Higher twist fragmentation and mass generation

Andrea Signori

University of Pavia and INFN

Sardinian Workshop on Spin (SarWorS) 2021

September 6, 2021

Outline

Quark hadronization, propagation, mass generation

Inclusive jets

Semi-inclusive processes

A selection of references related to the topics discussed in this talk:

 \blacktriangleright Collinear factorization for deep inelastic scattering structure functions at large Bjorken x_B

A. Accardi, J.W. Qiu - 0805.1496 - PRD

A selection of references related to the topics discussed in this talk:

 \blacktriangleright Collinear factorization for deep inelastic scattering structure functions at large Bjorken x_B

A. Accardi, J.W. Qiu - 0805.1496 - PRD

Accessing the nucleon transverse structure in deep-inelastic scattering A. Accardi, A. Bacchetta - 1706.02000 - PLB

A selection of references related to the topics discussed in this talk:

 \blacktriangleright Collinear factorization for deep inelastic scattering structure functions at large Bjorken x_B

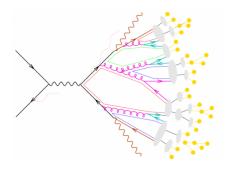
A. Accardi, J.W. Qiu - 0805.1496 - PRD

- Accessing the nucleon transverse structure in deep-inelastic scattering A. Accardi, A. Bacchetta - 1706.02000 - PLB
- Quark fragmentation as a probe of dynamical mass generation
 A. Accardi, A. Signori 1903.04458 PLB
- On the connection between quark propagation and hadronization
 A. Accardi, A. Signori 2005.11310 EPJC

A selection of references related to the topics discussed in this talk:

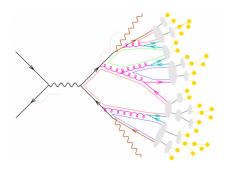
 \blacktriangleright Collinear factorization for deep inelastic scattering structure functions at large Bjorken x_B

A. Accardi, J.W. Qiu - 0805.1496 - PRD


- Accessing the nucleon transverse structure in deep-inelastic scattering
 A. Accardi, A. Bacchetta 1706.02000 PLB
- Quark fragmentation as a probe of dynamical mass generation
 A. Accardi, A. Signori 1903.04458 PLB
- On the connection between quark propagation and hadronization A. Accardi, A. Signori - 2005.11310 - EPJC
- Pion parton distribution and fragmentation functions beyond the leading twist in a confining Nambu–Jona-Lasinio model
 I. Cloet, A. Signori - in preparation

Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

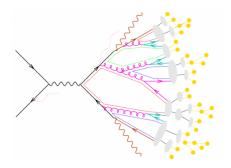
It follows any QCD hard scattering event and populates the final states with hadrons.


Maps of hadronization in momentum space: fragmentation functions (FFs)

Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

It follows any QCD hard scattering event and populates the final states with hadrons.

Maps of hadronization in momentum space: fragmentation functions (FFs)

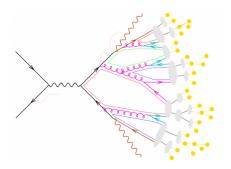


Momentum distributions:

Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

It follows any QCD hard scattering event and populates the final states with hadrons.

Maps of hadronization in momentum space: fragmentation functions (FFs)


Momentum distributions:

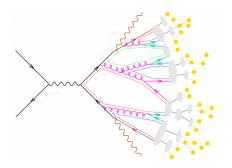
 $D_1^{a \rightarrow h}(z,P_T^2):$ coll./TMD 1h FF

Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

It follows any QCD hard scattering event and populates the final states with hadrons.

Maps of hadronization in momentum space: fragmentation functions (FFs)

Momentum distributions:


 $D_1^{a \rightarrow h}(z, P_T^2)$: coll./TMD 1h FF

 $J_a(s)$: inclusive jet function

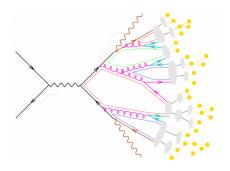
Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

It follows any QCD hard scattering event and populates the final states with hadrons.

Maps of hadronization in momentum space: fragmentation functions (FFs)

Momentum distributions:

 $D_1^{a \rightarrow h}(z, P_T^2)$: coll./TMD 1h FF


 $J_a(s)$: inclusive jet function

 $\mathcal{G}^{a \to h}(s,z)$: fragmenting jet function

Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

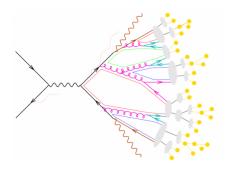
It follows any QCD hard scattering event and populates the final states with hadrons.

Maps of hadronization in momentum space: fragmentation functions (FFs)

Momentum distributions:

 $D_1^{a \to h}(z, P_T^2)$: coll./TMD 1h FF

 $J_a(s)$: inclusive jet function


 $\mathcal{G}^{a \to h}(s, z)$: fragmenting jet function

"fully" inclusive jet \rightarrow propagator

Hadronization: dynamical generation of hadronic properties from quarks/gluons \rightarrow fundamental topic

It follows any QCD hard scattering event and populates the final states with hadrons.

