolate in the charges, 
in the strong–isospin symmetry-breaking parameter and in the lattice 
spacing, and interpolate in the quark masses to the physical point. Thus, 
we obtain aμ and its statistical and systematic uncertainties.

The fourth issue is the extrapolation to the infinite-volume and con-
tinuum limit. The standard wisdom for lattice calculations is that MπL > 4 
should be taken, where Mπ is the mass of the pion. Unfortunately, this 
is not satisfactory in the present case: aμ is far more sensitive to L than 
other quantities, such as hadron masses, and large volumes are needed 
to reach per-thousand accuracy. For less volume-sensitive quantities, 
we use well established results to determine the finite-volume correc-
tions on the pion decay constant23 and on charged hadron masses24–26. 
Leading-order chiral perturbation theory27 and two-loop, partially 
quenched chiral perturbation theory20,28 for aμ help to describe 
finite-size corrections, but the non-perturbative, leading-order, large-L 
expansion of ref. 29 indicates that those approaches still lead to sys-
tematic effects that are larger than the accuracy that we are aiming 
for. In addition to the infinite-volume extrapolation, the continuum 
extrapolation is also difficult. This is connected to the taste-symmetry 
breaking of staggered fermions, which we use in this work.

We correct for finite-volume effects on aμ by computing them directly 
by performing lattice simulations on L ≈ 11 fm lattices, with highly 
suppressed taste violations and with physical, taste-averaged pion 
masses. These corrections are cross-checked against three models 
that describe the relevant long-distance physics, in turn validating 
the use of these models for the residual, sub-per-thousand extrapola-
tion to infinite volume. These models include: (i) the full two-loop, 
finite-volume, chiral perturbation theory corrections for aμ; (ii) the 
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Fig. 2 | Continuum extrapolation of the light connected component of aμ, 
a μ

light. Before extrapolation we apply a taste-improvement procedure on the 
correlator, starting at some distance tsep. (See Supplementary Information for 
details on the improvement ‘SRHO’.) Datasets are shown for two choices of tsep, 
0.4 fm (red) and 1.3 fm (blue). The corresponding lines show fits using linear 
and quadratic terms of a2 with varying number of lattice spacings in the fit. Our 
final analysis involves about 500,000 different continuum extrapolations, 
shown in the histogram on the left. The purple line in the left panel shows the 
central value of the final result. To estimate the error related to the 
taste-improvement procedure, we use next-to-next-to-leading-order 
staggered chiral perturbation theory (NNLO) in the long-distance part of the 
correlator (t > 1.3 fm). The corresponding data are shown with grey points, 
together with a histogram, from which the systematic error related to the taste 
improvement is obtained. The total error of the final result is given by the grey 
band in the left panel. Central values are medians; errors are s.e.m. The results 
are obtained on lattices of sizes L ≈ 6 fm.
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Fig. 3 | Comparison of recent results for the LO-HPV contribution to the 
anomalous magnetic moment of the muon. See ref. 7 for a recent review. 
Green squares are lattice results: this result (filled symbol) and those of 
Gérardin et al.32, Davies et al.33, Giusti et al.34, Blum et al.19 and our earlier work, 
Borsanyi et al.14. Central values are medians; error bars are s.e.m. Compared to 
Borsanyi et al.14, this work has increased the accuracy of the scale setting from 
the per cent to the per thousand level; has decreased the statistical error from 
7.5 to 2.3; has computed all isospin-symmetry-breaking contributions, as 
opposed to estimating it, with the corresponding error being 1.4, down from 
5.1; has made a dedicated finite-size study to decrease the finite-size error from 
13.5 to 2.5; has decreased the continuum extrapolation error from 8.0 to 4.1 by 
obtaining much more statistics on our finest lattice and applying taste 
improvement. Red circles were obtained using the R-ratio method by Davier 
et al.3, Keshavarzi et al.4, and Colangelo et al.5 and Hoferichter et al.6; these 
results use the same experimental data as input. The blue shaded region is the 
value that ‐a μ

LO HVP should have to explain the experimental measurement of 
(gμ − 2), assuming no new physics.
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triangles labelled ‘none’ correspond to our lattice results with no taste 
improvement. The blue squares repesent data that have undergone no taste 
improvement for t < 1.3 fm and SRHO improvement above. The blue curves 
correspond to example continuum extrapolations of improved data to 
polynomials in a2, up to and including a4. We note that extrapolations in 
a2αs(1/a)3, with αs(1/a) the strong coupling at the lattice scale, are also 
considered in our final result. The red circles and curves are the same as the 

blue points, but correspond to SRHO taste improvement for t ≥ 0.4 fm and no 
improvement for smaller t. The purple histogram results from fits using the 
SRHO improvement, and the corresponding central value and error is the 
purple band. The darker grey circles correspond to results corrected with 
SRHO in the range 0.4–1.3 fm and with NNLO SXPT for larger t. These latter fits 
serve to estimate the systematic uncertainty of the SRHO improvement. The 
grey band includes this uncertainty, and the corresponding histogram is shown 
with grey. Errors are s.e.m.
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Meyer–Lellouch–Lüscher–Gounaris–Sakurai technique described in 
Supplementary Information; and (iii). the ρ–π–γ model of Jegerlehner 
and Szafron30, already used in a lattice context in ref. 31. Moreover, to 
reduce discretization errors in the light-quark contributions to aμ, 
before extrapolating those contributions to the continuum, we apply 
a taste-improvement procedure that reduces lattice artefacts due to 
taste-symmetry breaking. The procedure is built upon the three models 
of π–ρ physics mentioned above. We provide evidence that validates 
this procedure in Supplementary Information.

