The impact of TMDs on LHC physics

giuseppe bozzi university of pavia

Sar WorS 2021

September 6th, 2021

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(b_*;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$

$$\times \exp\left\{K(b_*;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

matching to collinear PDF at b_T≪1/Λ_{QCD}
 perturbative

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta)$$

$$C_{f/j}(x,b_*;\mu_b,\zeta_F)\otimes f_{j/P}(x,\mu_b)$$
: A

$$\times \left\{ \exp\left\{ K(b_*;\mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'} \right] \right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

matching to collinear PDF at b_T≪1/Λ_{QCD}
 perturbative

• CS and RGE evolution to large $b_{\rm T}$

perturbative

$$F_{f/P}(x, \mathbf{b}_{T}; \mu, \zeta) = \sum_{j} C_{f/j}(x, \mathbf{b}_{\overline{P}} | \mu_{b}, \zeta_{F}) \otimes f_{j/P}(x, \mu_{b}) \qquad :A$$

$$\times \exp\left\{K(\mathbf{b}_{\overline{P}} | \mu_{b}) \ln \frac{\sqrt{\zeta_{F}}}{\mu_{b}} + \int_{\mu_{b}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{F}}}{\mu'}\right]\right\} \qquad :B$$

$$\times \exp\left\{g_{j/P}(x, b_{T}) + g_{K}(b_{T}) \ln \frac{\sqrt{\zeta_{F}}}{\sqrt{\zeta_{F},0}}\right\} \qquad :C$$

$$(\mu_{b} = 2e^{-\gamma_{E}}/b_{*})$$

$$\bullet \text{ matching to collinear PDF at } b_{T} \ll 1/\Lambda_{QCD}$$

$$\bullet \text{ perturbative}$$

$$\bullet \text{ CS and RGE evolution to large } b_{T}$$

- b_* prescription to avoid Landau pole
- $f_{\rm NP}$ "parametrises" the **non-perturbative** transverse modes
- **fit** $f_{\rm NP}$ to data

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NNLL	1	2	3	NLO
N ³ LL	2	3	4	NNLO

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

NLL' $\left(\bar{C}^0 + \alpha_S \bar{C}^1\right) \quad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

NLL' $\left(C^0 + \alpha_S C^1\right) \quad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$

same logarithmic accuracy (difference = NNLL)

$$F(x,b;\mu,\zeta) = \left\lfloor \frac{F(x,b;\mu,\zeta)}{F(x,b_*(b);\mu,\zeta)} \right\rfloor F(x,b_*(b);\mu,\zeta)$$

▶ NP is <u>unavoidable</u>: intrinsically tied to regularisation procedure

NP is <u>unavoidable</u>: intrinsically tied to regularisation procedure
 <u>There is not a universal form factor</u>: NP depends on details of b*

- ▶ NP is <u>unavoidable</u>: intrinsically tied to regularisation procedure
- There is not a universal form factor: NP depends on details of b*
- ▷ f_{NP} determined through a fit to experimental data

 $\underset{\text{PB}}{\overset{q_T-\text{res.}}{\simeq}} e^{2S} \left[f_1 \otimes \mathcal{H} \otimes f_2 \right]$

$$\begin{array}{cc} q_T - \mathrm{res.} \\ \propto & PB \end{array} \quad e^{2S} \left[f_1 \otimes \mathcal{H} \otimes f_2 \right] \end{array}$$

$\stackrel{\text{SCET}}{\propto} \quad H \times B_1 \times B_2 \times S$

 \propto

$$\underset{\text{PB}}{\overset{q_T - \text{res.}}{\simeq}} e^{2S} \left[f_1 \otimes \mathcal{H} \otimes f_2 \right]$$

$$\left(\frac{d\sigma}{dq_T}\right)_{\rm res.}$$

TMD $H \times F_1 \times F_2$

$$\stackrel{\text{SCET}}{\propto} \quad H \times B_1 \times B_2 \times S$$

Dictionary:

 $\mathcal{H} = HC_1C_2$

 $F_i = e^S C_i \otimes f_i$

$$F_i = \sqrt{S} \times B_i$$

$$\underset{\text{PB}}{\overset{q_T-\text{res.}}{\simeq}} e^{2S} \left[f_1 \otimes \mathcal{H} \otimes f_2 \right]$$

$$\left(\frac{d\sigma}{dq_T}\right)_{\rm res.}$$

 $\stackrel{\text{TMD}}{\propto} H \times F_1 \times F_2$

$$\stackrel{\text{SCET}}{\propto} \quad H \times B_1 \times B_2 \times S$$

Dictionary:

 $\mathcal{H} = HC_1C_2$

 $F_i = e^S C_i \otimes f_i$

$$F_i = \sqrt{S} \times B_i$$

All equivalent for factorising processes such as DY @ LHC energies

Codes

Basic ingredients common to all codes Main differences:

- **working space**: b_T or q_T
 - <u>pert.</u>: PDF evolution, scale variation, matching with f.o.