Maps of hadronization in momentum space: fragmentation functions (FFs)

Momentum distributions:

 $D_1^{a \to h}(z, P_T^2)$: coll./TMD 1h FF

 $J_a(s)$: inclusive jet function

 $\mathcal{G}^{a \rightarrow h}(s,z)$: fragmenting jet function

"fully" inclusive jet \rightarrow propagator

What generates the masses of partons and hadrons?

▶ Higgs mechanism, only quark masses: $m_q \sim \text{MeV} << M_{p/n} \sim 1 \text{ GeV}$

What generates the masses of partons and hadrons?

- ▶ Higgs mechanism, only quark masses: $m_q \sim \text{MeV} << M_{p/n} \sim 1 \text{ GeV}$
- \blacktriangleright the rest comes from the dynamics of QCD \rightarrow dynamical mass

What generates the masses of partons and hadrons?

- ▶ Higgs mechanism, only quark masses: $m_q \sim \text{MeV} << M_{p/n} \sim 1 \text{ GeV}$
- \blacktriangleright the rest comes from the dynamics of QCD \rightarrow dynamical mass

The dynamical generation of mass in QCD can be addressed in different ways:

▶ gap equation e.g. in the NJL model of QCD: $M_q = m_q - 4G_{\pi} \langle \bar{q}q \rangle \gg m_q$


What generates the masses of partons and hadrons?

- ▶ Higgs mechanism, only quark masses: $m_q \sim \text{MeV} << M_{p/n} \sim 1 \text{ GeV}$
- \blacktriangleright the rest comes from the dynamics of QCD \rightarrow dynamical mass

The dynamical generation of mass in QCD can be addressed in different ways:

▶ gap equation e.g. in the NJL model of QCD: $M_q = m_q - 4G_\pi \langle \bar{q}q \rangle \gg m_q$

► Energy Momentum Tensor → hadron mass decomposition

What generates the masses of partons and hadrons?

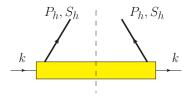
- ▶ Higgs mechanism, only quark masses: $m_q \sim \text{MeV} << M_{p/n} \sim 1 \text{ GeV}$
- \blacktriangleright the rest comes from the dynamics of QCD \rightarrow dynamical mass

The dynamical generation of mass in QCD can be addressed in different ways:

- ▶ gap equation e.g. in the NJL model of QCD: $M_q = m_q 4G_\pi \langle \bar{q}q \rangle \gg m_q$
- ▶ Energy Momentum Tensor → hadron mass decomposition
- "mass sum rule" for fragmentation functions new and observable!

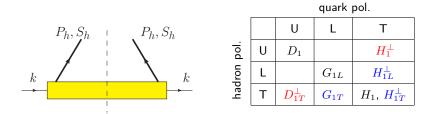
Outline

Quark hadronization, propagation, mass generation


Inclusive jets

Semi-inclusive processes

Quark 1h-FFs

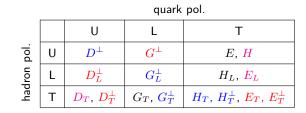

$$\Delta_{ij}(k, P_h, S_h) = \int \frac{d^4\xi}{(2\pi)^4} e^{ikx} \frac{\mathsf{Tr}_c}{N_c} \langle \Omega | \hat{T} W_1(\infty, \xi) \psi_i(\xi) \, a^{\dagger} a \, \overline{\psi}_j(0) W_2(0, \infty) | \Omega \rangle$$

Quark 1h-FFs

$$\Delta_{ij}(k, P_h, S_h) = \int \frac{d^4\xi}{(2\pi)^4} e^{ikx} \frac{\operatorname{Tr}_c}{N_c} \langle \Omega | \hat{T} W_1(\infty, \xi) \psi_i(\xi) \, a^{\dagger} a \, \overline{\psi}_j(0) W_2(0, \infty) | \Omega \rangle$$

8 (TMD) fragmentation functions at leading twist

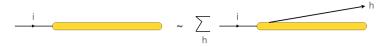
Quark higher twist 1h-FFs


Twist 3 transverse momentum dependent FFs $\mathcal{D}^{a \to h}_{\dots}(z,P^2_{h\perp})$ for a quark hadronizing into a spin 1/2 hadron

		quark pol.		
hadron pol.		U	L	Т
	U	D^{\perp}	G^{\perp}	Е, <mark>Н</mark>
	L	D_L^{\perp}	G_L^{\perp}	H_L , E_L
	Т	D_T , D_T^{\perp}	G_T , G_T^{\perp}	H_T , H_T^{\perp} , E_T , E_T^{\perp}

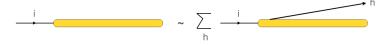
Quark higher twist 1h-FFs

Twist 3 transverse momentum dependent FFs $\mathcal{D}^{a \to h}_{\dots}(z, P^2_{h\perp})$ for a quark hadronizing into a spin 1/2 hadron


Black and magenta: survive transverse momentum integration Red and magenta: T-odd Blue: T-even, w/o collinear counterpart