Combining all of these ingredients, we obtain as a final result 
aμ = 707.5(2.3)stat(5.0)syst(5.5)tot. The statistical error comes mainly 
from the noisy, large-distance region of the current–current correla-
tor. The systematic error is dominated by the continuum extrapola-
tion and the finite-size effect computation. The total error is obtained 
by adding the first two in quadrature. In total, we reach a relative 
accuracy of 0.8%. In Fig. 2 we show the continuum extrapolation of 
the light, connected component of aμ, which gives the dominant 
contribution to aμ.

Figure 3 compares our result with previous lattice computations and 
also with results from the R-ratio method, which have recently been 
reviewed in ref. 7. In principle, one can reduce the uncertainty of our 
result by combining our lattice correlator, G(t), with the one obtained 
from the R-ratio method, in regions of Euclidean time in which the lat-
ter is more precise19. We do not do so here because there is a tension 
between our result and those obtained by the R-ratio method, as can be 
seen in Fig. 3. For the total LO-HVP contribution to aμ, our result is 2.0σ, 
2.5σ, 2.4σ and 2.2σ larger than the R-ratio results of aμ = 694.0(4.0) (ref. 3),  
aμ = 692.78(2.42) (ref. 4), aμ = 692.3(3.3) (refs. 5,6) and the combined 
result aμ = 693.1(4.0) of ref. 7, respectively. It is worth noting that the 
R-ratio determinations are based on the same experimental datasets 
and are therefore strongly correlated, although these datasets were 
obtained in several different and independent experiments that we have 

no reason to believe are collectively biased. Clearly, these comparisons 
need further investigation, although it should also be kept in mind 
that the tensions observed here are smaller, for instance, than what 
is usually considered experimental evidence for a new phenomenon 
(3σ) and much smaller than what is needed to claim an experimental 
discovery (5σ).

As a first step in that direction, it is instructive to consider a mod-
ified observable, where the correlator G(t) is restricted to a finite 
interval by a smooth window function19. This observable, which we 
denote as aμ,win, is obtained much more readily than aμ on the lattice. 
Its shorter-distance nature makes it far less susceptible to statistical 
noise and to finite-volume effects. Moreover, in the case of staggered 
fermions, it has reduced discretization artefacts. This is shown in 
Fig. 4, where the light, connected component of aμ,win is plotted as 
a function of a2. Because the determination of this quantity does 
not require overcoming many of the challenges described above, 
other lattice groups have obtained it with errors comparable to 
ours19,20. This allows a sharper benchmarking of our calculation of 
this challenging, light-quark contribution that dominates aμ.  
Our aμ,win

light  differs by 0.2σ and 2.2σ from the lattice results of ref. 20 
and ref. 19, respectively. Moreover, aμ,win can be computed using the 
R-ratio approach, and we do so using the dataset provided by the 
authors of ref. 4. However, here we find a 3.7σ tension with our lattice 
result.

To conclude, when combined with the other standard-model con-
tributions (see, for example, refs. 3,4), our result for the leading-order 
hadronic contribution to the anomalous magnetic moment of the 
muon, a = 707.5(5.5) × 10μ

LO HVP
tot

−10‐ , weakens the long-standing dis-
crepancy between experiment and theory. However, as discussed above 
and can be seen in Fig. 2, our lattice result shows some tension with the 
R-ratio determinations of refs. 3–6. Obviously, our findings should be 
confirmed—or refuted—by other studies using different discretizations 
of QCD. Those investigations are underway.
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Fig. 4 | Continuum extrapolation of the isospin-symmetric, light, 
connected component of the window observable aμ,win, a( )isoμ,win

ightl . The data 
points are extrapolated to the infinite-volume limit. Central values are 
medians; error bars are s.e.m. Two different ways to perform the continuum 
extrapolations are shown: one without improvement, and another with 
corrections from a model involving the ρ meson (SRHO). In both cases the lines 
show linear, quadratic and cubic fits in a2 with varying number of lattice 
spacings in the fit. The continuum-extrapolated result is shown with the results 
from Blum et al.19 and Aubin et al.20. Also plotted is our R-ratio-based 
determination, obtained using the experimental data compiled by the authors 
of ref. 4 and our lattice results for the non-light-connected contributions. This 
plot is convenient for comparing different lattice results. Regarding the total 
aμ,win, for which we must also include the contributions of flavours other than 
light and isospin-symmetry-breaking effects, we obtain 236.7(1.4)tot on the 
lattice and 229.7(1.3)tot from the R-ratio; the latter is 3.7σ or 3.1% smaller than the 
lattice result.
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f �aHVP
e (f) · 1014 �aHVP

