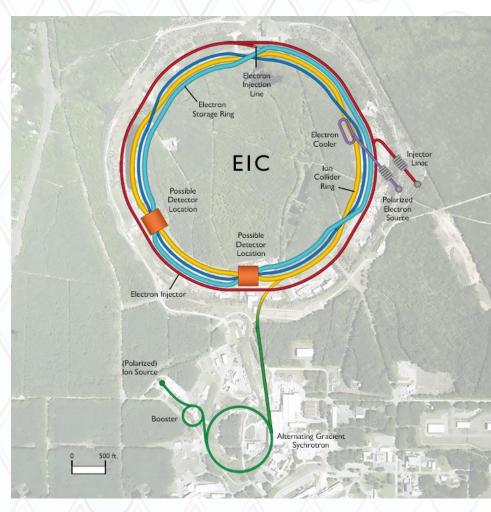

EIC Comprehensive Chromodynamics Experiment: ECCE

Sardinian Workshop on Spin, September 7 Ralf Seidl (RIKEN), for the



EIC accelerator to be build at BNL

- 80% polarized electrons from 5-18
 GeV
- 70% polarized protons from 40-275
 GeV
- lons from 40-110 GeV/u
- Polarized light ions 40 -184 GeV (He³)
- 1000x HERA luminosities: 10³³-10³⁴ cm²s⁻¹
- CMS energies $\sqrt{s} = 29 140 \text{ GeV}$
- CD1 obtained in July 2021

9/07/2021

Spin of the nucleon:

- Gluon spin
- Role of Sea quarks

Injection

EIC

Detector

Electron Cooler

Storage Ring

SIDIS Measurements

Tomography:

- 3D momentum structure (q, g Sivers, Tensor charge, TMD Evolution)
 - 3D spatial structure

Nucelar effects

Nuclear PDFs

QCD at high

gluon densities

Saturation

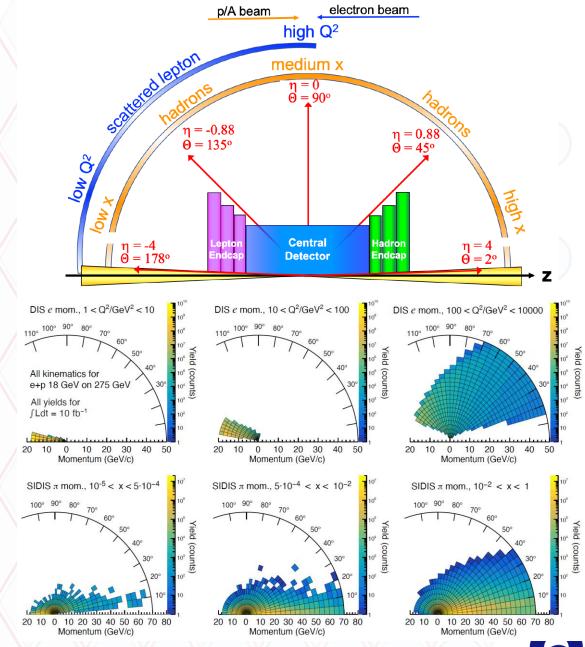
effects

 Passage of color through nuclear matter (nFFs, pT broadening)

Other

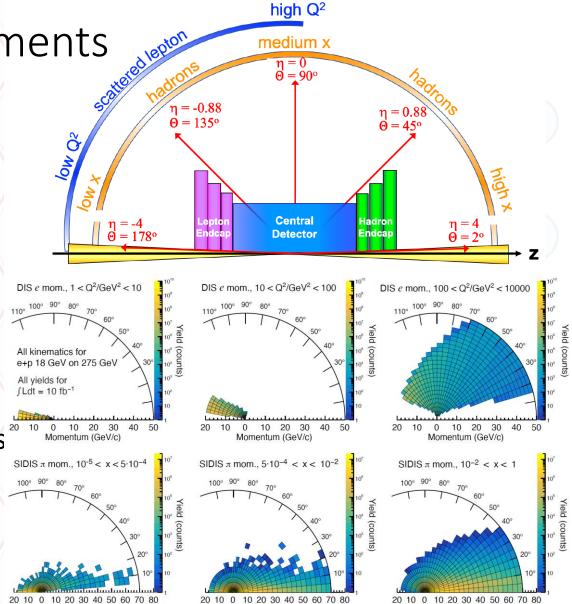
- Spectroscopy (XYZ)
- EW physics
- Fragmentation
 - Unpol PDFs