Inclusive jets and 1h-FFs

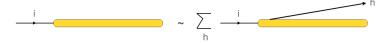
Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC


"Fully" inclusive jet *correlator* (quark propagator) \equiv inclusive limit of 1h-fragmentation *correlator*

Inclusive jets and 1h-FFs

Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC

"Fully" inclusive jet *correlator* (quark propagator) \equiv inclusive limit of 1h-fragmentation *correlator*


$$k^{\mu} \Xi^{i}(k) = \sum_{h, S_{h}} \int \frac{d^{4}P_{h}}{(2\pi)^{3}} \,\delta(P_{h}^{2} - M_{h}^{2}) \,P_{h}^{\mu} \,\Delta^{i \to h}(k, P_{h}, S_{h})$$

Inclusive jets and 1h-FFs

Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC

"Fully" inclusive jet *correlator* (quark propagator) = inclusive limit of 1h-fragmentation *correlator*

$$k^{\mu} \Xi^{i}(k) = \sum_{h,S_{h}} \int \frac{d^{4}P_{h}}{(2\pi)^{3}} \,\delta(P_{h}^{2} - M_{h}^{2}) \,P_{h}^{\mu} \,\Delta^{i \to h}(k,P_{h},S_{h})$$

Dirac projections:

momentum sum rules for FFs in terms of quark propagator

Källen-Lehman representation in terms of spectral functions $\rho_{1,3}$:

$$\left(\Xi(k) \to S_F(k) = \int \frac{d\mu^2}{(2\pi)^4} \left\{ \not k \, \rho_3(\mu^2) + \sqrt{\mu^2} \, \rho_1(\mu^2) \, \mathbb{I} \right\} \frac{\theta(\mu^2)}{k^2 - \mu^2 + i\epsilon}$$

Källen-Lehman representation in terms of spectral functions $\rho_{1,3}$:

$$\left(\Xi(k) \to S_F(k) = \int \frac{d\mu^2}{(2\pi)^4} \left\{ \not k \, \rho_3(\mu^2) + \sqrt{\mu^2} \, \rho_1(\mu^2) \, \mathbb{I} \right\} \frac{\theta(\mu^2)}{k^2 - \mu^2 + i\epsilon} \right)$$

Projecting the operator sum rule between Ξ^i and $\Delta^{i \to h}$ one obtains:

Källen-Lehman representation in terms of spectral functions $\rho_{1,3}$:

$$\left(\Xi(k) \to S_F(k) = \int \frac{d\mu^2}{(2\pi)^4} \left\{ \not k \, \rho_3(\mu^2) + \sqrt{\mu^2} \, \rho_1(\mu^2) \, \mathbb{I} \right\} \frac{\theta(\mu^2)}{k^2 - \mu^2 + i\epsilon} \right)$$

Projecting the operator sum rule between Ξ^i and $\Delta^{i \rightarrow h}$ one obtains:

twist 2 (γ^{-}): $\sum_{h} \int_{0}^{1} dz \, z \, D_{1}^{h}(z) = \int_{0}^{+\infty} d\mu^{2} \, \rho_{3}(\mu^{2}) \equiv 1 \quad (QFT!)$

Källen-Lehman representation in terms of spectral functions $\rho_{1,3}$:

$$\left(\Xi(k) \to S_F(k) = \int \frac{d\mu^2}{(2\pi)^4} \left\{ \not k \, \rho_3(\mu^2) + \sqrt{\mu^2} \, \rho_1(\mu^2) \, \mathbb{I} \right\} \frac{\theta(\mu^2)}{k^2 - \mu^2 + i\epsilon} \right)$$

Projecting the operator sum rule between Ξ^i and $\Delta^{i \rightarrow h}$ one obtains:

twist 2 (γ^{-}): $\sum_{h} \int_{0}^{1} dz \, z \, D_{1}^{h}(z) = \int_{0}^{+\infty} d\mu^{2} \, \rho_{3}(\mu^{2}) \equiv 1 \quad (\mathsf{QFT!})$ twist 3 (I):

$$\sum_{h} \int_{0}^{1} dz \, M_{h} \, E^{h}(z) = \int_{0}^{+\infty} d\mu^{2} \, \sqrt{\mu^{2}} \, \rho_{1}(\mu^{2}) \equiv M_{j}$$

Källen-Lehman representation in terms of spectral functions $\rho_{1,3}$:

$$\left(\Xi(k) \to S_F(k) = \int \frac{d\mu^2}{(2\pi)^4} \left\{ \not k \, \rho_3(\mu^2) + \sqrt{\mu^2} \, \rho_1(\mu^2) \, \mathbb{I} \right\} \frac{\theta(\mu^2)}{k^2 - \mu^2 + i\epsilon} \right)$$

Projecting the operator sum rule between Ξ^i and $\Delta^{i \rightarrow h}$ one obtains:

twist 2 (γ^-): $\sum_h \int_0^1 dz \, z \, D_1^h(z) = \int_0^{+\infty} d\mu^2 \, \rho_3(\mu^2) \equiv 1 \quad (QFT!)$ twist 3 (I):

$$\sum_{h} \int_{0}^{1} dz \, M_{h} \, E^{h}(z) = \int_{0}^{+\infty} d\mu^{2} \, \sqrt{\mu^{2}} \,
ho_{1}(\mu^{2}) \equiv M_{j}$$