µ (f) · 1010 �aHVP
⌧ (f) · 108

ud 1.9 (0.8) 7.1 (2.5) 3.0 (1.1)

s �0.002 (0.001) �0.0053 (0.0033) 0.001 (0.002)

c 0.004 (0.001) 0.0182 (0.0036) 0.032 (0.006)

total 1.9 (1.0) 7.1 (2.9) 3.0 (1.3)

f aSD
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c 2.79 (0.10)

disc �1.6 (0.2)

f [�aHVP
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total 0.9 (0.3)

D. Giusti, talk at Lattice 2021
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Consequences of the BMW result

A shift in the value of aHVP, LO
µ would have consequences:

I ∆aHVP, LO
µ ⇔ ∆σ(e+e− → hadrons)

I ∆αhad(M2
Z ) is determined by an integral of the same

σ(e+e− → hadrons) (more weight at high energy)

I changing aHVP, LO
µ necessarily implies a shift in ∆αhad(M2

Z ):
size depends on the energy range of ∆σ(e+e− → hadrons)

I a shift in ∆αhad(M2
Z ) has an impact on the EW-fit

I to save the EW-fit ∆σ(e+e− → hadrons) must occur below
∼ 1 (max 2) GeV
Crivellin, Hoferichter, Manzari, Montull (20)/Keshavarzi, Marciano, Passera, Sirlin (20)/Malaescu, Schott (20)

I or the need for BSM physics would be moved elsewhere
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Changes in σ(e+e− → hadrons) below 1 GeV?

I Below 1− 2 GeV only one significant channel: π+π−

I Strongly constrained by analyticity and unitarity (F V
π (s))

I F V
π (s) parametrization which satisfies these
⇒ small number of parameters GC, Hoferichter, Stoffer (18)

I ∆aHVP, LO
µ ⇔ shifts in these parameters

analysis of the corresponding scenarios GC, Hoferichter, Stoffer (21)
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BMW vs individual π+π− experiments
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Meyer–Lellouch–Lüscher–Gounaris–Sakurai technique described in 
Supplementary Information; and (iii). the ρ–π–γ model of Jegerlehner 
and Szafron30, already used in a lattice context in ref. 31. Moreover, to 
reduce discretization errors in the light-quark contributions to aμ, 
before extrapolating those contributions to the continuum, we apply 
a taste-improvement procedure that reduces lattice artefacts due to 
taste-symmetry breaking. The procedure is built upon the three models 
of π–ρ physics mentioned above. We provide evidence that validates 
this procedure in Supplementary Information.

Combining all of these ingredients, we obtain as a final result 
aμ = 707.5(2.3)stat(5.0)syst(5.5)tot. The statistical error comes mainly 
from the noisy, large-distance region of the current–current correla-
tor. The systematic error is dominated by the continuum extrapola-
tion and the finite-size effect computation. The total error is obtained 
by adding the first two in quadrature. In total, we reach a relative 
accuracy of 0.8%. In Fig. 2 we show the continuum extrapolation of 
the light, connected component of aμ, which gives the dominant 
contribution to aμ.

Figure 3 compares our result with previous lattice computations and 
also with results from the R-ratio method, which have recently been 
reviewed in ref. 7. In principle, one can reduce the uncertainty of our 
result by combining our lattice correlator, G(t), with the one obtained 
from the R-ratio method, in regions of Euclidean time in which the lat-
ter is more precise19. We do not do so here because there is a tension 
between our result and those obtained by the R-ratio method, as can be 
seen in Fig. 3. For the total LO-HVP contribution to aμ, our result is 2.0σ, 
2.5σ, 2.4σ and 2.2σ larger than the R-ratio results of aμ = 694.0(4.0) (ref. 3),  
aμ = 692.78(2.42) (ref. 4), aμ = 692.3(3.3) (refs. 5,6) and the combined 
result aμ = 693.1(4.0) of ref. 7, respectively. It is worth noting that the 
R-ratio determinations are based on the same experimental datasets 
and are therefore strongly correlated, although these datasets were 
obtained in several different and independent experiments that we have 

no reason to believe are collectively biased. Clearly, these comparisons 
need further investigation, although it should also be kept in mind 
that the tensions observed here are smaller, for instance, than what 
is usually considered experimental evidence for a new phenomenon 
(3σ) and much smaller than what is needed to claim an experimental 
discovery (5σ).