<u>non-pert.</u>: treatment of Landau pole, intrinsic-k_T

Codes

Codes

Structure of Yellow Report

Resummed predictions of the transverse momentum distribution of Drell–Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

1	Introduction	2
2	Resummation formalism	3
3	Setup for benchmark predictions	4
	3.2 Level 2 predictions	4
	3.3 Level 3 predictions	4
4	Results for level 1 predictions	5
	4.1 Landau pole regularization	5
	4.2 Resummation scheme	5
	4.3 PDF evolution	5
5	Results for level 2 predictions	6
	5.1 Modified logarithms	6
	5.2 Perturbative scale variations	6

6	Results for leve	1 3 predictions	7
	6.1 Fixed orde	r predictions	7
	6.2 Perturbativ	<i>re</i> scale variations	7
	6.3 Matching	uncertainties	7
	6.4 Heavy qua	rk thresholds	7
7	Non-perturbati	ve contributions	8
8	Summary		9
A	Appendix A I	Description of resummation codes	10
	Appendix A.1	ArTeMiDe	10
	Appendix A.2	Cute-MCFM	10
	Appendix A.3	DYRes/DYTURBO	10
	Appendix A.4	NangaParbat	10
	Appendix A.5	RadISH	10
	Appendix A.6	Resbos 2	10
	Appendix A.7	reSolve	10
	Appendix A.8	SCETLib	10

1 1. Introduction

7

Structure of Yellow Report

2

3

4 4

4

6 6 6

Resummed predictions of the transverse momentum distribution of Drell–Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

Contents

1	Introduction
2	Resummation formalism
3	Setup for benchmark predictions 3.1 Level 1 predictions 3.2 Level 2 predictions 3.3 Level 2 predictions
	Results for level 1 predictions 4.1 Landau pole regularization 4.2 Resummation scheme 4.3 PDF evolution
5	Results for terms predictions 5.1 Modified logarithms
	5.2 Perturbative scale variations

Level 1

 $\frac{d\sigma}{dQdydq_T} \text{ for } Z/\gamma^* \textcircled{a} 13 \text{ TeV} (\text{focus on } Q = m_Z, y = 0)$

- Only resummed piece
- <u>Only "canonical" logs</u>: $L = \log(Q^2 b^2 / b_0^2)$
- Fixed (hard) scale Q
- Same PDFs, α_s , EW parameters, <u>no lepton cuts</u>
- <u>No NP</u>: different regularisation but common b_{max}

6	Results for level	3 predictions	7
	6.1 Fixed order	predictions	7
	6.2 Perturbative	e scale variations	7
	6.3 Matching u	ncertainties	7
	6.4 Heavy quar	k thresholds	7
7	Non-perturbativ	ve contributions	8
8	Summary		9
A	ppendix A D	escription of resummation codes	10
	11	1	
	Appendix A.1	ArTeMiDe	10
	Appendix A.1 Appendix A.2	ArTeMiDe	10 10 10
	Appendix A.1 Appendix A.2 Appendix A.3	ArTeMiDeCute-MCFMDYRes/DYTURBO	10 10 10
	Appendix A.1 Appendix A.2 Appendix A.3 Appendix A.4	ArTeMiDeCute-MCFMDYRes/DYTURBONangaParbat	10 10 10 10
	Appendix A.1 Appendix A.2 Appendix A.3 Appendix A.4 Appendix A.5	ArTeMiDeCute-MCFMDYRes/DYTURBONangaParbatRadISH	10 10 10 10 10
	Appendix A.1 Appendix A.2 Appendix A.3 Appendix A.4 Appendix A.5 Appendix A.6	ArTeMiDeCute-MCFMDYRes/DYTURBONangaParbatRadISHResbos 2	10 10 10 10 10 10 10
	Appendix A.1 Appendix A.2 Appendix A.3 Appendix A.4 Appendix A.5 Appendix A.6 Appendix A.7	ArTeMiDeCute-MCFMDYRes/DYTURBONangaParbatRadISHResbos 2reSolve	10 10 10 10 10 10 10 10

1 1. Introduction

7

Level 1 - NNLL' differences

Level 1 - NNLL' differences

• q_T resummation codes show differences at intermediate - high q_T .