The non-perturbative structure of the jet is trivial at twist 2, but not at twist 3

"Mass sum rule" for twist 3 E fragmentation function:

 $\left(\sum_{h}\int dz M_h E^h(z) = M_j\right)$

quark/jet dynamical mass M_j as the "average" of produced hadron masses weighted by chiral-odd E FF

"Mass sum rule" for twist 3 E fragmentation function:

$$\left(\sum_{h} \int dz M_h E^h(z) = M_j\right)$$

quark/jet dynamical mass M_j as the "average" of produced hadron masses weighted by chiral-odd E FF

QCD equations of motions: $E^h = \tilde{E}^h + \frac{m_q}{M_h} z D_1^h$

"Mass sum rule" for twist 3 E fragmentation function:

$$\left(\sum_{h} \int dz M_{h} E^{h}(z) = M_{j}\right)$$

quark/jet dynamical mass M_j as the "average" of produced hadron masses weighted by chiral-odd E FF

QCD equations of motions: $E^h = \tilde{E}^h + \frac{m_q}{M_h} z D_1^h$

Wandzura-Wilczek (WW) approximation: $\tilde{E}^h = 0 \implies M_j = m_q$

"Mass sum rule" for twist 3 E fragmentation function:

$$\left(\sum_{h} \int dz M_{h} E^{h}(z) = M_{j}\right)$$

quark/jet dynamical mass M_j as the "average" of produced hadron masses weighted by chiral-odd E FF

QCD equations of motions: $E^h = \tilde{E}^h + \frac{m_q}{M_h} z D_1^h$

Wandzura-Wilczek (WW) approximation: $\tilde{E}^h = 0 \implies M_j = m_q$

Full QCD: $M_j = m_q + m_q^{corr}$ (current and dynamical components), where

$$\left(\sum_{h} \int dz M_h \tilde{E}^h(z) = M_j - m_q = m_q^{corr}\right)$$

 \tilde{E} and m_q^{corr} probe quark-gluon-quark $\sim \langle 0|\overline{\psi}A\psi|0\rangle$ dynamical correlations

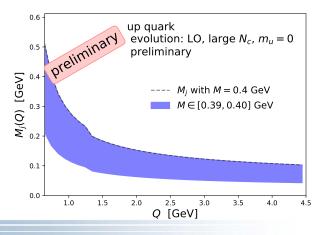
"Mass sum rule" for twist 3 E fragmentation function:

$$\left(\sum_{h} \int dz M_h E^h(z) = M_j\right)$$

estimate of M_j in NJL model

evolution: large- N_c and LO in α_s

(A. Belitsky - hep-ph/9703432)

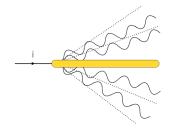

Quark/jet mass

"Mass sum rule" for twist 3 E fragmentation function:

$$\left(\sum_{h} \int dz M_h E^h(z) = M_j\right)$$

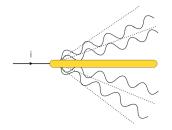
estimate of M_j in NJL model evolution: large- N_c and LO in α_s

(A. Belitsky - hep-ph/9703432)


Outline

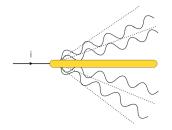
Quark hadronization, propagation, mass generation

Inclusive jets


Semi-inclusive processes

Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s

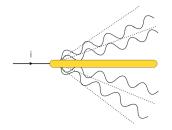
(within a defined cone)


Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s

(within a defined cone)

"Composition" of the jet:

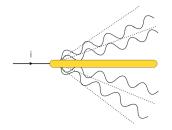
perturbative radiation (large s, wiggles)


Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s

(within a defined cone)

"Composition" of the jet:

- perturbative radiation (large s, wiggles)
- non-perturbative radiation (low s, dashed lines)



Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s

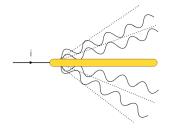
(within a defined cone)

"Composition" of the jet:

- perturbative radiation (large s, wiggles)
- non-perturbative radiation (low s, dashed lines)
- non-perturbative quark propagation (yellow blob)

Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s

(within a defined cone)


"Composition" of the jet:

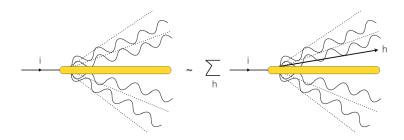
- perturbative radiation (large s, wiggles)
- non-perturbative radiation (low s, dashed lines)
- non-perturbative quark propagation (yellow blob)

 \leftarrow relevance?