As a first step in that direction, it is instructive to consider a mod-
ified observable, where the correlator G(t) is restricted to a finite 
interval by a smooth window function19. This observable, which we 
denote as aμ,win, is obtained much more readily than aμ on the lattice. 
Its shorter-distance nature makes it far less susceptible to statistical 
noise and to finite-volume effects. Moreover, in the case of staggered 
fermions, it has reduced discretization artefacts. This is shown in 
Fig. 4, where the light, connected component of aμ,win is plotted as 
a function of a2. Because the determination of this quantity does 
not require overcoming many of the challenges described above, 
other lattice groups have obtained it with errors comparable to 
ours19,20. This allows a sharper benchmarking of our calculation of 
this challenging, light-quark contribution that dominates aμ.  
Our aμ,win

light  differs by 0.2σ and 2.2σ from the lattice results of ref. 20 
and ref. 19, respectively. Moreover, aμ,win can be computed using the 
R-ratio approach, and we do so using the dataset provided by the 
authors of ref. 4. However, here we find a 3.7σ tension with our lattice 
result.

To conclude, when combined with the other standard-model con-
tributions (see, for example, refs. 3,4), our result for the leading-order 
hadronic contribution to the anomalous magnetic moment of the 
muon, a = 707.5(5.5) × 10μ

LO HVP
tot

−10‐ , weakens the long-standing dis-
crepancy between experiment and theory. However, as discussed above 
and can be seen in Fig. 2, our lattice result shows some tension with the 
R-ratio determinations of refs. 3–6. Obviously, our findings should be 
confirmed—or refuted—by other studies using different discretizations 
of QCD. Those investigations are underway.
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Fig. 4 | Continuum extrapolation of the isospin-symmetric, light, 
connected component of the window observable aμ,win, a( )isoμ,win

ightl . The data 
points are extrapolated to the infinite-volume limit. Central values are 
medians; error bars are s.e.m. Two different ways to perform the continuum 
extrapolations are shown: one without improvement, and another with 
corrections from a model involving the ρ meson (SRHO). In both cases the lines 
show linear, quadratic and cubic fits in a2 with varying number of lattice 
spacings in the fit. The continuum-extrapolated result is shown with the results 
from Blum et al.19 and Aubin et al.20. Also plotted is our R-ratio-based 
determination, obtained using the experimental data compiled by the authors 
of ref. 4 and our lattice results for the non-light-connected contributions. This 
plot is convenient for comparing different lattice results. Regarding the total 
aμ,win, for which we must also include the contributions of flavours other than 
light and isospin-symmetry-breaking effects, we obtain 236.7(1.4)tot on the 
lattice and 229.7(1.3)tot from the R-ratio; the latter is 3.7σ or 3.1% smaller than the 
lattice result.
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BMW vs individual π+π− experiments
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Calculating the HLbL contribution

The HLbL contribution is a very complex quantity
I 4-point function of em currents in QCD

I early on, it has been calculated with models
Hayakawa-Kinoshita-Sanda/Bijnens-Pallante-Prades (96), Knecht, Nyffeler (02), Melnikov, Vainshtein (04)

I a data-driven approach, like for HVP, has only recently
been developed and used

GC, Hoferichter, Procura, Stoffer=CHPS (14,15,17), Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

I lattice QCD is becoming competitive
RBC/UKQCD (20), Mainz (21)
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Different model-based evaluations of HLbL

Jegerlehner-Nyffeler 2009

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV(09) N/JN(09)

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99±16
π, K loops −19±13 −4.5±8.1 − − − −19±19 −19±13

" " + subl. in Nc − − − 0±10 − − −
axial vectors 2.5±1.0 1.7±1.7 − 22± 5 − 15±10 22± 5

scalars −6.8±2.0 − − − − −7± 7 −7± 2
quark loops 21± 3 9.7±11.1 − − − 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 110±40 105±26 116±39

Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita S=Sanda Kn=Knecht
N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael J=Jegerlehner

I large uncertainties (and differences among calculations) in
individual contributions

I pseudoscalar pole contributions most important

I second most important: pion loop, i.e. two-pion cuts
(K s are subdominant)

I heavier single-particle poles decreasingly important
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Advantages of the dispersive approach

I model independent

I unambiguous definition of the various contributions

I makes a data-driven evaluation possible
(in principle)

I if data not available: use theoretical calculations of
subamplitudes, short-distance constraints etc.

I First attempts: GC, Hoferichter, Procura, Stoffer (14)

Pauk, Vanderhaeghen (14)

I similar philosophy, with a different implementation:
Schwinger sum rule Hagelstein, Pascalutsa (17)

I why hasn’t this been adopted before?
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I why hasn’t this been adopted before?



Introduction HVP to (g − 2)µ HLbL to (g − 2)µ Conclusions DR for HLbL HLbL dispersive SDC

Hadronic vacuum polarization

Πµν(q) = i
∫

d4xeiqx〈0|Tjµ(x)jν(0)|0〉 =
(

qµqν − gµνq2
)

Π(q2)

where jµ(x) =
∑

i Qi q̄i(x)γµqi(x), i = u,d , s is the em current

I Lorentz invariance: 2 structures
I gauge invariance: reduction to 1 structure
I Lorentz-tensor defined in such a way that the function

Π(q2) does not have kinematic singularities or zeros
I Π̄(q2) := Π(q2)− Π(0) satisfies

Π̄(q2) =
q2

π

∫ ∞

4M2
π

dt
ImΠ̄(t)

t(t − q2)
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Hadronic vacuum polarization

