Overview on gluon TMDs

Daniël Boer Sar WorS 2021 Sardinian Workshop on Spin September 6, 2021

university of groningen

Outline

- Gluon TMDs & the parallels with quark TMDs
- Process dependence of gluon TMDs
 - sign change relation for gluon Sivers TMDs
 - small-x limit & Wilson loop matrix elements
- Probes of unpolarized gluon TMDs
- Probes of linearly polarized gluon TMDs

Gluon TMDs & the parallels with quark TMDs

Typical TMD processes

Semi-inclusive DIS is a process sensitive to the transverse momentum of quarks

D-meson pair production is sensitive to transverse momentum of gluons

$$e \, p \to e' \, D \, \bar{D} \, X$$

Gluons TMDs

The transverse momentum dependent gluon correlator:

$$\Gamma_g^{\mu\nu}(x, p_T) \propto \langle P | F^{+\nu}(0) \mathcal{U} F^{+\mu}(\xi^-, \xi_T) \mathcal{U}' | P \rangle$$

For unpolarized protons:

$$\Gamma_{U}^{\mu\nu}(x, \boldsymbol{p}_{T}) = \frac{x}{2} \left\{ -g_{T}^{\mu\nu} f_{1}^{g}(x, \boldsymbol{p}_{T}^{2}) + \left(\frac{p_{T}^{\mu} p_{T}^{\nu}}{M_{p}^{2}} + g_{T}^{\mu\nu} \frac{\boldsymbol{p}_{T}^{2}}{2M_{p}^{2}} \right) \underbrace{h_{1}^{\perp g}(x, \boldsymbol{p}_{T}^{2})}_{I} \right\}$$
unpolarized gluon TMD
linearly polarized gluon TMD

Gluons inside *unpolarized* protons can be polarized!

[Mulders, Rodrigues, 2001]

For transversely polarized protons:

gluon Sivers TMD

$$\Gamma_T^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ g_T^{\mu\nu} \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_p} \underbrace{f_{1T}^{\perp g}(x, \boldsymbol{p}_T^2)}_{M_p} + \dots \right\}$$

Perhaps surprisingly, these TMDs have not been extracted from experiments yet

Entering the gluon TMD era

Sivers asymmetry in high-p_T hadron pair production $A^{Siv} = -0.23 \pm 0.08 \text{ (stat)} \pm 0.05 \text{ (syst)} \text{ at } <x_g>=0.15$ [COMPASS Collab., 2017]

GPM studies of $A_N^{\pi,D}$

[D'Alesio, Murgia, Pisano, 2015; & Taels, 2017]

Parallels between quarks and gluons

$$\begin{split} \Phi_{U}(x,k) &= \frac{1}{2} \left[\vec{n} f_{1}(x,k^{2}) + \frac{\sigma_{\mu\nu}k_{T}^{\mu}\bar{n}^{\nu}}{M} h_{1}^{\perp}(x,k^{2}) \right], \\ \Phi_{L}(x,k) &= \frac{1}{2} \left[\gamma^{5}\vec{n} S_{L} g_{1}(x,k^{2}) + \frac{i\sigma_{\mu\nu}\gamma^{5}\bar{n}^{\mu}k_{T}^{\nu}S_{L}}{M} h_{1L}^{\perp}(x,k^{2}) \right], \\ \Phi_{T}(x,k) &= \frac{1}{2} \left[\frac{\vec{n} \epsilon_{T}^{S_{T}k_{T}}}{M} f_{1T}^{\perp}(x,k^{2}) + \frac{\gamma^{5}\vec{n} k \cdot S_{T}}{M} g_{1T}(x,k^{2}) + i\sigma_{\mu\nu}\gamma^{5}\bar{n}^{\mu}S_{T}^{\nu} h_{1}(x,k^{2}) - \frac{i\sigma_{\mu\nu}\gamma^{5}\bar{n}^{\mu}k_{T}^{\nu\rho}S_{T\rho}}{M^{2}} h_{1T}^{\perp}(x,k^{2}) \right] \end{split}$$