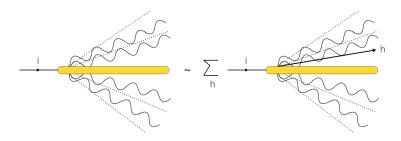
Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP

Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s

(within a defined cone)


Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP

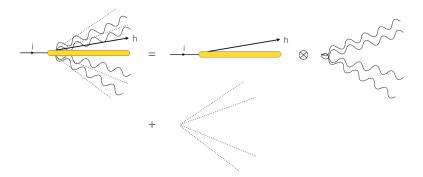
Inclusive jet function $J_i(s)$: sensitive to the jet virtuality s


(within a defined cone)

Fragmenting jet function (FJF) $\mathcal{G}^{i \rightarrow h}(s, z)$: sensitive to jet virtuality sand hadron momentum fraction z(less inclusive)

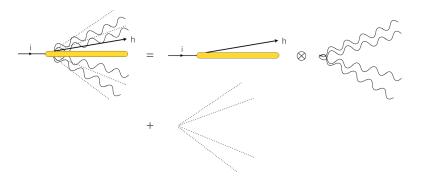
Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP

Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP



$$J_i(s) = \frac{1}{2(2\pi)^3} \sum_h \int dz \, z \, \mathcal{G}^{i \to h}(s, z)$$

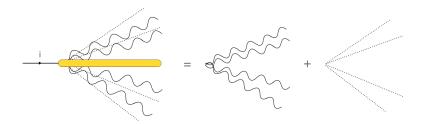
Connection between the unpolarized (twist 2) jet function and FJFs : jet as the "inclusive" limit of the in-jet fragmentation


FJFs and 1h-FFs

Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP

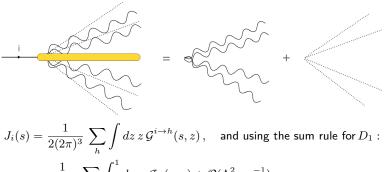
FJFs and 1h-FFs

Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP



$$\mathcal{G}^{i \to h}(s, z) = \sum_{j} \mathcal{J}_{ij}(s, z) \otimes D_1^{j \to h}(z) + \mathcal{O}(\Lambda_{qcd}^2 \, s^{-1})$$

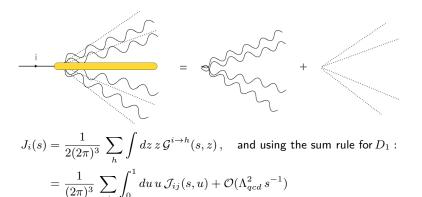
Large-s expansion of the unpolarized FJF \mathcal{G} on the single-hadron collinear FF D_1


Twist two jets

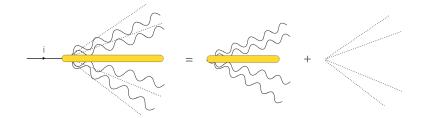
Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP

Twist two jets

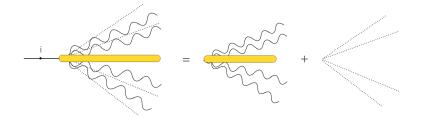
Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP



$$= \frac{1}{(2\pi)^3} \sum_{j} \int_0^1 du \, u \, \mathcal{J}_{ij}(s, u) + \mathcal{O}(\Lambda_{qcd}^2 \, s^{-1})$$


Twist two jets

Procura, Stewart 0911.4980 - PRD Jain, Procura, Waalewijn 1101.4953 - JHEP

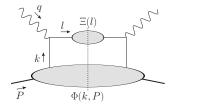

At twist 2 the jet function $J_i(s)$ "decouples" from the 1h-FF $D_1(z)$ and the non-perturbative structure gets simplified

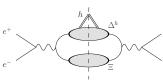
Twist three jets

Twist three jets

$$\tilde{J}_i(s) \sim M_j \otimes \tilde{J} + \mathcal{O}(\Lambda_{qcd}^2 s^{-1})$$
 ("mass sum rule" for E)

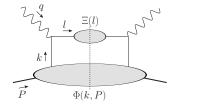
More complex non-perturbative structure: normalization of the associated quark spectral function (ρ_1 in this case)

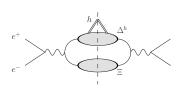



Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC

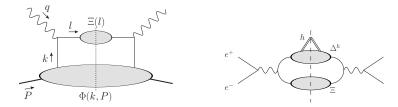
Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC

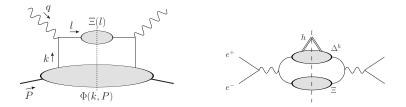
The quark/jet mass can have a sizeable impact on physical observables:


▶ at twist 3 in the chiral-odd sector: T-polarized DIS, Λ production in e^+e^- , etc. \longrightarrow measurable (in principle)



Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC


- ▶ at twist 3 in the chiral-odd sector: T-polarized DIS, Λ production in e^+e^- , etc. \longrightarrow measurable (in principle)
- calculable: mass function from the QCD gap equation [see EPJC paper]


Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC

- ▶ at twist 3 in the chiral-odd sector: T-polarized DIS, Λ production in e^+e^- , etc. \longrightarrow measurable (in principle)
- calculable: mass function from the QCD gap equation [see EPJC paper]
- calculable: quark spectral function $[M_j = \int d\mu^2 \,\mu \,\rho_1(\mu^2)]$

Accardi, Signori 1903.04458 - PLB Accardi, Signori 2005.11310 - EPJC

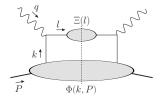
- at twist 3 in the chiral-odd sector: T-polarized DIS, Λ production in e^+e^- , etc. \longrightarrow measurable (in principle)
- calculable: mass function from the QCD gap equation [see EPJC paper]
- calculable: quark spectral function $[M_j = \int d\mu^2 \,\mu \,\rho_1(\mu^2)]$
- ► calculable: quark E FFs $[M_j = \sum_h \int dz M_h E^h(z)] \leftarrow$ this work!