Πµν(q) = i
∫

d4xeiqx〈0|Tjµ(x)jν(0)|0〉 =
(

qµqν − gµνq2
)

Π(q2)

where jµ(x) =
∑

i Qi q̄i(x)γµqi(x), i = u,d , s is the em current

I Lorentz invariance: 2 structures
I gauge invariance: reduction to 1 structure
I Lorentz-tensor defined in such a way that the function

Π(q2) does not have kinematic singularities or zeros
I Π̄(q2) := Π(q2)− Π(0) satisfies

Π̄(q2) =
q2

π

∫ ∞

4M2
π

dt
ImΠ̄(t)

t(t − q2)

Easy!
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The HLbL tensor
HLbL tensor:

Πµνλσ = i3
∫

dx
∫

dy
∫

dz e−i(x·q1+y·q2+z·q3)〈0|T
{

jµ(x)jν(y)jλ(z)jσ(0)
}
|0〉

q4 = k = q1 + q2 + q3 k2 = 0

General Lorentz-invariant decomposition:

Πµνλσ = gµνgλσΠ1+gµλgνσΠ2+gµσgνλΠ3+
∑

i,j,k ,l

qµi qνj qλk qσl Π4
ijkl+. . .

consists of 138 scalar functions {Π1,Π2, . . .}, but in d = 4 only
136 are linearly independent Eichmann et al. (14)

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))

⇒ Apply the Bardeen-Tung (68) method+Tarrach (75) addition
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to Πµνλσ one ends
up with: GC, Hoferichter, Procura, Stoffer≡ CHPS (2015)

I 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes

I 11 additional ones (T) to guarantee basis completeness everywhere

I of these 54 only 7 are distinct structures

I all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

I the dynamical calculation needed to fully determine the
HLbL tensor concerns these 7 scalar amplitudes

Πµνλσ =
54∑

i=1

Tµνλσ
i Πi
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Setting up the dispersive calculation

For HVP the unitarity relation is simple and looks the same for
all possible intermediate states

ImΠ(q2) ∝ σ(e+e− → hadrons)
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Setting up the dispersive calculation

For HVP the unitarity relation is simple and looks the same for
all possible intermediate states

ImΠ(q2) ∝ σ(e+e− → hadrons)

For HLbL things are more complicated
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

Pion pole: imaginary parts = δ-functions
Projection on the BTT basis: easy X
Our master formula=explicit expressions in the literature X
Input: pion transition form factor Hoferichter et al. (18)

First results of direct lattice calculations Gerardin, Meyer, Nyffeler (16,19)
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

π-box with the BTT set:

– we have constructed a Mandelstam representation for the
contribution of the 2-pion cut with LHC due to a pion pole

– we have explicitly checked that this is identical to sQED
multiplied by F V

π (s) (FsQED)
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

≡ F V
π (q2

1)F V
π (q2

2)F V
π (q2

3)

×


 + +



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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

The “rest” with 2π intermediate states has cuts only in one
channel and will be
calculated dispersively after partial-wave expansion
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

Contributions of cuts with anything else other than one and two
pions in intermediate states are neglected in first approximation

of course, the η, η′ and other pseudoscalars pole contribution,
or the kaon-box/rescattering contribution can be calculated
within the same formalism
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Pion-pole contribution

I Expression of this contribution in terms of the pion
transition form factor already known Knecht-Nyffeler (01)

I Both transition form factors (TFF) are included:

Π̄1 =
Fπ0γ∗γ∗(q2

1 ,q
2
2)Fπ0γ∗γ∗(q2

3 ,0)

q2
3 −M2

π0

I data on singly-virtual TFF available CELLO, CLEO, BaBar, Belle, BESIII

I several calculations of the transition form factors in the
literature Masjuan & Sanchez-Puertas (17), Eichmann et al. (17), Guevara et al. (18)

I dispersive approach works here too Hoferichter et al. (18)

I lattice calculations can have a significant impact
Gèrardin, Meyer, Nyffeler (16,19)
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Pion-pole contribution
Latest complete analyses:

I Dispersive calculation of the pion TFF Hoferichter et al. (18)

aπ
0

µ = 63.0+2.7
−2.1 × 10−11

I Padé-Canterbury approximants Masjuan & Sanchez-Puertas (17)

aπ
0

µ = 63.6(2.7)× 10−11

I Lattice Gérardin, Meyer, Nyffeler (19)

aπ
0

µ = 62.3(2.3)× 10−11
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Pion-box contribution

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·
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Pion-box contribution
The only ingredient needed for the pion-box contribution is the
vector form factor

Π̂π-box
i = F V

π (q2
1)F V

π (q2
2)F V

π (q2
3)

1
16π2

∫ 1

0
dx
∫ 1−x

0
dy Ii(x , y),

where

I1(x , y) =
8xy(1− 2x)(1− 2y)