For quarks the BM & Sivers TMDs are T-odd and the h-type functions are chiral-odd

$$\begin{split} \Gamma_{U}^{ij}(x,k) &= x \left[\delta_{T}^{ij} f_{1}(x,k^{2}) + \frac{k_{T}^{ij}}{M^{2}} h_{1}^{\perp}(x,k^{2}) \right], \\ \Gamma_{L}^{ij}(x,k) &= x \left[i \epsilon_{T}^{ij} S_{L} g_{1}(x,k^{2}) + \frac{\epsilon_{T}^{\{i} \alpha}{M} k_{T}^{j\} \alpha} S_{L}}{2M^{2}} h_{1L}^{\perp}(x,k^{2}) \right], \\ \Gamma_{T}^{ij}(x,k) &= x \left[\frac{\delta_{T}^{ij} \epsilon_{T}^{S_{T}k_{T}}}{M} f_{1T}^{\perp}(x,k^{2}) + \frac{i \epsilon_{T}^{ij} k \cdot S_{T}}{M} g_{1T}(x,k^{2}) - \frac{\epsilon_{T}^{\{i} \alpha}{M} k_{T}^{j\} \alpha} f_{1T}^{\perp}(x,k^{2}) - \frac{\epsilon_{T}^{\{i} \alpha}{M} k_{T}^{j\} \alpha} h_{1T}^{\perp}(x,k^{2}) \right], \end{split}$$

For gluons $h_1 \perp$ is T-even and h_1 is k_T -odd, T-odd and unrelated to transversity

Parallels between SIDIS and HQ pair production

The heavy quarks will not be exactly back-to-back in the transverse plane:

$$K_{\perp} = (K_{Q\perp} - K_{\bar{Q}\perp})/2$$
$$q_T = K_{Q\perp} + K_{\bar{Q}\perp}$$
$$|q_T| \ll |K_{\perp}|$$

 $\phi_{T_{\prime}}\phi_{\perp}$ are the angles of q_T, K_{\perp}

Linear gluon polarization shows up as a $\cos 2\phi_T$ or $\cos 2(\phi_T - \phi_{\perp})$ distribution

Despite the differences in properties of some of the quark and gluon TMDs, the asymmetries they lead to are analogous for SIDIS and HQ pair production There is a "Collins" asymmetry without a Collins function, but it does probe h₁^g which is not transversity however

Parallels between SIDIS and HQ pair production

LO asymmetries in HQ pair production:

[Boer, Pisano, Mulders, Zhou, 2016]

$$\begin{split} |\langle \cos 2\phi_T \rangle| &= \left| \frac{\int d\phi_\perp d\phi_T \cos 2\phi_T d\sigma}{\int d\phi_\perp d\phi_T d\sigma} \right| = \frac{q_T^2 |B_0^U|}{2A_0^U} = \frac{q_T^2}{2M^2} \frac{\left| h_1^{\perp g} \left(x, p_T^2 \right) \right|}{f_1^g \left(x, p_T^2 \right)} \frac{\left| \mathcal{B}_0^{eg \to eQ\overline{Q}} \right|}{\mathcal{A}_0^{eg \to eQ\overline{Q}}} \\ A_N^{\sin(\phi_S - \phi_T)} &= \frac{\left| q_T \right|}{M_p} \frac{A_0^T}{A_0^U} = \frac{\left| q_T \right|}{M_p} \frac{f_{1T}^{\perp g} \left(x, q_T^2 \right)}{f_1^g \left(x, q_T^2 \right)} \\ A_N^{\sin(\phi_S + \phi_T)} &= \left| q_T \right| B_0'^T \qquad 2(1 - y) \mathcal{B}_{0T}^{\gamma^* g \to Q\overline{Q}} \qquad \left| q_T \right| h_1^g \left(x, q_T^2 \right) \end{split}$$

$$A_N^{(TS+TTY)} = \frac{1}{M_p} \frac{1}{A_0^U} = \frac{1}{\left[1 + (1-y)^2\right]} \mathcal{A}_{U+L}^{\gamma^* g \to Q\overline{Q}} - y^2 \mathcal{A}_L^{\gamma^* g \to Q\overline{Q}} \frac{1}{M_p} \frac{1}{f_1^g (x, q_T^2)}$$

$$A_{N}^{\sin(\phi_{S}-3\phi_{T})} = -\frac{|\boldsymbol{q}_{T}|^{3}}{M_{p}^{3}} \frac{B_{0}^{T}}{2A_{0}^{U}} = -\frac{2(1-y) \mathcal{B}_{0T}^{\gamma^{*}g \to Q\overline{Q}}}{\left[1 + (1-y)^{2}\right] \mathcal{A}_{U+L}^{\gamma^{*}g \to Q\overline{Q}} - y^{2} \mathcal{A}_{L}^{\gamma^{*}g \to Q\overline{Q}}} \frac{|\boldsymbol{q}_{T}|^{3}}{2M_{p}^{3}} \frac{h_{1T}^{\perp g} \left(x, \boldsymbol{q}_{T}^{2}\right)}{f_{1}^{g} \left(x, \boldsymbol{q}_{T}^{2}\right)}$$