Outline

Quark hadronization, propagation, mass generation

Inclusive jets

Semi-inclusive processes

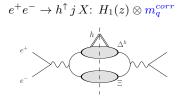

Semi-inclusive processes

- We can study the phenomenology of the dynamical mass in (semi-) inclusive hard processes
- interesting but challenging: chiral-odd sector at least at twist-3
- working in collinear factorization :

Semi-inclusive processes

- We can study the phenomenology of the dynamical mass in (semi-) inclusive hard processes
- interesting but challenging: chiral-odd sector at least at twist-3
- working in collinear factorization :

 $\ell N^{\uparrow} \to \ell j X: h_1(x) \otimes m_q^{corr}$



dynamical mass coupled to the transversity PDF

A. Accardi, A. Bacchetta - 1706.02000 - PLB

Semi-inclusive processes

- We can study the phenomenology of the dynamical mass in (semi-) inclusive hard processes
- interesting but challenging: chiral-odd sector at least at twist-3
- working in collinear factorization :

(Accardi, Signori et al. - in progress)

$$\frac{d\sigma^{L}(e^{+}e^{-} \to h^{\uparrow}X)}{d\Omega dz} = \frac{3\alpha^{2}}{Q^{2}} \lambda_{e} \sum_{a} e_{a}^{2} \left\{ \frac{C(y)}{2} \lambda_{h} G_{1L}(z) + D(y) \left| \mathbf{S}_{T} \right| \cos(\phi_{S}) \frac{2M_{h}}{Q} \left(\frac{G_{T}(z)}{z} + \frac{m_{q}^{corr}}{M_{h}} H_{1}(z) \right) \right\}$$

 \blacktriangleright hadronization \longrightarrow a fundamental aspect of QCD

- hadronization \longrightarrow a fundamental aspect of QCD
- the non-perturbative structure of inclusive jets can be related to the properties of the quark propagator, in particular the normalization of the spectral functions

- hadronization \longrightarrow a fundamental aspect of QCD
- the non-perturbative structure of inclusive jets can be related to the properties of the quark propagator, in particular the normalization of the spectral functions
- at twist two these non-perturbative effects are trivial $\left(\sum_{h,S} \int_0^1 dz \, z \, D_1^h(z) = \int d\mu^2 \, \rho_3(\mu^2) \equiv 1\right)$

- ▶ hadronization → a fundamental aspect of QCD
- the non-perturbative structure of inclusive jets can be related to the properties of the quark propagator, in particular the normalization of the spectral functions
- at twist two these non-perturbative effects are trivial $\left(\sum_{h,S} \int_0^1 dz \, z \, D_1^h(z) = \int d\mu^2 \, \rho_3(\mu^2) \equiv 1\right)$

► at twist three the non-perturbative structure emerges as a mass term with a current and a dynamical component $\left(\sum_{h,S} \int_0^1 dz \, M_h \, E^h(z) = \int d\mu^2 \, \mu \, \rho_1(\mu^2) = M_j = m_q + m_q^{\text{corr}}\right)$

- ▶ hadronization → a fundamental aspect of QCD
- the non-perturbative structure of inclusive jets can be related to the properties of the quark propagator, in particular the normalization of the spectral functions
- at twist two these non-perturbative effects are trivial $\left(\sum_{h,S} \int_0^1 dz \, z \, D_1^h(z) = \int d\mu^2 \, \rho_3(\mu^2) \equiv 1\right)$

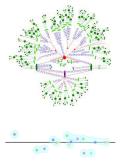
► at twist three the non-perturbative structure emerges as a mass term with a current and a dynamical component $\left(\sum_{h,S} \int_0^1 dz \, M_h \, E^h(z) = \int d\mu^2 \, \mu \, \rho_1(\mu^2) = M_j = m_q + m_q^{\text{corr}}\right)$

this mass is gauge-invariant, and the dynamical component can be measured at twist three in scattering experiments

FF2021 @ INT

Organizers:

- · Marco Radici, INFN Pavia (Italy), marco.radici@pv.infn.it
- Ralf Seidl, RIKEN (Japan), Riken BNL Research Center (NY, USA), rseidl@riken.jp
- Andrea Signori, University of Pavia and INFN Pavia (IT), Jefferson Lab (VA, USA), andrea.signori@unipv.it


Diversity Coordinator:

 Ralf Seidl, RIKEN (Japan), Riken BNL Research Center (NY, USA), rseidl@riken.ip

Program Coordinator:

Alesha Vertrees, <u>aleshav@uw.edu</u>, (206) 221-8914

Application Form

https://sites.google.com/uw.edu/int/programs/21-80w

Backup

Useful references/1:

A selection of useful references related to inclusive jets and dynamical mass effects:

 Fully unintegrated parton correlation functions and factorization in lowest order hard scattering

J.C. Collins, T.C. Rogers, A.M. Stasto - 0708.2833

 Collinear factorization for deep inelastic scattering structure functions at large Bjorken x_B
 A. Accardi, J.W. Qiu - 0805.1496

- Quark fragmentation as a probe of dynamical mass generation
 A. Accardi, A. Signori 1903.04458
- On the connection between quark propagation and hadronization
 A. Accardi, A. Signori 2005.11310
- Accessing the nucleon transverse structure in deep-inelastic scattering
 A. Accardi, A. Bacchetta 1706.02000

Useful references/2:

A selection of useful references dealing with fragmentation functions, inclusive jets in pQCD, e^+e^- annihilation:

- Parton fragmentation functions (review)
 - A. Metz, A. Vossen 1607.02521
- Quark fragmentation within an identified jet M. Procura, I. Stewart - 0911.4980
- Parton fragmentation within an identified jet at NNLL
 A. Jain, M. Procura, W. Waalewijn 1101.4953
- Asymmetries in polarized hadron production in e⁺e⁻ annihilation up to order 1/Q
 D. Boer, R. Jakob, P.J. Mulders hep-ph/9702281
- Angular dependences in inclusive two-hadron production at Belle D. Boer - 0804.2408

The NJL model of QCD

The Nambu–Jona-Lasinio (NJL) model of QCD is a chiral effective theory which is useful to help understand non-perturbative phenomena in low energy QCD. In particular:

- it encapsulates dynamical chiral symmetry breaking (gap equation)
- it mimics confinement

The NJL model of QCD

The Nambu–Jona-Lasinio (NJL) model of QCD is a chiral effective theory which is useful to help understand non-perturbative phenomena in low energy QCD. In particular:

- it encapsulates dynamical chiral symmetry breaking (gap equation)
- it mimics confinement

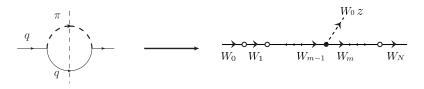
contact four-fermion interaction \implies non-renormalizable Proper-time regularization scheme: it can incorporate aspects of confinement

The NJL model of QCD

The Nambu–Jona-Lasinio (NJL) model of QCD is a chiral effective theory which is useful to help understand non-perturbative phenomena in low energy QCD. In particular:

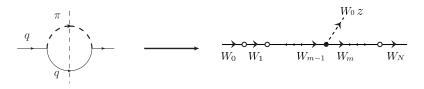
- it encapsulates dynamical chiral symmetry breaking (gap equation)
- it mimics confinement

contact four-fermion interaction \implies non-renormalizable Proper-time regularization scheme: it can incorporate aspects of confinement


The NJL model has been used to describe:

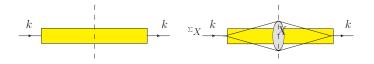
- hadrons as bound states of quarks
- nuclear matter and nuclei in terms of quarks (medium modifications)
- phases of strongly interacting matter at high densities (e.g. neutron stars, etc.)

(Klevansky - Rev.Mod.Phys. 64 (1992) 649-708)


The NJL-jet model for FFs

- Within the NJL it is possible to calculate PDFs and FFs by calculating and regularizing the associated Feynman diagrams
- A more realistic model of FFs: take into account that the fragmentation process occurs as a *cascade*: the NJL-jet (Ito et al. - 0906.5362)

The NJL-jet model for FFs

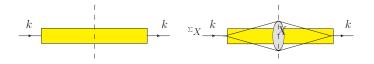


- Within the NJL it is possible to calculate PDFs and FFs by calculating and regularizing the associated Feynman diagrams
- A more realistic model of FFs: take into account that the fragmentation process occurs as a *cascade*: the NJL-jet (Ito et al. - 0906.5362)

$$D_q^{\pi}(z) = \sum_{m=1}^N \int_0^1 d\eta_1 \cdots \int_0^1 d\eta_N \, 6^N \, \sum_{Q_N} d_q^{Q_1}(\eta_1) \cdots d_{Q_{m-1}}^{\pi}(z) \cdots d_{Q_{N-1}}^{Q_N}(\eta_N)$$

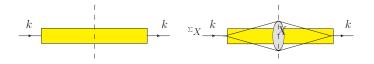
The physical FF D^π_q can be calculated from the $\emph{elementary}~d^\pi_q$ solving two integral Volterra equations

$$\Xi_{ij}(k;v) = \mathsf{Disc} \int \frac{d^4\xi}{(2\pi)^4} \, e^{ikx} \, \frac{\mathsf{Tr}_c}{N_c} \langle \Omega | \hat{T} W_1(\infty,\xi;v) \psi_i(\xi) \overline{\psi}_j(0) W_2(0,\infty;v) | \Omega \rangle$$