∆123∆23
,

and analogous expressions for I4,7,17,39,54 and

∆123 = M2
π − xyq2

1 − x(1− x − y)q2
2 − y(1− x − y)q2

3 ,

∆23 = M2
π − x(1− x)q2

2 − y(1− y)q2
3
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Pion-box contribution
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Uncertainties are negligibly small:

aFsQED
µ = −15.9(2) · 10−11
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Pion-box contribution

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV(09) N/JN(09)

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99±16
π, K loops −19±13 −4.5±8.1 − − − −19±19 −19±13

" " + subl. in Nc − − − 0±10 − − −
axial vectors 2.5±1.0 1.7±1.7 − 22± 5 − 15±10 22± 5

scalars −6.8±2.0 − − − − −7± 7 −7± 2
quark loops 21± 3 9.7±11.1 − − − 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 110±40 105±26 116±39

Uncertainties are negligibly small:

aFsQED
µ = −15.9(2) · 10−11
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First evaluation of S- wave 2π-rescattering
Omnès solution for γ∗γ∗ → ππ provides the following:

= + =: +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC

Based on:

I taking the pion pole as the only left-hand singularity

I ⇒ pion vector FF to describe the off-shell behaviour

I ππ phases obtained with the inverse amplitude method
[realistic only below 1 Gev: accounts for the f0(500) + unique and well defined extrapolation to∞]

I numerical solution of the γ∗γ∗ → ππ dispersion relation
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First evaluation of S- wave 2π-rescattering
Omnès solution for γ∗γ∗ → ππ provides the following:

= + =: +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC

Based on:

I taking the pion pole as the only left-hand singularity

I ⇒ pion vector FF to describe the off-shell behaviour

I ππ phases obtained with the inverse amplitude method
[realistic only below 1 Gev: accounts for the f0(500) + unique and well defined extrapolation to∞]

I numerical solution of the γ∗γ∗ → ππ dispersion relation

S-wave contributions : aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11
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Two-pion contribution to (g − 2)µ from HLbL
Two-pion contributions to HLbL:

= + + +

︸ ︷︷ ︸ ︸ ︷︷ ︸
pion box rescattering contribution

aπ−box
µ + aππ,π-pole LHC

µ,J=0 = −24(1) · 10−11
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Improvements obtained with the dispersive approach

Contribution PdRV(09) N/JN(09) J(17) WP(20)
Glasgow consensus

π0, η, η′-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
π, K -loops/boxes −19(19) −19(13) −20(5) −16.4(2)

S-wave ππ rescattering −7(7) −7(2) −5.98(1.20) −8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars − − −
}

− 1(3)tensors − − 1.1(1)
axial vectors 15(10) 22(5) 7.55(2.71) 6(6)

u, d, s-loops / short-distance − 21(3) 20(4) 15(10)

c-loop 2.3 − 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

I significant reduction of uncertainties in the first three rows
CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

I 1− 2 GeV resonances affected by basis ambiguity

I asymptotic region recently addressed, but still work in progress
Melnikov, Vainshtein (04), Nyffeler (09), WP20, Bijnens et al. (20,21), GC, Hagelstein et al (19,21)
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Situation for HLbL

0 20 40 60 80 100 120 140 160
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Longitudinal SDCs: a few definitions

The longitudinal SDC only concerns one function: Π1

Split π0-pole from the rest in general kinematics (q2
4 = 0, qµ4 6= 0):

Π1(s, t ,u) =
Fπγ∗γ∗(q2

1 ,q
2
2)Fπγγ∗(q2

3)

s −M2
π

+ G(s, t ,u)

For g − 2 kinematics (qµ4 → 0,⇒ s = q2
3 , t = q2

2 , u = q2
1):

Π̄1(q2
3 ,q

2
2 ,q

2
1) =

Fπγ∗γ∗(q2
1 ,q

2
2)Fπγγ∗(q2

3)

q2
3 −M2

π

+ G(q2
3 ,q

2
2 ,q

2
1)

=
Fπγ∗γ∗(q2

1 ,q
2
2)

q2
3 −M2

π

[
Fπγγ∗(M2

π) + F̄πγγ∗(q2
3)
]

+ G(q2
3 ,q

2
2 ,q

2
1)

with F̄πγγ∗(q2
3) ≡ Fπγγ∗(q2

3)− Fπγγ∗(M2
π)
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Longitudinal SDCs: a few definitions

The longitudinal SDC only concerns one function: Π1

Split π0-pole from the rest in general kinematics (q2
4 = 0, qµ4 6= 0):

Π1(s, t ,u) =
Fπγ∗γ∗(q2

1 ,q
2
2)Fπγγ∗(q2

3)

s −M2
π

+ G(s, t ,u)

For g − 2 kinematics (qµ4 → 0,⇒ s = q2
3 , t = q2

2 , u = q2
1):

Π̄1(q2
3 ,q

2
2 ,q

2
1) =

Fπγ∗γ∗(q2
1 ,q

2
2)Fπγγ∗(q2

3)

q2
3 −M2

π

+ G(q2
3 ,q

2
2 ,q

2
1)

=
Fπγ∗γ∗(q2

1 ,q
2
2)

q2
3 −M2

π

[
Fπγγ∗(M2

π) + F̄πγγ∗(q2
3)
]