Origin of the Mass


- Axial anomaly contributions
- Hadron structure

9/07/2021

General (SI)DIS kinematics


- Scattered lepton:
 - Low Q²: Backward
 - Med Q²: central
 - High Q²: slightly forward
- SIDIS hadrons:
 - Low x: Backwardcentral
 - Med x: centralforward
 - High x: Forward

Detector requirements

- Need full coverage over a large range of rapidities
- Precise lepton kinematic measurements in backward/central/forward rapidities
- Precise hadron kine and PID in the forward/central region
- Auxiliary detectors far forward (ZDCs, roman pots
- Auxiliary detectors far backward (low Q² tagger)
- Dedicated polarimetry/luminosity detectors

Momentum (GeV/c)

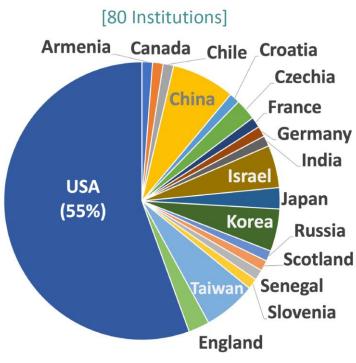
p/A beam

electron beam

Momentum (GeV/c)

9/07/2021 R.Seidl: ECCE 5

Momentum (GeV/c)



ECCE consortium

ECCE is developing a low-risk, costeffective, flexible and optimized EIC detector, capable of delivering on the full EIC physics program!

- Reuse: 1.5T BaBar solenoid and some sPHENIX detectors/infrastructure
- Explore both EIC interaction regions (i.e. with/out secondary focusing, IP6 and IP8)
- Respond to 'Detector 1' EIC call for proposals (i.e. ready for CD4a)
- Share & support community vision that the EIC science mission is best served by two detectors

CCC Consortium

EIC Project POC Rolf Ent (JLab) **ECCE Steering Committee** Computing Team Cristiano Fanelli (MIT) David Lawrence (JLab) Computing Working Groups: Artificial Intelligence William Phelps (CNU/JLab) Computing and Software Joe Osborn (ORNL) **Detector Team** Doug Higinbotham (JLab) Ken Read (ORNL)

Particle ID IP8/Equipment Re-use Greg Kalicy (CUA), John Haggerty (BNL) Xiaochun He (GSU) Far Forward/Far Backward*

Detector Working Groups:

Magnetic Field

Paul Brindza (JLab).

Chris Cuevas (JLab),

Martin Purschke (BNL)

Renuka Rajput-Ghoshal (JLab)

DAQ/Electronics/Readout

- Michael Murray (KU), Yuji Goto (RIKEN), Igor Korover (MIT)
- Tracking Xuan Li (LANL). Nilanga Liyanage (UVA)
- Calorimetry Friederike Bock (ORNL), Yongsun Kim (Sejong U.)
- *Alex Jentsch, Yulia Furletova (far-forward/backward POC)

Physics Benchmarks

Carlos Munoz-Camacho (IJCLab-Orsay) Rosi Reed (Lehigh U.)

Team

Or Hen (MIT)

Tanja Horn (CUA)

John Lajoie (ISU)

Physics Working Groups:

- Simulations
- Cameron Dean (LANL), Jin Huang (BNL)
- Inclusive Processes
- Tyler Kutz (MIT), Claire Gwenlan (Oxford) Semi-Inclusive
- Ralf Seidl (RIKEN), Charlotte Van Hulse (Orsay)
- Rachel Montgomery (Glasgow), Julie Roche (OU)
- Diffractive and Tagging
- Wenliang Li (W&M), Axel Schmidt (GWU)
- Jets and Heavy Flavor
- Cheuk-Ping Wong (LANL), Wangmei Zha (USTC)
- BSM and Precision Electroweak Sonny Mantry (UNG), Xiaochao Zheng (UVa)