Level 1 - Global vs. local b*

- Different implementations of b^* prescription: <u>global</u> vs. <u>local</u> local = replace $b \rightarrow b^*$ only in α_s and PDF but not logs
- affects low- q_T end of spectrum

Level 1 - Global vs. local b*

Different implementations of b^* prescription: <u>global</u> vs. <u>local</u> local = replace $b \rightarrow b^*$ only in α_s and PDF but not logs

affects low- q_T end of spectrum

Coherent small oscillations in ratios: why?

- Coherent small oscillations in ratios: why?
- reSolve, DYTurbo: backward evolution in Mellin space, <u>no thresholds</u>
- SCETlib, NangaParbat, arTeMiDe: LHAPDF evolution, <u>thresholds</u>

Coherent small oscillations in ratios: why?

- reSolve, DYTurbo: backward evolution in Mellin space, <u>no thresholds</u>
- SCETlib, NangaParbat, arTeMiDe: LHAPDF evolution, <u>thresholds</u>

Oscillations removed in DYTurbo plus LHAPDF
Level 1 - PDF evolution

Coherent small oscillations in ratios: why?

- reSolve, DYTurbo: backward evolution in Mellin space, <u>no thresholds</u>
- SCETlib, NangaParbat, arTeMiDe: LHAPDF evolution, <u>thresholds</u>

Level 1 - intermediate q_T $\frac{d\sigma}{dq_T} \sim H(Q)S(Q,\mu_b) \left[C(\mu_b) \otimes f(\mu_b)\right]^2$

Level 1 - intermediate q_T $\frac{d\sigma}{dq_T} \sim H(Q)S(Q,\mu_b) \left[C(\mu_b) \otimes f(\mu_b)\right]^2$

"Resummation scheme" dependence: freedom to redefine each factor

Level 1 - intermediate q_T $\frac{d\sigma}{dq_T} \sim H(Q)S(Q,\mu_b) \left[C(\mu_b) \otimes f(\mu_b)\right]^2$

"Resummation scheme" dependence: freedom to redefine each factor

Structure of Yellow Report

Resummed predictions of the transverse momentum distribution of Drell–Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

1	Introduction	2
2	Resummation formalism	3
3	Setup for benchmark predictions3.1Level 1 predictions3.2Level 2 predictions3.3Level 3 predictions	4 4 4 4
4	Results for level 1 predictions4.1Landau pole regularization4.2Resummation scheme4.3PDF evolution	5 5 5 5
5	Results for level 2 predictions5.1Modified logarithms5.2Perturbative scale variations	6 6 6

6	Results for level	3 predictions	7
	6.1 Fixed order	predictions	7
	6.2 Perturbativ	e scale variations	7
	6.3 Matching u	ncertainties	7
	6.4 Heavy quar	k thresholds	7
7	Non-perturbativ	ve contributions	8
8	Summary		9
A	Appendix A D	escription of resummation codes	10
	Appendix A.1	ArTeMiDe	10
	Appendix A.2	Cute-MCFM	10
	Appendix A.3	DYRes/DYTURBO	10
	Appendix A.4	NangaParbat	10
	Appendix A.5	RadISH	10
	Appendix A.6	Resbos 2	10
	Appendix A.7	reSolve	10
	Appendix A.8	SCETLib	10

1 1. Introduction

Structure of Yellow Report

Resummed predictions of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

Contents

1	Introduction	2
2	Resummation formalism	3
3	Setup for benchmark predictions3.1Level 1 predictions3.2Level 2 predictions3.3Level 3 predictions	4 4 4 4
4	Results for level 1 predictions 4.1 Landau pole regularization 4.2 Resummation scheme 4.3 Description	5 5 5 5
ľ	Results for level 2 predictions5.1Modified logarithms5.2Perturbative scale variations	6 6 6

Level 2

- Still only resummed piece, no NP, no lepton cuts
- <u>Modified logs</u> $L = \log(Q^2b^2/b_0^2 + 1)$ (or equivalent)
- <u>Choose own scales</u> (i.e. $\mu_{res} = m_Z/2, m_Z, \ldots$)
- <u>Scale variation</u>: hard, since it requires a careful "mapping" of different scales in different formalisms