+ G(q2
3 ,q

2
2 ,q

2
1)

with F̄πγγ∗(q2
3) ≡ Fπγγ∗(q2

3)− Fπγγ∗(M2
π)
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The longitudinal SDCs
Two different kinematic configurations for large q2

i :

1. All momenta large Melnikov-Vainshtein (04), Bijnens et al (19)

Π̄1(q2,q2,q2)
q2→∞

= − 4
9π2q4 +O(q−6)

2. q2 ≡ q2
1 ∼ q2

2 � q2
3 , q2 � Λ2

QCD: Melnikov-Vainshtein (04)

Π̄1(q2
3 ,q

2,q2)
q2→∞

= − 1
9π2q2 wL(q2

3) +O(q−4)

with wL(q2
3) the longitudinal amplitude in 〈VVA〉, the anomaly
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The longitudinal SDCs
Two different kinematic configurations for large q2

i :

1. All momenta large Melnikov-Vainshtein (04), Bijnens et al (19)

Π̄1(q2,q2,q2)
q2→∞

= − 4
9π2q4 +O(q−6)

2. q2 ≡ q2
1 ∼ q2

2 � q2
3 , q2 � Λ2

QCD: Melnikov-Vainshtein (04)

Π̄1(q2
3 ,q

2,q2)
q2→∞

= − 1
9π2q2

6
q2

3
+O(q−4)

In the chiral (and large-Nc) limit wL(q2
3) is known exactly

wL(q2
3) =

6
q2

3
⇒ G(q2

3 ,q
2,q2)

∣∣∣
mq=0

q→∞
=

2Fπ
3q2

F̄πγγ∗(q2
3)

q2
3

∣∣∣∣
mq=0
+O(q−4)

No individual dispersive contribution satisfies these constraints
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The longitudinal SDCs
Two different kinematic configurations for large q2

i :

1. All momenta large Melnikov-Vainshtein (04), Bijnens et al (19)

Π̄1(q2,q2,q2)
q2→∞

= − 4
9π2q4 +O(q−6)

2. q2 ≡ q2
1 ∼ q2

2 � q2
3 , q2 � Λ2

QCD: Melnikov-Vainshtein (04)

Π̄1(q2
3 ,q

2,q2)
q2→∞

= − 1
9π2q2

6
q2

3
+O(q−4)

In the chiral (and large-Nc) limit wL(q2
3) is known exactly

wL(q2
3) =

6
q2

3
⇒ G(q2

3 ,q
2,q2)

∣∣∣
mq=0

q→∞
=

2Fπ
3q2

F̄πγγ∗(q2
3)

q2
3

∣∣∣∣
mq=0
+O(q−4)

The π-pole for g − 2 kinematics does Melnikov-Vainshtein (04)
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Recent activity on SDCs (mainly post WP)

I calculation of (non-)perturbative corrections to the OPE
Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20,21)

I tower of excited pseudoscalars (Regge model)
GC, Hagelstein, Hoferichter, Laub, Stoffer (19)

I tower of axial-vectors (holographic QCD model)
Leutgeb, Rebhan (19), Cappiello, Catà, D’Ambrosio, Greynat, Iyer (20)

I solution based on interpolants
Lüdtke, Procura (20)

I general considerations, comparison of model solutions
Knecht (20), Masjuan, Roig, Sánchez-Puertas (20), GC, Hagelstein, Hoferichter, Laub, Stoffer (21)



Introduction HVP to (g − 2)µ HLbL to (g − 2)µ Conclusions DR for HLbL HLbL dispersive SDC

Recent activity on SDCs (mainly post WP)

I calculation of (non-)perturbative corrections to the OPE
Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20,21)

I tower of excited pseudoscalars (Regge model)
GC, Hagelstein, Hoferichter, Laub, Stoffer (19)

I tower of axial-vectors (holographic QCD model)
Leutgeb, Rebhan (19), Cappiello, Catà, D’Ambrosio, Greynat, Iyer (20)

I solution based on interpolants
Lüdtke, Procura (20)

I general considerations, comparison of model solutions
Knecht (20), Masjuan, Roig, Sánchez-Puertas (20), GC, Hagelstein, Hoferichter, Laub, Stoffer (21)



Introduction HVP to (g − 2)µ HLbL to (g − 2)µ Conclusions DR for HLbL HLbL dispersive SDC

Melnikov-Vainshtein and holographic QCD

I Melnikov-Vainshtein model: Melnikov-Vainshtein (04)

wMV
L (q2

3) =
6

q2
3 −M2

π

+O(M2
π)

GMV(q2
i ) = −Fπγ∗γ∗(q2

1 ,q
2
2)F̄πγγ∗(q2

3)

q2
3

+O(M2
π)

I hQCD (HW2) model: Leutgeb, Rebhan (19), Cappiello et al. (20)

wHW2
L (q2

3) =
6

q2
3 −M2

π

[
1 +

M2
πF̄πγγ∗(q2

3)

q2
3Fπγγ

]