Institutional Board

Diversity, Equity and Inclusion

Narbe Kalantarians (VUU, co-chair) Christine Nattrass (UTK, co-chair) Simonetta Liuti (UVA) Elena Long (UNH)

Editorial Team

Tom Cormier (ORNL) Richard Milner (MIT) Peter Steinberg (BNL)

Editorial Working Groups:

- Proposal Editing, Verification and Version Control
- Costing and Management

Website:

https://www.ecce-eic.org/

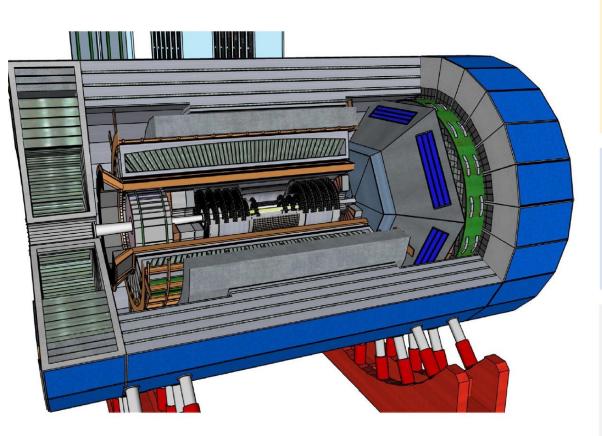
Mailing Lists:

https://lists.bnl.gov

- ecce-eic-public-l
- ecce-eic-ib-l
- ecce-eic-dei-l
- ecce-eic-det-l
- ecce-eic-phys-l
- ecce-eic-prop-l

Indico:

https://indico.bnl.gov/categ ory/339/



ECCE detector layout

EIC ON ANY OF THE PARTY OF THE

EIC Comprehensive Chromodynamics Experiment

€CC€ Detector Layout

ELECTRON ENDCAP

Tracking: Si discs + Large area μRWELL

Electron Detection:

Inner: PbWO4 crystals (reuse some)

Outer: SciGlass (backup PbGl)

h-PID: mRICH & AC-LGAD **HCAL:** Fe/Sc (STAR re-use)

CENTRAL BARREL

Tracking: MAPS Si + μRWELL

(design under optimization)

Electron PID: SciGlass (alt: PbGl or W(Pb)/Sc shashlik)

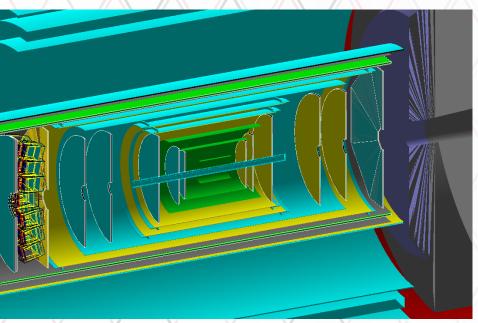
(plus instrumented frame)

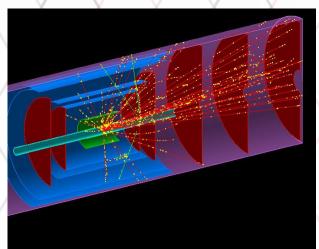
h-PID: hpDIRC & AC-LGAD **HCAL:** Fe/Sc (sPHENIX re-use)

HADRON ENDCAP

Tracking: Si discs + Large area μRWELL

PID: dual-RICH & AC-LGAD

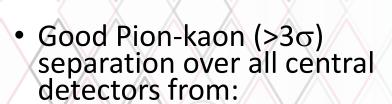

Calorimetry:


Standard Pb/ScFi shashlik (PHENIX re-use)