SIDIS - Fragmentation functions

HQ pairs - calculable amplitudes

Quarkonium production

 $e p \to e' \mathcal{Q} X$ with \mathcal{Q} either a J/ψ or a Υ meson

[Godbole, Misra, Mukherjee, Rawoot, 2012/3; Godbole, Kaushik, Misra, Rawoot, 2015; Mukherjee, Rajesh, 2017; Rajesh, Kishore, Mukherjee, 2018]

In LO NRQCD the prefactor of the asymmetry depends on y, Q, M_Q and on two quite uncertain Color Octet (CO) Long Distance Matrix Elements (LDMEs)

One can cancel out the CO LDMEs by considering ratios with spin asymmetries [Bacchetta, Boer, Pisano, Taels, 2018]

Quarkonium production in ep

 $e p^{\uparrow} \to e' \mathcal{Q} X$ with \mathcal{Q} either a J/ψ or a Υ meson

[Godbole, Misra, Mukherjee, Rawoot, 2012/3; Godbole, Kaushik, Misra, Rawoot, 2015; Mukherjee, Rajesh, 2017; Rajesh, Kishore, Mukherjee, 2018]

Using LO NRQCD the Sivers asymmetry is:

$$A^{\sin(\phi_S - \phi_T)} = \frac{|\boldsymbol{q}_T|}{M_p} \frac{f_{1T}^{\perp g}(x, \boldsymbol{q}_T^2)}{f_1^g(x, \boldsymbol{q}_T^2)}$$

Other asymmetries depend on the quite uncertain CO NRQCD LDMEs, but one can consider ratios of asymmetries to cancel them out

[Bacchetta, Boer, Pisano, Taels, 2018]

$$\frac{A^{\cos 2\phi_T}}{A^{\sin(\phi_S + \phi_T)}} = \frac{q_T^2}{M_p^2} \frac{h_1^{\perp g}(x, q_T^2)}{h_1^g(x, q_T^2)}$$
$$\frac{A^{\cos 2\phi_T}}{A^{\sin(\phi_S - 3\phi_T)}} = -\frac{1}{2} \frac{h_1^{\perp g}(x, q_T^2)}{h_{1T}^{\perp g}(x, q_T^2)}$$
$$\frac{\sin(\phi_S - 3\phi_T)}{\sin(\phi_S + \phi_T)} = -\frac{q_T^2}{2M_p^2} \frac{h_{1T}^{\perp g}(x, q_T^2)}{h_1^g(x, q_T^2)}$$

Process dependence of gluon TMDs

Gauge invariance of correlators

summation of all gluon exchanges leads to *path-ordered exponentials* in the correlators

$$\Phi \propto \langle P | \overline{\psi}(0) \mathcal{U}_{\mathcal{C}}[0,\xi] \psi(\xi) | P \rangle$$
$$\mathcal{U}_{\mathcal{C}}[0,\xi] = \mathcal{P} \exp\left(-ig \int_{\mathcal{C}[0,\xi]} ds_{\mu} A^{\mu}(s)\right)$$

Efremov & Radyushkin, Theor. Math. Phys. 44 ('81) 774

The path C depends on whether the color interactions are with an incoming or outgoing color charge, yielding different paths for different processes

[Collins & Soper, 1983; Boer & Mulders, 2000; Brodsky, Hwang & Schmidt, 2002; Collins, 2002; Belitsky, Ji & Yuan, 2003; Boer, Mulders & Pijlman, 2003]

These gauge links may or may not affect observables and it turns out that they do in certain cases sensitive to the transverse momentum

Gauge links in quark TMDs

This has observable effects, as was first noted for quark Sivers asymmetries [Brodsky, Hwang & Schmidt, 2002; Collins, 2002; Belitsky, Ji & Yuan, 2003]

$$f_{1T}^{\perp q[\text{SIDIS}]}(x, k_T^2) = -f_{1T}^{\perp q[\text{DY}]}(x, k_T^2)$$
 [Collins '02]