6	Results for level	3 predictions	7
	6.1 Fixed order	predictions	7
	6.2 Perturbative	e scale variations	7
	6.3 Matching u	ncertainties	7
	6.4 Heavy quar	k thresholds	7
7	Non-perturbativ	e contributions	8
8	Summary		9
Appendix ADescription of resummation codes10			
A	ppendix A D	escription of resummation codes	10
A	ppendix A D Appendix A.1	escription of resummation codes ArTeMiDe	10 10
A	ppendix ADAppendix A.1Appendix A.2	escription of resummation codes ArTeMiDe	10 10 10
А	ppendix ADAppendix A.1Appendix A.2Appendix A.3	escription of resummation codes ArTeMiDe	10 10 10 10
A	ppendix ADAppendix A.1Appendix A.2Appendix A.3Appendix A.4	escription of resummation codesArTeMiDe	10 10 10 10 10
A	ppendix ADAppendix A.1Appendix A.2Appendix A.3Appendix A.4Appendix A.5	escription of resummation codesArTeMiDe	 10 10 10 10 10 10
A	ppendix ADAppendix A.1Appendix A.2Appendix A.3Appendix A.4Appendix A.5Appendix A.6	escription of resummation codesArTeMiDe	10 10 10 10 10 10 10
A	ppendix ADAppendixA.1AppendixA.2AppendixA.3AppendixA.4AppendixA.5AppendixA.6AppendixA.7	escription of resummation codesArTeMiDeCute-MCFMDYRes/DYTURBONangaParbatRadISHResbos 2reSolve	10 10 10 10 10 10 10 10

1 1. Introduction

- <u>Several</u> sources of theoretical uncertainties
- Estimate through scale variation, <u>BUT</u>:

- <u>Several</u> sources of theoretical uncertainties
- Estimate through scale variation, <u>BUT</u>:
 - ▶ PB & q_T resummation: μ_r, μ_f, μ_{res}

- <u>Several</u> sources of theoretical uncertainties
- Estimate through scale variation, <u>BUT</u>:
 - ▶ PB & q_T resummation: μ_r, μ_f, μ_{res}
 - ▶ TMD: $(\mu_0, \zeta_0) \rightarrow (\mu, \zeta)$ (effectively reduce to 2 in DY case)

- <u>Several</u> sources of theoretical uncertainties
- Estimate through scale variation, <u>BUT</u>:
 - ▶ PB & q_T resummation: μ_r, μ_f, μ_{res}
 - ▶ TMD: $(\mu_0, \zeta_0) \rightarrow (\mu, \zeta)$ (effectively reduce to 2 in DY case)
 - ▶ SCET: $(\mu_i, \nu_i) \rightarrow (\mu_f, \nu_f)$ for **each** of the *B*, *H*, *S* functions

- <u>Several</u> sources of theoretical uncertainties
- Estimate through scale variation, <u>BUT</u>:
 - ▶ PB & q_T resummation: μ_r, μ_f, μ_{res}
 - ▶ TMD: $(\mu_0, \zeta_0) \rightarrow (\mu, \zeta)$ (effectively reduce to 2 in DY case)
 - ▶ SCET: $(\mu_i, \nu_i) \rightarrow (\mu_f, \nu_f)$ for **each** of the *B*, *H*, *S* functions
- Each scale has its own "central" value
- How to compare different scale variations in different formalisms?

The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:

- The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:
 - TMD: PDFs are computed at the low scale μ_0 (varied around μ_b)

- The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:
 - TMD: PDFs are computed at the low scale μ_0 (varied around μ_b)

- The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:
 - TMD: PDFs are computed at the low scale μ_0 (varied around μ_b)

 - > variations of μ_0 are typically much larger than variations of μ_F because at the energies relevant to the benchmark $\alpha_s(\mu_0) > \alpha_s(\mu_F)$

- The **factorisation scale** μ_F present in q_T resummation is absent in the TMD formalism:
 - TMD: PDFs are computed at the low scale μ_0 (varied around μ_b)

 - > variations of μ_0 are typically much larger than variations of μ_F because at the energies relevant to the benchmark $\alpha_s(\mu_0) > \alpha_s(\mu_F)$
- A careful (and not trivial) comparison of the Sudakov integral in the two formalisms suggests that the **renormalisation scale** μ_R in q_T resummation is to be (partly) identified with the scale μ in the TMD formalism

In q_T - resummation, the Sudakov is computed analytically and written in terms of the **functions** g_n :

$$\int_{\mu_b}^Q \frac{d\mu'}{\mu'} \left[A(\alpha_s(\mu')) \ln\left(\frac{Q}{\mu'}\right) + B(\alpha_s(\mu')) \right] = Lg_0(\alpha_s L) + \sum_{n=1}^\infty \alpha_s^{n-1} g_n(\alpha_s L)$$

$$= Lg_0(\alpha_s L) + \sum_{n=1}^k \alpha_s^{n-1}g_n(\alpha_s L) + \mathcal{O}(\alpha_s^{k+n}L^n)$$