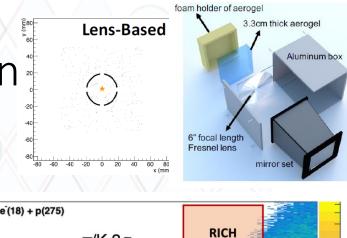
Long. sep. HCAL

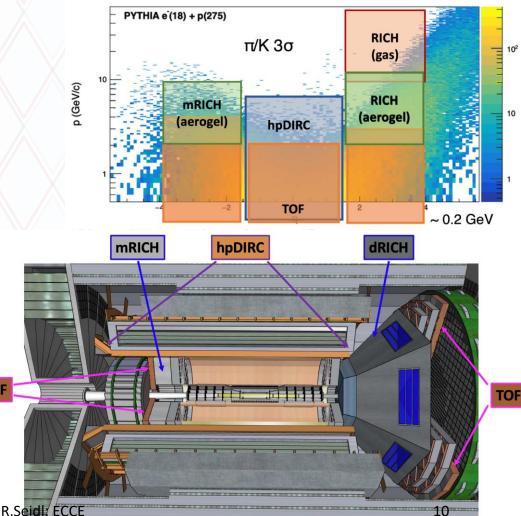
(other options under study)

CC€ Tracking

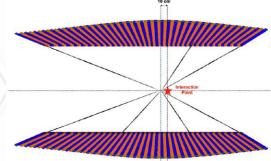

Central tracker:

- MAPS based Silicon tracker (2 double layers)
- AC-LGADS at intermediate radii
- μRWELL around DIRC
- Forward/Backward Endcaps:
 - Silicon disks
 - AC-LGADS
 - µRWell around calorimeters
- Use AI to improve tracking resolutions



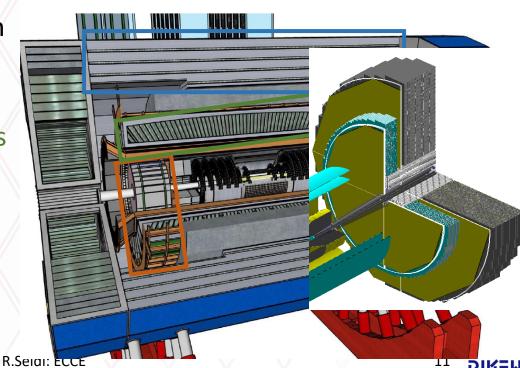

ECCE

Hadron Particle identification



- Aerogel RICH (mRHIC) for intermediate momenta (2-10 GeV)
- Dual radiator Aerogel/Gas RICH for highest momenta in forward region (>2 / >10 GeV)
- DIRC at central rapidities (<7GeV)
- Time of Flight LGAD detectors for momenta < 2GeV

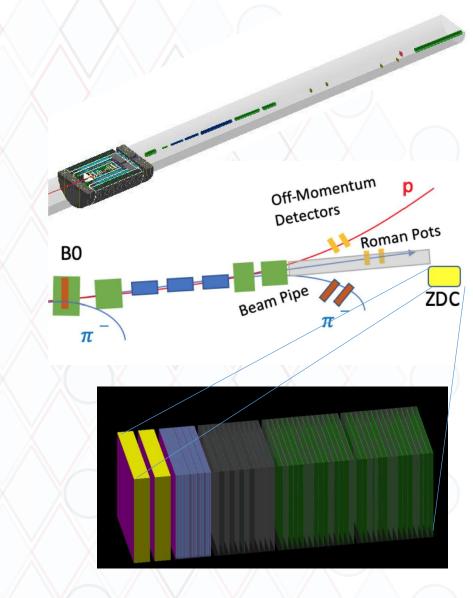
CCE Calorimetry



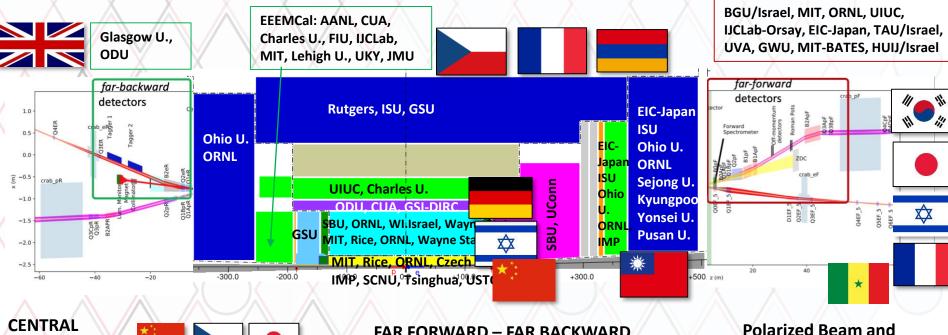
Electron direction:

- PbW04 crystals (inner part)
- SciGlass or PbGlass (outer part)
- Potentially Hadronic Calorimeter resued from STAR forward HCAL
- Central direction:
 - Projective homogeneous
 SciGlass EMCAL
 - Re-use sPHENX outer HCAL
 - New inner HCAL

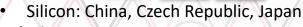
Forward direction:


- Upgraded (readout)
 PHENIX Shashlik EMCAL
- Longitudinally segmented Forward HCAL

ECCE X


Far forward detectors

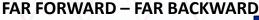
- Exclusive physics:
 - Intact proton detection, nucleons from broken up nuclei
- (SI)DIS measurements:
 - Spectator proton, neutron for neutron structure in D, He³ beams
- Meson structure:
 - Neutron, proton, Λ detection for π^+,π^0 and K^+ structure
- ZDCs for neutrals (n, K_s, $\Lambda \rightarrow n\pi^0 \rightarrow n\gamma\gamma$ decays), combined E and HCAL with high granularity layers
- Roman pots (LGADs) for protons



International interests/know-how

CENTRAL

Tracking:


Calorimetry

PWO and SciGlass: Czech Republic, Armenia, France

Forward Calo/Dual Readout: China, Japan, South Korea

Particle ID

DIRC: GSI/Germany

Roman pots: France

Off momentum: Israel

ZDC: Japan

Luminosity monitors: Israel

Low Q2 tagger: UK

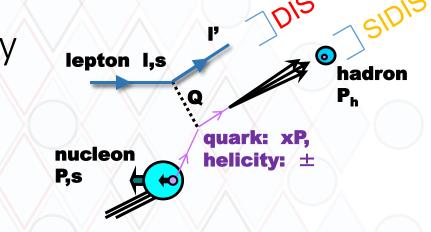
SBU Electronics:

polarimetry: MIT, UNH,

Columbia, ORNL

DAQ/Trigger: ISU, CU Boulder, OU, ORNL, SBU, UConn, LLNL

Artificial

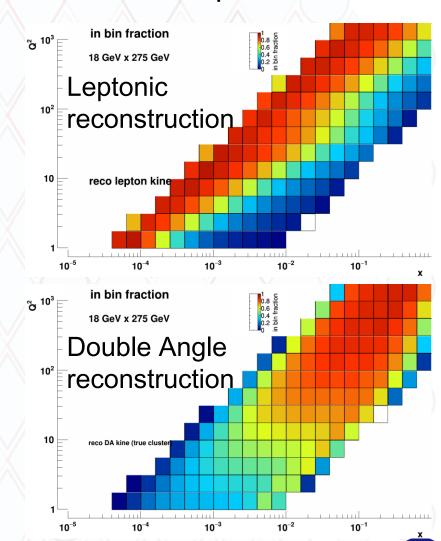

Intelligence: MIT, CNU, Brunel U.

Exp. Physics analysis strategy

- For any (SI)DIS analysis:
- 1. Find DIS kinematics: easiest case via scattered lepton l' (other methods include hadronic final state)
- 2. Calculate DIS variables: x,y,Q², W², ϕ_s (around virtual photon in proton rest frame, wrt to scattering plane)
- 3. Select DIS events (typically $Q^2>1$ GeV², W²>10GeV²,0.01<y<0.95)
- 4. Search for final state hadrons → SIDIS
- 5. Calculate SIDIS variables: z, P_{hT} (wrt to virtual photon in proton rest frame), ϕ_h (around virtual photon in proton rest frame, wrt to scattering plane)

$$x=rac{Q^{-}}{2p\cdot q}$$
 Parton momentum fraction* $y=rac{q\cdot p}{q\cdot p}$ Inelasticity