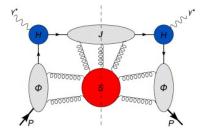
Partonic picture: gauge invariant dressed quark correlator

- \blacktriangleright only the discontinuity is considered \rightarrow on-shellness
- the color is neutralized


$$\Xi_{ij}(k;v) = \mathsf{Disc} \int \frac{d^4\xi}{(2\pi)^4} \, e^{ikx} \, \frac{\mathsf{Tr}_c}{N_c} \langle \Omega | \hat{T} W_1(\infty,\xi;v) \psi_i(\xi) \overline{\psi}_j(0) W_2(0,\infty;v) | \Omega \rangle$$

Partonic picture: gauge invariant dressed quark correlator

- \blacktriangleright only the discontinuity is considered \rightarrow on-shellness
- the color is neutralized
- Hadronic picture: "fully inclusive jet" correlator
 - ► X: the complete set of hadronization products crossing the cut
 - no hadrons are measured
 - the scale is defined by the end-point kinematics


$$\Xi_{ij}(k;v) = \mathsf{Disc} \int \frac{d^4\xi}{(2\pi)^4} \, e^{ikx} \, \frac{\mathsf{Tr}_c}{N_c} \langle \Omega | \hat{T} W_1(\infty,\xi;v) \psi_i(\xi) \overline{\psi}_j(0) W_2(0,\infty;v) | \Omega \rangle$$

Partonic picture: gauge invariant dressed quark correlator

- \blacktriangleright only the discontinuity is considered \rightarrow on-shellness
- the color is neutralized
- Hadronic picture: "fully inclusive jet" correlator
 - X: the complete set of hadronization products crossing the cut
 - no hadrons are measured
 - the scale is defined by the end-point kinematics
- insights into dynamical generation of mass and momentum and chiral symmetry breaking

$$\Xi_{ij}(k;v) = \mathsf{Disc} \int \frac{d^4\xi}{(2\pi)^4} \, e^{ikx} \, \frac{\mathsf{Tr}_c}{N_c} \langle \Omega | \hat{T} W_1(\infty,\xi;v) \psi_i(\xi) \overline{\psi}_j(0) W_2(0,\infty;v) | \Omega \rangle$$

See Sterman NPB 281 ('87) 310, Chen et al. NPB 763 ('07) 183, Accardi et al. -0805.1496, Collins et al. - 0708.2833 (and refs. therein) (figure from Chen et al.)

- ► Ξ emerges in the factorization theorem for DIS at *large x*, where a new semi-hard scale appears
- ► Ξ captures the physics at $Q^2(1-x) \sim Q\Lambda_{QCD}$, which becomes increasingly non-perturbative at low energy and large x
- the end-point factorization should be extend to different processes (e.g. e⁺e⁻)
- ► here we study the properties of Ξ and ∆ regardless of processes

The quark/jet mass

Mass associated with the scalar term (chiral-odd) of the cut quark propagator:

inclusive "jet mass" or color-screened dressed quark mass

The quark/jet mass

$$\left[M_j(k^-) \sim \int dk^+ \mathrm{Tr}_D\left[\Xi \, \mathbb{I} \right] \right] \qquad \sim \quad \stackrel{+}{\longrightarrow} \quad \stackrel{-}{\longrightarrow} \quad \stackrel{$$

Mass associated with the scalar term (chiral-odd) of the cut quark propagator:

inclusive "jet mass" or color-screened dressed quark mass

In the light-cone gauge we can relate it to the chiral-odd spectral function for the quark propagator:

$$M_j = \int_0^{+\infty} d\mu^2 \sqrt{\mu^2} \,\rho_1^{lcg}(\mu^2)$$

The quark/jet mass

$$\left[M_{j}(k^{-})\sim\int dk^{+}\mathrm{Tr}_{D}\left[\Xi\,\mathbb{I}\right]\right) \qquad \sim \stackrel{+}{\longrightarrow} \stackrel{-}{\longrightarrow}$$

Mass associated with the scalar term (chiral-odd) of the cut quark propagator:

inclusive "jet mass" or color-screened dressed quark mass

In the light-cone gauge we can relate it to the chiral-odd spectral function for the quark propagator:

$$M_j = \int_0^{+\infty} d\mu^2 \sqrt{\mu^2} \,\rho_1^{lcg}(\mu^2)$$

This mass term:

gauge-invariant

- renormalization scale dependent
- calculable via the spectral functions of the cut quark propagator
- accessible via momentum sum rules for twist-3 FFs

Semi-inclusive processes

- We can study the phenomenology of the dynamical mass in (semi-) inclusive hard processes
- interesting but challenging: chiral-odd sector at least at twist-3
- working in collinear factorization :
 - ▶ (?) $pp^{\uparrow} \rightarrow h_1h_2jX \xrightarrow{\text{mass}} f_1(x_1) \otimes h_1(x_2) \otimes D_1(z) \otimes m_q^{corr}$ (fixed-target configuration at LHC)
- (?) potentially also TMD factorization
- in order to make quantitative predictions and extractions the ("end-point") factorization of these processes has to be addressed