In q_T - resummation, the Sudakov is computed analytically and written in terms of the **functions** g_n :

$$\int_{\mu_b}^Q \frac{d\mu'}{\mu'} \left[A(\alpha_s(\mu')) \ln\left(\frac{Q}{\mu'}\right) + B(\alpha_s(\mu')) \right] = Lg_0(\alpha_s L) + \sum_{n=1}^\infty \alpha_s^{n-1} g_n(\alpha_s L)$$

$$= Lg_0(\alpha_s L) + \sum_{n=1}^k \alpha_s^{n-1} g_n(\alpha_s L) + \mathcal{O}(\alpha_s^{k+n} L^n)$$

The series in the r.h.s. is **truncated** according to the log accuracy and the **resummation scale** μ_{res} is introduced as follows:

$$L = \ln\left(\frac{Q}{\mu_b}\right) = \ln\left(\frac{\mu_{res}}{\mu_b}\right) + \ln\left(\frac{Q}{\mu_{res}}\right)$$

The explicit μ_{res} dependence gives an estimate of missing subleading logs

In q_T - resummation, the Sudakov is computed analytically and written in terms of the **functions** g_n :

$$\int_{\mu_b}^Q \frac{d\mu'}{\mu'} \left[A(\alpha_s(\mu')) \ln\left(\frac{Q}{\mu'}\right) + B(\alpha_s(\mu')) \right] = Lg_0(\alpha_s L) + \sum_{n=1}^\infty \alpha_s^{n-1} g_n(\alpha_s L)$$

$$= Lg_0(\alpha_s L) + \sum_{n=1}^k \alpha_s^{n-1} g_n(\alpha_s L) + \mathcal{O}(\alpha_s^{k+n} L^n)$$

The series in the r.h.s. is **truncated** according to the log accuracy and the **resummation scale** μ_{res} is introduced as follows:

$$L = \ln\left(\frac{Q}{\mu_b}\right) = \ln\left(\frac{\mu_{res}}{\mu_b}\right) + \ln\left(\frac{Q}{\mu_{res}}\right)$$

The explicit μ_{res} dependence gives an estimate of missing subleading logs

If the Sudakov is computed exactly, no resummation scale appears:

- this is what we do in NangaParbat by computing the integral numerically
- *therefore, we have no resummation scale dependence*

Theoretical uncertainty estimate on N³LL:

- Theoretical uncertainty estimate on N³LL:
 - estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (**mimicking resummation scale variations**),

- Theoretical uncertainty estimate on N³LL:
 - estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (mimicking resummation scale variations),
 - > variations of μ_r and μ_f by a factor 2 up and down w.r.t. M_{ll} ,

- Theoretical uncertainty estimate on N³LL:
 - estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (**mimicking resummation scale variations**), [G. Das, S.-O. Moch, A. Vogt, arXiv:1912.12920]
 - variations of μ_r and μ_f by a factor 2 up and down w.r.t. M_{ll} ,
 - inclusion of non-perturbative effects as determined in the **PV19** fit.

[A. Bacchetta et al., arXiv:1912.07550]

Theoretical uncertainty estimate on N³LL:

- estimate of subleading logarithmic corrections by including N⁴LL corrections in the Sudakov (**mimicking resummation scale variations**), [G. Das, S.-O. Moch, A. Vogt, arXiv:1912.12920]
- variations of μ_r and μ_f by a factor 2 up and down w.r.t. M_{ll} ,
- inclusion of non-perturbative effects as determined in the **PV19** fit.

[A. Bacchetta et al., arXiv:1912.07550]

Theoretical uncertainty estimate on N³LL:

- estimate of subleading logarithmic corrections by including N4LL corrections in the Sudakov (mimicking resummation scale variations), [G. Das, S.-O. Moch, A. Vogt, arXiv:1912.12920]
- variations of μ_r and μ_f by a factor 2 up and down w.r.t. M_{ll} ,
- inclusion of non-perturbative effects as determined in the PV19 fit.