$$W^2 = M_p^2 + (1-x)Q^2/x$$
 Mass of had final state

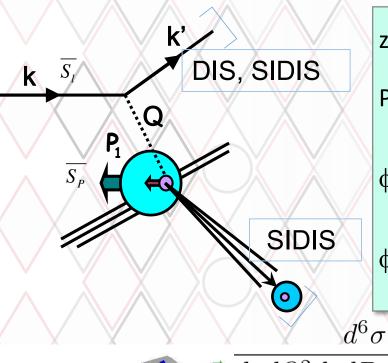

$$z=rac{p\cdot P_h}{p\cdot q}$$
 SIDIS hadron momentum fraction

9/07/2021 R.Seidl: ECCE 14 RIKE

DIS kinematic reconstruction examples

- Full Pythia6+GEANT simulations of the ECCE detector used for various (SI)DIS kinematic resolutions and for various reconstruction methods (lepton, Jaquet-Blondel, Double Angle, etc)
- x and y resolutions suffer from lepton method at lower y, partially recoverable in double angle method(hybrid of scattered lepton + hadronic final state)

Fraction of DIS events that stay in their x-Q² bins


15

9/07/2021

R.Seidl: ECCE

SIDIS Kinematics

Detect also final-state hadron(s) and make use of flavor, etc. sensitivity of Fragmentation functions

z: Fractional hadron momentum wrt to parton momentum (0<z<1)

P_{hT}: transverse hadron momentum wrt to virtual photon (convolution over intrinsic transverse momenta of PDFs and FFs)

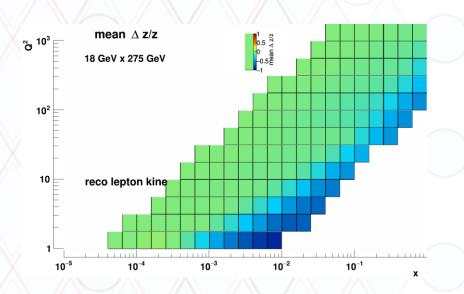
 ϕ_s : Azimuthal angle of nucleon (transverse) spin wrt to scattering plane, along virtual photon axis

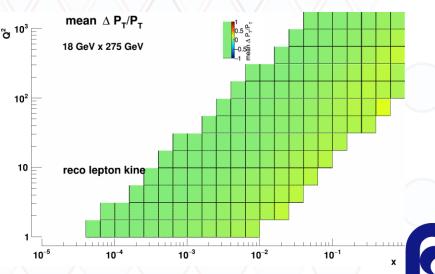
 ϕ_h : Azimuthal angle of hadron wrt to scattering plane, along virtual photon axis

 $d^6\sigma \propto \sum_{q,\overline{q}} e_q^2 q(x,Q^2,k_t) \otimes D_{1,q}^h(z,Q^2,p_t)$

R.Seidl: ECCE

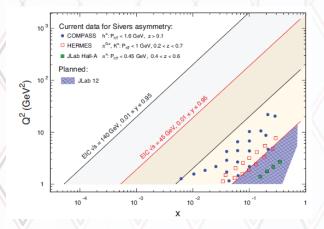
- Transverse momentum and angles rely also on correct boost to hadron rest system
- Current fragmentation: related to struck quark
- Target fragmentation: related to nucleon remnant