GHW2(q2
i ) = −Fπγ∗γ∗(q2

1 ,q
2
2)F̄πγγ∗(q2

3)

q2
3

−
F 2
πγγ

q2
3

∆G(q2
i )
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Melnikov-Vainshtein and holographic QCD

I Melnikov-Vainshtein model: Melnikov-Vainshtein (04)

wMV
L (q2

3) =
6

q2
3 −M2

π

+O(M2
π)

GMV(q2
i ) = −Fπγ∗γ∗(q2

1 ,q
2
2)F̄πγγ∗(q2

3)

q2
3

+O(M2
π)

I hQCD (HW2) model: Leutgeb, Rebhan (19), Cappiello et al. (20)

wHW2
L (q2

3) =
6

q2
3 −M2

π

[
1 +

M2
πF̄πγγ∗(q2

3)

q2
3Fπγγ

]

GHW2(q2
i ) = −Fπγ∗γ∗(q2

1 ,q
2
2)F̄πγγ∗(q2

3)

q2
3

−
F 2
πγγ

q2
3

∆G(q2
i )

≡ MV (q2
i ) + NF (q2

i )
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Numerical comparison for wL

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

0 2 4 6 8
Q(GeV)

0

0.5

1

1.5

2

-w
L(-

Q
2 ) Q

2  / 
N

c

excited PS
sum PS
π0

MV
CCDGI/HW2
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Numerical comparison for G

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

0 1 2 3 4
Q(GeV)

0

0.02

0.04

0.06

0.08

0.1

-Q
32  G

(Q
2 ,Q

2 ,Q
32 )/ 

F πγ
γ

2

Q3 = 6 GeV
Q3 = 2 GeV
Q3 = 0.5 GeV

Legenda: dashed=CCDGI/HW2, dotdashed=MV, solid=PS Regge
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Numerical comparison for G

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)
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Numerical comparison for aHLbL
µ

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

MV model CCDGI LR PS Regge modelset 1 set 2 HW2 HW2UV−fit

∆a
π/a1
µ × 1011

Q2
i > Q2

match ∀i 1.4 0.5 0.8 0.6 0.8 0.7
Q2

1,2 > Q2
match > Q2

3 0.1 0.0 0.1 0.0 0.1 0.1
Q2

i,3 > Q2
match > Q2

j i 6= j 6= 3 2.0 1.0 1.2 1.0 1.2 0.7

Q2
i > Q2

match > Qj,k i 6= j 6= k 0.8 0.3 0.4 0.3 0.3 0.2
Q2

match > Q2
i ∀i 11.8 2.2 1.7 2.3 1.8 1.0

Total 16.2 4.0 4.2 4.2 4.3 2.7

∆a
η/f1+η′/f ′1
µ × 1011

Q2
i > Q2

match ∀i 3.4 1.3 1.7 1.7 2.5 3.1
Q2

1,2 > Q2
match > Q2

3 0.3 0.1 0.2 0.1 0.2 −0.1
Q2

i,3 > Q2
match > Q2

j i 6= j 6= 3 3.7 2.5 2.8 3.0 3.7 2.8

Q2
i > Q2

match > Qj,k i 6= j 6= k 1.7 0.8 0.9 0.9 0.9 0.9
Q2

match > Q2
i ∀i 12.9 5.6 5.1 6.8 5.5 3.1

Total 22.1 10.3 10.7 12.5 12.8 9.9

Grand total (π/a1 + η/f1 + η′/f ′1 ) 38.3 14.3 14.9 16.7 17.1 12.6
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Numerical comparison for aHLbL
µ

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)
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Conclusions

I The WP provides the current status of the SM evaluation of
(g − 2)µ: 4.2σ discrepancy with experiment (w/ FNAL)

I Evaluation of the HVP contribution based on the dispersive
approach: 0.6% error⇒ dominates the theory uncertainty

I Recent lattice calculation [BMW(20)] has reached a similar precision
but differs from the dispersive one (=from e+e− data).
If confirmed⇒ discrepancy with experiment↘ below 2σ

I Evaluation of the HLbL contribution based on the dispersive
approach: 20% accuracy. Two recent lattice calculations
[RBC/UKQCD(20), Mainz(21)] agree with it
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Outlook

I The Fermilab experiment aims to reduce the BNL
uncertainty by a factor four⇒ potential 7σ discrepancy

I Improvements on the SM theory/data side:

I HVP data-driven:
Other e+e− experiments are available or forthcoming:
SND, BaBar, Belle II, BESIII, CMD3⇒ Error reduction
MuonE will provide an alternative way to measure HVP

I HVP lattice:
More calculations w/ precision ∼ BMW are awaited
Difference to data-driven evaluation must be understood

I HLbL data-driven: goal of ∼ 10% uncertainty within reach

I HLbL lattice: RBC/UKQCD⇒ similar precision as Mainz.
Good agreement with data-driven evaluation.



Introduction HVP to (g − 2)µ HLbL to (g − 2)µ Conclusions

Future: Muon g − 2/EDM experiment @ J-PARC

Credit: J-PARC
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