Structure of Yellow Report

Resummed predictions of the transverse momentum distribution of Drell–Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

1	Introduction	2
2	Resummation formalism	3
3	Setup for benchmark predictions3.1Level 1 predictions3.2Level 2 predictions3.3Level 3 predictions	4 4 4 4
4	Results for level 1 predictions4.1Landau pole regularization4.2Resummation scheme4.3PDF evolution	5 5 5 5
5	Results for level 2 predictions5.1Modified logarithms5.2Perturbative scale variations	6 6 6

6	Results for level 3 predictions	7
	5.1 Fixed order predictions	7
	5.2 Perturbative scale variations	7
	5.3 Matching uncertainties	7
	6.4 Heavy quark thresholds	7
7	Non-perturbative contributions	8
8	Summary	9
A	pendix A Description of resummation codes	10
	Appendix A.1 ArTeMiDe	10
	Appendix A.2 Cute-MCFM	10
	Appendix A.3 DYRes/DYTURBO	10
	Appendix A.4 NangaParbat	10
	Appendix A.5 RadISH	10
	Appendix A.6 Resbos 2	10
	Appendix A.7 reSolve	10
	Appendix A.8 SCETLib	10

1 1. Introduction

Structure of Yellow Repo

3

Level 3

Resummed predictions of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

Contents

1	Introdu	ction		
•	ъ		0	

Resummation formalism

3	Setu	p for benchmark predictions	4
	3.1	Level 1 predictions	4
	3.2	Level 2 predictions	4
	3.3	Level 3 predictions	4
4	Res	ults for level 1 predictions	5
	4.1	Landau pole regularization	5
	4.2	Resummation scheme	5
	4.3	PDF evolution	5
5	Rest	ults for level 2 predictions	6
	5.1	Modified logarithms	6
	5.2	Perturbative scale variations	6

matching with fixed order (full q_T - spectrum)

- Each group uses its own matching formalisms
- Introduce <u>matching uncertainty</u> in addition to perturbative ones
- Still a (lot of) work in progress...

U	Results for level	3 predictions	7
	6.1 Fixed order	predictions	7
	6.2 Perturbative	e scale variations	7
	6.3 Matching u	ncertainties	7
	6.4 Heavy quar	k thresholds	7
7	Non-perturbativ	ve contributions	8
8	Summary		9
A	Appendix A D	escription of resummation codes	10
	Appendix A.1	ArTeMiDe	10
	Appendix A.2	Cute-MCFM	10
	Appendix A.3	DYRes/DYTURBO	10
	Appendix A.4	NangaParbat	10
	Appendix A.5	RadISH	10
	Appendix A.6	Resbos 2	10
	Appendix A.7	reSolve	10
	Appendix A.8	SCETLib	10

1. Introduction

Structure of Yellow Report

3

6 6 6

Level 3

Resummed predictions of the transverse momentum distribution of Drell–Yan lepton pairs in proton-proton collisions at the LHC

Insert your name and institutional address^a

^aWorld

Abstract

Placeholder

Keywords: Drell-Yan, Resummation, LHC

Contents

1 Introduction

2 Resummation formalism

3	Setu	p for benchmark predictions
	3.1	Level 1 predictions
	3.2	Level 2 predictions
	3.3	Level 3 predictions
4	Resi	alts for level 1 predictions
	4.1	Landau pole regularization
	4.2	Resummation scheme
	4.3	PDF evolution
5	Resi	ults for level 2 predictions
	5.1	Modified logarithms
	5.2	Perturbative scale variations

matching with fixed order (full q_T - spectrum)

- Each group uses its own matching formalisms
- Introduce <u>matching uncertainty</u> in addition to perturbative ones
- Still a (lot of) work in progress...
- Bonus track: Level 3.5! Contribution of intrinsic-k_T (TMD only) (Pseudo-data fit?)

• Results for level	3 predictions	7
6.1 Fixed order	predictions	7
6.2 Perturbative	e scale variations	7
6.3 Matching u	ncertainties	7
6.4 Heavy quar	k thresholds	7
7 Non-perturbativ	ve contributions	8
0 0		•
8 Summary		9
Annendix A D	escription of resummation codes	10
Annendix A 1	ArTeMiDe	10
Appendix A 2		10
	Cute-MCFM	10
Annendix A 3	Cute-MCFM	10 10
Appendix A.3	Cute-MCFM	10 10 10
Appendix A.3 Appendix A.4 Appendix A.5	Cute-MCFM DYRes/DYTURBO DYRes/DYTURBO NangaParbat NangaParbat RadISH	10 10 10 10
Appendix A.3 Appendix A.4 Appendix A.5 Appendix A.6	Cute-MCFM Output DYRes/DYTURBO Output NangaParbat Output RadISH Output Reshos 2	10 10 10 10
Appendix A.3 Appendix A.4 Appendix A.5 Appendix A.6 Appendix A.7	Cute-MCFM Output DYRes/DYTURBO Output NangaParbat Output RadISH Output Resbos 2 Output raSolva Output	10 10 10 10 10 10
Appendix A.3 Appendix A.4 Appendix A.5 Appendix A.6 Appendix A.7	Cute-MCFM	10 10 10 10 10 10 10

1 1. Introduction

Need as many (low- q_T + y-binned) data as possible!