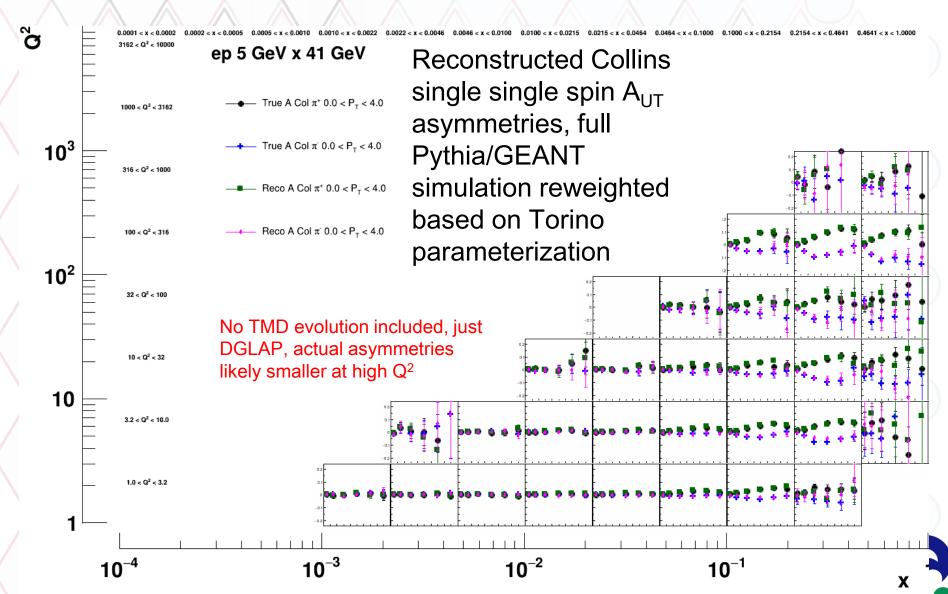

16

Example of ongoing resolutions studies

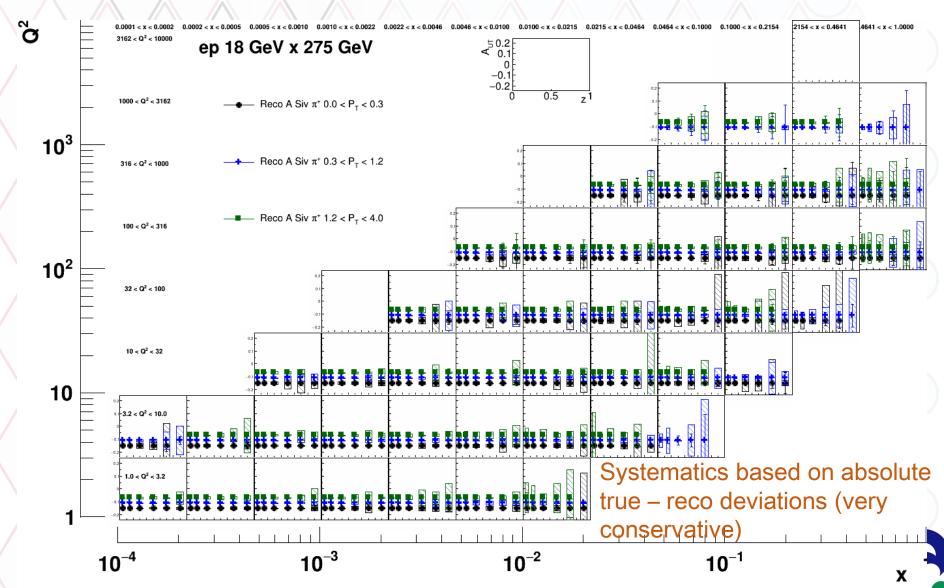
- Full Pythia6+GEANT simulations of the ECCE detector for various (SI)DIS kinematic resolution and reconstruction methods:
 - z resolution suffers in lepton method at lower y, partially recoverable in double angle method
 - p_T and azimuthal angles ϕ_h , ϕ_S very robust



3D Transverse spin and momentum structure


Deliverables	Observables	What we learn	Stage I	Stage II
Sivers &	SIDIS with	Quantum	3D Imaging of	3D Imaging of
unpolarized	Transverse	Interference &	quarks	quarks & gluon;
TMD quarks	polarization;	Spin-Orbital	valence+sea	$Q^2 (P_{hT})$ range
and gluon	di-hadron (di-jet)	correlations		QCD dynamics
Chiral-odd	SIDIS with	3 rd basic quark	valence+sea	$Q^2 (P_{hT})$ range
functions:	Transverse	PDF; novel	quarks	for detailed
Transversity;	polarization	hadronization		QCD dynamics
Boer-Mulders		effects		