 $p_{Tl} \leftarrow q_{TW} \leftarrow resummation + intrinsic - k_T$

 $p_{Tl} \leftarrow q_{TW} \leftarrow \text{resummation} + \text{intrinsic} - k_T$

All analyses assume flavour-independence

[M.Vesterinen, CERN seminar, June 2021]

. Would the resulting predictions of W p_T distribution be reliable?

But we already know that it might be a relevant effect!

But we already know that it might be a relevant effect!

flavour-dependent widths

Set	u_v	d_v	u_s	d_s	S
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

But we already know that it might be a relevant effect!

flavour-dependent widths

W mass shifts

better exploitation of LHC data

- better exploitation of LHC data
- increasingly accurate TMD fits

- better exploitation of LHC data
- increasingly accurate TMD fits
- relevant role of hadron structure in precision EW at the LHC

- better exploitation of LHC data
- increasingly accurate TMD fits
- relevant role of hadron structure in precision EW at the LHC
- TMD flavour dependence

- better exploitation of LHC data
- increasingly accurate TMD fits
- relevant role of hadron structure in precision EW at the LHC
- TMD flavour dependence

More interaction needed between collinear and TMD communities

- better exploitation of LHC data
- increasingly accurate TMD fits
- relevant role of hadron structure in precision EW at the LHC
- TMD flavour dependence
- More interaction needed between collinear and TMD communities
- Keep promoting TMDs at the LHC!

- better exploitation of LHC data
- increasingly accurate TMD fits
- relevant role of hadron structure in precision EW at the LHC
- TMD flavour dependence
- More interaction needed between collinear and TMD communities
- Keep promoting TMDs at the LHC!

- better exploitation of LHC data
- increasingly accurate TMD fits
- relevant role of hadron structure in precision EW at the LHC
- TMD flavour dependence
- More interaction needed between collinear and TMD communities
- Keep promoting TMDs at the LHC!

Backup slides

Resummation scheme

• Let us start from CSS factorisation:

$$\frac{d\sigma}{dq_{\rm T}} \sim H(Q)S(Q,\mu_b) \left[C(\mu_b) \otimes f(\mu_b)\right]^2$$
• Arbitrary "perturbative" function: $h(\mu) \equiv h(\alpha_s(\mu)) = \sum_{n=0}^{\infty} \alpha_s^n(\mu)h^{(n)}$
 $\frac{d\ln h(\mu)}{d\ln \mu} = \frac{d\alpha_s(\mu)}{d\ln \mu} \frac{d\ln h(\mu)}{d\alpha_s} = \beta(\alpha_s(\mu))[h(\mu)]^{-1} \frac{dh(\mu)}{d\alpha_s} \Rightarrow h(Q) = \exp\left[\int_{\mu_b}^{Q} \frac{d\mu}{\mu}\beta(\alpha_s(\mu))[h(\mu)]^{-1} \frac{dh(\mu)}{d\alpha_s}\right]h(\mu_b)$
• so that:
 $\frac{d\sigma}{dq_{\rm T}} \sim h(Q)[h(Q)]^{-1}H(Q)S(Q,\mu_b)[C(\mu_b) \otimes f(\mu_b)]^2$
 $= \underbrace{[h(Q)]^{-1}H(Q)}_{\widehat{H}(Q)}\underbrace{S(Q,\mu_b)\exp\left[\int_{\mu_b}^{Q} \frac{d\mu}{\mu}\beta(\alpha_s(\mu))[h(\mu)]^{-1} \frac{dh}{d\alpha_s}\right]}_{\widetilde{S}(Q,\mu_b)}\left[\underbrace{\sqrt{h(\mu_b)}C(\mu_b)}_{\widehat{C}(\mu_b)} \otimes f(\mu_b)\right]^2$
• Choosing $h = H$ defines the Catani-de Florian-Grazzini (CdFG) scheme:

 $\widetilde{C}_{ij}^{(0)}(x) = C_{ij}^{(0)}(x) = \delta_{ij}\delta(1-x) \qquad \qquad \widetilde{B}^{(0)} = B^{(0)}$ $\widetilde{C}_{ij}^{(1)}(x) = C_{ij}^{(1)}(x) + \frac{1}{2}H^{(1)}\delta_{ij}\delta(1-x) \qquad \qquad \widetilde{B}^{(1)} = B^{(1)} + \beta_0 H^{(1)}$ $\widetilde{C}^{(2)}(x) = C_{ij}^{(2)}(x) + \frac{1}{2}H^{(1)}C_{ij}^{(1)}(x) + \frac{1}{2}\left[H^{(2)} - \frac{1}{4}(H^{(1)})^2\right]\delta_{ij}\delta(1-x) \ \widetilde{B}^{(2)} = B^{(2)} + \beta_1 H^{(1)} + 2\beta_0\left[H^{(2)} - \frac{1}{2}(H^{(1)})^2\right]$ $\bullet \text{ Enough up to N^3LL.}$