Example of ongoing studies on actual physics variables

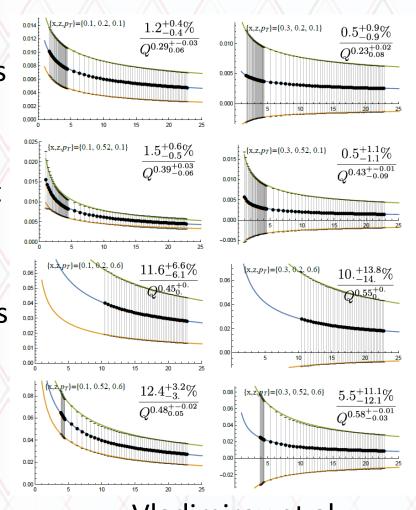


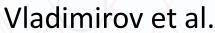
9/07/2021

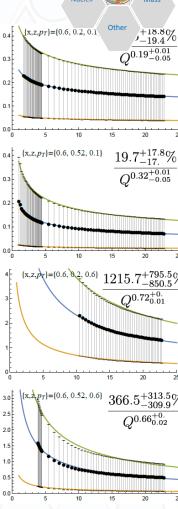
R.Seidl: ECCE

ECCE

A_{UT} projections for $10 { m fb}^{-1}$,Sivers π^+

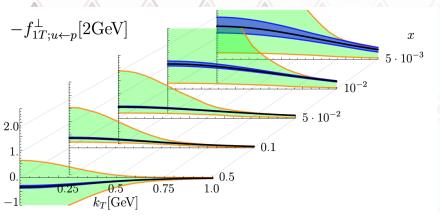


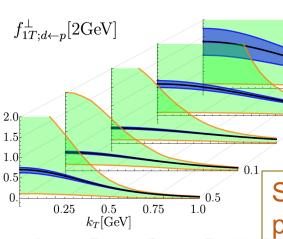

9/07/2021


R.Seidl: ECCE

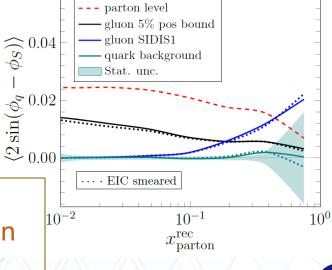
ECCE access to TMD evolution

- Very important aspect is the study of TMD evolution
- Sivers asymmetries are expected to decrease at higher scales, but only logarithmically (ie they do NOT "disappear")
- At higher x Asymmetries of several % expected
- → Well accessible with ECCE over wide range in x and Q²
- → Lower x to study sea and glue (both mostly unknown)



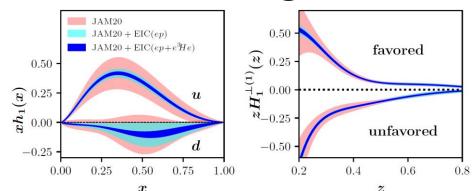

21

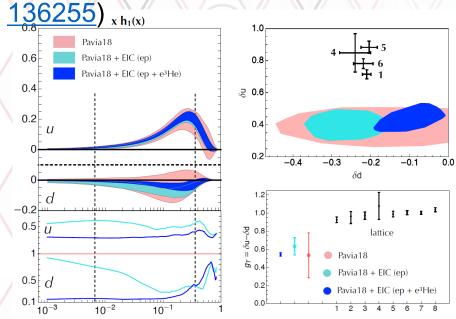
EIC impact for Sivers Functions


 Precise nucleon image in momentum space for quarks, sea-quarks and gluons

YR: Fig 7.53

Vladimirov, et al


Still YR figures – in the process of re-evaluation using full ECCE simulations


YR: Fig 7.55 Xiao, et al

Tensor charges

Single hadron channel (YR: Fig 7.54 Gamberg et al *Phys.Lett.B* 816 (2021)

Di-hadroň channel (YR: Fig 7.56, Radici)
9/07/2021
R.Seidl: ECCE

Still YR figures – in the process of re-evaluation using full ECCE simulations

- Precise determination of tensor charges via Collins and di-hadron channels
- Better precision than lattice → potential access to BSM physics in case of discrepancies
- Preform full integrals, study role of sea quark transversity

Summary

- EIC CD1 received earlier this year
- Call for detector proposals to be submitted in December 2021
- ECCE is a detector proposal that addresses the full EIC scope described in white paper/NSAC review/Yellow Report:
 - Re-using 1.5T BaBar Magent and sPHENIX central HCAL
 - Precision tracking options, mostly via MAPS
 - Large momentum and rapidity coverage Particle Identification
 - Either IP6 or IP8 possible
- Full Geant studies show that ECCE successfully addresses the TMD/SIDIS measurements of the YR