TMD scale variations

TMD factorisation allows one to obtain the **evolution equations**:

$$\frac{d\ln F}{d\ln\mu} = \gamma(\mu,\zeta) , \quad \frac{d^2\ln F}{d\ln\mu d\ln\sqrt{\zeta}} = \begin{cases} \frac{d\gamma}{d\ln\sqrt{\zeta}} \\ \frac{d\ln F}{d\ln\sqrt{\zeta}} = K(\mu) \end{cases} , \quad \frac{d^2\ln F}{d\ln\mu d\ln\sqrt{\zeta}} = \begin{cases} \frac{dK}{d\ln\sqrt{\zeta}} \\ \frac{dK}{d\ln\mu} \end{cases} = \gamma_K(\alpha_s(\mu)) \end{cases}$$

• To solve these equations we need to fix **two pairs of** (*i.e.* **four**) **scales**:

- **initial** scales: (μ_0, ζ_0)
- **final** scales: (μ, ζ)

• The solution is **unique** and reads:

$$F(\mu, \zeta) = R\left[(\mu, \zeta) \leftarrow (\mu_0, \zeta_0)\right] F(\mu_0, \zeta_0)$$

$$R\left[(\mu, \zeta) \leftarrow (\mu_0, \zeta_0)\right] = \exp\left\{K(\mu_0) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}} + \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(\alpha_s(\mu')) - \gamma_K(\alpha_s(\mu')) \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\}$$

The question is: how do we choose these four scales?

TMD scale variations

- A sensible choice of the scales is important to **allow perturbation theory to be reliable**:
 - **no large unresummed logarithms** should be introduced,
 - each scale has to be set in the **vicinity of its natural (central) value**,
 - scale variations (within a reasonable range) give an estimate of HO corrs.
- In TMD factorisation $(q_T \ll Q)$ for DY the relevant scales are q_T and Q:
 - $\check{\bullet}$ natural to expect $\mu_0 \sim \sqrt{\zeta_0} \sim q_T \sim b_T^{-1}$ and $\mu \sim \sqrt{\zeta} \sim Q$
- In fact, it turns out that (in the $\overline{\text{MS}}$ scheme) the **central scales** are: $\mu_0 = \sqrt{\zeta_0} = \frac{2e^{-\gamma_E}}{b_T} \equiv \mu_b \quad \text{and} \quad \mu = \sqrt{\zeta} = Q$
 - This choice **nullifies** all unresummed logs. One should thus consider:

$$\mu_0 = C_i^{(1)} \mu_b, \quad \sqrt{\zeta_0} = C_i^{(2)} \mu_b, \quad \mu = C_f^{(1)} Q, \quad \sqrt{\zeta} = C_i^{(2)} Q,$$

TMD scale variations

To reason why variations of ζ have **no effect** is that:

$$rac{d\sigma}{dq_T} \propto H\left(rac{\mu}{Q}
ight) F_1(\mu,oldsymbol{\zeta_1})F_2(\mu,oldsymbol{\zeta_2}) ~~ ext{with}$$

 $F_{1}(\mu, \zeta_{1})F_{2}(\mu, \zeta_{2}) = \underbrace{R\left[(\mu, \zeta_{1}) \leftarrow (\mu_{0}, \zeta_{0})\right]R\left[(\mu, \zeta_{2}) \leftarrow (\mu_{0}, \zeta_{0})\right]}_{f(\zeta_{1}\zeta_{2}) = f(Q^{4})}F_{1}(\mu_{0}, \zeta_{0})F_{2}(\mu_{0}, \zeta_{0})$

- **i** The single dependence on ζ_1 and ζ_2 **drops** in the combination:
 - we choose $\zeta_1 = \zeta_2 = Q^2$ but any other choice such that $\zeta_1 \zeta_2 = Q^4$ is **identical**.

 $\zeta_1\zeta_2 \stackrel{!}{=} Q^4$

- In addition, in NangaParbat we have chosen to set $\mu_0 = \sqrt{\zeta_0}$:
 - for a conservative choice.

• At the end of the day, we have **two scales** to be varied:

 $\mu_0 = \sqrt{\zeta_0} = C_i \mu_b$ and $\mu = C_f Q$