Process dependence of gluon TMDs

A similar sign change relation for gluon Sivers functions holds, but due to the appearance of two gauge links, there are more possibilities

$$\Gamma_g^{\mu\nu}(\mathcal{U},\mathcal{U}')(x,k_T) \equiv \mathrm{F.T.}\langle P|\mathrm{Tr}_c\left[F^{+\nu}(0)\mathcal{U}_{[\ell]},\xi\right]F^{+\mu}(\xi)\mathcal{U}_{[\ell]},0\right]|P\rangle$$

For most gluon TMDs there are only 2 link combinations of interest: [+,+] & [+,-]

[-,-] & [-,+] are related to them by parity and time reversal

More complicated links arise in processes where TMD factorization is questionable

The gauge link dependence even affects unpolarized gluon TMDs [Dominguez, Marquet, Xiao, Yuan, 2011]

Sign change relation for gluon Sivers TMD

$$e \, p^{\uparrow}
ightarrow e' \, Q ar{Q} \, X \qquad \gamma^* \, g
ightarrow Q ar{Q}$$
 probes [+,+]

$$p^{\uparrow} \, p \to \gamma \, \gamma \, X$$

Qiu, Schlegel, Vogelsang, 2011

In the kinematic regime where pair rapidity is central, one effectively selects the subprocess:

 $g \, g
ightarrow \gamma \, \gamma$ probes [-,-]

Asymmetries in heavy quark pair production

Sivers asymmetry in D-meson pair production at EIC:

The [+,+] Sivers TMD lacks the 1/x growth of the unpolarized gluon TMD (at least in the perturbative k_T regime), hence 10% at x=0.001 may be too optimistic Boer, Echevarria, Mulders, J. Zhou, PRL 2016

Jet pair production more promising, but receives contributions from quark TMDs

High-p_T hadron pairs

COMPASS measured the gluon Sivers asymmetry in high- p_T hadron pair production in muon-deuteron and muon-proton scattering

The combined result for PGF:

 $A^{Siv} = -0.23 \pm 0.08$ (stat) ± 0.05 (syst) at $\langle x_g \rangle = 0.15$

[C.Adolph et al., PLB 2017]

Imposed requirement: $p_{1T} > 0.7$ GeV/c and $p_{2T} > 0.4$ GeV/c The bulk of the data was for $p_{1T} < 1.7$ GeV/c and $p_{2T} < 1.1$ GeV/c

The gluon contribution has been estimated using MC Significant contribution to the asymmetry from QCD Compton (quark TMDs)

EIC projections are promising for gluon Sivers TMDs 5% of the positivity bound Zheng, Aschenauer, Lee, Xiao, Jin, 2018

Gluon Sivers effect in double γ production

 $\sqrt{s}=500 \text{ GeV}, p_T^{\gamma} \ge 1 \text{ GeV}, \text{ integrated over } 4 < Q^2 < 30 \text{ GeV}^2, 0 \le q_T \le 1 \text{ GeV}$

At photon pair rapidity y < 3 gluon Sivers dominates and max($d\sigma_{TU}/d\sigma_{UU}$) ~ 30-50%

Asymmetry may be large but di-photon rate is not at RHIC, so also very challenging Same may apply to $J/\psi \gamma$ and $J/\psi J/\psi$ pair production in $p^{\uparrow}p$ collisions

f and d type gluon Sivers TMD

$$e \, p^{\uparrow}
ightarrow e' \, Q ar{Q} \, X \qquad \qquad \gamma^* \, g
ightarrow Q ar{Q}$$
 probes [+,+]

 $p^{\uparrow} p \to \gamma \operatorname{jet} X$

In the kinematic regime where gluons in the polarized proton dominate, one effectively selects the subprocess: $q q \rightarrow \gamma q$ probes [+,-]

These processes probe 2 distinct, *independent* gluon Sivers functions Related to the antisymmetric (f^{abc}) and symmetric (d^{abc}) color structures Bomhof, Mulders, 2007; Buffing, Mukherjee, Mulders, 2013

Conclusion: gluon Sivers TMD studies using different processes can be related or they can be complementary

Gluon Sivers effect in γ jet production

Gluon Sivers effect at small x

Selection of processes that probe the f-type or d-type Sivers gluon TMD:

	$e p^{\uparrow} \to e' Q \overline{Q} X$ $e p^{\uparrow} \to e' j_1 j_2 X$	$\begin{vmatrix} p^{\uparrow} A \to h X \\ (x_F < 0) \end{vmatrix}$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$f_{1T}^{\perp g [+,+]}$	\checkmark	×	×	\checkmark
$f_{1T}^{\perp g [+,-]}$	×	\checkmark	\checkmark	×

The d-type Sivers gluon TMD can be probed in $p^{\uparrow}A \rightarrow h X$ in the backward region

 \rightarrow small x in the polarized proton and large A will enhance gluon-gluon scattering

The leading twist [+,-] correlator becomes in the small-x limit:

$$\Gamma^{[+,-]\,ij}(x,\boldsymbol{k}_T) \xrightarrow{x\to 0} \frac{k_T^i k_T^j}{2\pi L} \Gamma_0^{[\Box]}(\boldsymbol{k}_T)$$

a single Wilson loop matrix element

Boer, Cotogno, van Daal, Mulders, Signori & Ya-Jin Zhou, JHEP 2016

 $U^{[\Box]} = U^{[+]}_{[0,y]} U^{[-]}_{[y,0]}$

d-type gluon Sivers effect

The d-type gluon Sivers function $f_{1T}^{\perp g \, [+,-]}$ at small x is part of:

 $\Gamma_{(d)}^{(T-\text{odd})} \equiv \left(\Gamma^{[+,-]} - \Gamma^{[-,+]}\right) \propto \text{F.T.} \langle P, S_T | \text{Tr} \left[U^{[\Box]}(0_T, y_T) - U^{[\Box]\dagger}(0_T, y_T) \right] | P, S_T \rangle$

Boer, Echevarria, Mulders, J. Zhou, PRL 2016

At small x it can be identified with the spin-dependent odderon [J. Zhou, 2013]

It is the only relevant contribution to A_N in backward (x_F < 0) charged hadron production in $p^{\uparrow}A$

A_N is not a TMD factorizing process, but at small x one can apply a hybrid factorization (at least at one-loop order) [Chirilli, Xiao, Yuan, 2012]

As the odderon is C-odd, for gg-dominated scattering one should select final states that are not C-even, hence charged hadron production (as opposed to jets or π^0)

$p^{\uparrow}p \rightarrow h^{\pm} X \text{ at } x_F < 0$

Probes of unpolarized gluon TMDs

WW vs DP

For most processes of interest there are 2 relevant unpolarized gluon distributions Dominguez, Marquet, Xiao, Yuan, 2011

$$xG^{(1)}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle \quad [+,+]$$
$$xG^{(2)}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle \quad [+,-]$$

For unpolarized gluons [+,+] = [-,-] and [+,-] = [-,+]

At small x the two correspond to the Weizsäcker-Williams (WW) and dipole (DP) distributions, which are generally different in magnitude and width:

$$\begin{split} xG^{(1)}(x,k_{\perp}) &= -\frac{2}{\alpha_S} \int \frac{d^2v}{(2\pi)^2} \frac{d^2v'}{(2\pi)^2} \, e^{-ik_{\perp}\cdot(v-v')} \left\langle \operatorname{Tr}\left[\partial_i U(v)\right] U^{\dagger}(v') \left[\partial_i U(v')\right] U^{\dagger}(v) \right\rangle_{x_g} \quad \text{WW} \\ xG^{(2)}(x,q_{\perp}) &= \frac{q_{\perp}^2 N_c}{2\pi^2 \alpha_s} S_{\perp} \int \frac{d^2r_{\perp}}{(2\pi)^2} e^{-iq_{\perp}\cdot r_{\perp}} \frac{1}{N_c} \left\langle \operatorname{Tr}U(0) U^{\dagger}(r_{\perp}) \right\rangle_{x_g} \quad \text{DP} \end{split}$$

Different processes probe one or the other or a mixture, so this can be tested

Processes for unpolarized gluon TMDs

Selection of processes that probe the WW or DP unpolarized gluon TMD:

	$pA \to \gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$\begin{array}{c c} pp \to \eta_{c,b} X\\ pp \to H X \end{array}$	$\begin{vmatrix} pp \to J/\psi \gamma X \\ pp \to \Upsilon \gamma X \end{vmatrix}$
$f_1^{g[+,+]}$ (WW)	×	\checkmark	\checkmark	\checkmark
$f_1^{g[+,-]}$ (DP)	\checkmark	×	×	×

Processes for unpolarized gluon TMDs

Heavy quarks are generally promising to exploit, but not in all processes:

 $pp \rightarrow J/\psi X \text{ or } \Upsilon X$ Color Singlet (CS) vector quarkonium production from 2 gluons is forbidden by Landau-Yang theorem, while Color Octet (CO) production involves a more complicated link structure

For C-even (pseudo-)scalar quarkonium production $gg \rightarrow CS$ is leading contribution $pp \rightarrow \eta_c X$ or $pp \rightarrow \chi_c X$ could be studied at NICA

In LO NRQCD the differential cross sections in pp and pA are:

$$\begin{split} \frac{d\sigma(\eta_Q)}{dy \, d^2 \boldsymbol{q}_T} &= \frac{2}{9} \frac{\pi^3 \alpha_s^2}{M^3 \, s} \left\langle 0 | \mathcal{O}_1^{\eta_Q} ({}^1S_0) | 0 \right\rangle \mathcal{C} \left[f_1^g \, f_1^g \right] \, \left[1 - R(\boldsymbol{q}_T^2) \right] \\ \frac{d\sigma(\chi_{Q0})}{dy \, d^2 \boldsymbol{q}_T} &= \frac{8}{3} \frac{\pi^3 \alpha_s^2}{M^5 \, s} \left\langle 0 | \mathcal{O}_1^{\chi_{Q0}} ({}^3P_0) | 0 \right\rangle \mathcal{C} \left[f_1^g \, f_1^g \right] \, \left[1 + R(\boldsymbol{q}_T^2) \right] \\ \frac{d\sigma(\chi_{Q2})}{dy \, d^2 \boldsymbol{q}_T} &= \frac{32}{9} \frac{\pi^3 \alpha_s^2}{M^5 \, s} \left\langle 0 | \mathcal{O}_1^{\chi_{Q2}} ({}^3P_2) | 0 \right\rangle \mathcal{C} \left[f_1^g \, f_1^g \right] \quad \text{[Boer, Pisano, 2012]} \end{split}$$

$R(q_T^2)$ is the contribution from the linearly polarized gluon TMD $h_1^{\perp g}$

Probes of linearly polarized gluons TMDs

Probes of linear gluon polarization

For linearly polarized gluons [+,+] = [-,-] and [+,-] = [-,+]

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$pp \to J/\psi \gamma X$ $pp \to \Upsilon \gamma X$
$h_1^{\perp g [+,+]} $ (WW)	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×	\checkmark	×	×	×

Processes that probe the linearly polarized gluon TMD:

I% level at RHIC
 Qiu, Schlegel, Vogelsang, 2011
 Boer, Brodsky, Pisano, Mulders, 2011;
 Boer, Brodsky, Pisano, Mulders, 2011;
 Dumitru, Lappi, Skokov, 2015;
 Boer, Pisano, Mulders, J. Zhou, 2016;
 Efremov, Ivanov, Teryaev, 2018
 I0% level for η_Q and
 I0% level for Higgs at LHC
 Boer & den Dunnen, 2014;
 Echevarria, Kasemets,
 Mulders, Pisano, 2015

Higgs and $0^{\pm+}$ quarkonium production uses the angular independent p_T distribution All other suggestions use angular modulations

 $pp \rightarrow QQ \times$ [Akcakaya, Schäfer, Zhou, 2013; Pisano, Boer, Brodsky, Buffing, Mulders, 2013] TMD factorization is a concern here [Catani, Grazzini, Torre, 2015]

Open heavy quark electro-production

Unpolarized open heavy quark production at EIC allows to probe $h_1^{\perp \, g}(x, p_T^2)$

 $ep \rightarrow e'QQX$

no convolution!

[Boer, Brodsky, Mulders & Pisano, 2010]

The individual transverse momenta have to be large but their sum has to be small Linearly polarized gluons lead to $\cos 2\phi_T$ or $\cos 2(\phi_T - \phi_{\perp})$ angular modulation

 $h_1 \perp g$ appears by itself, so its sign can be determined and the effects could be significant, especially towards smaller x as it follows the fast growth of $f_1 g$

Asymmetries in heavy quark pair production

 $h_1^{\perp g}$ expected to keep up with growth of the unpolarized gluons TMD as $x \rightarrow 0$

small x MV model

$$z = 0.5$$
$$y = 0.3$$

 $|\boldsymbol{K}_{\perp}| = 10 \, \mathrm{GeV}$

Sizable asymmetries at EIC [Boer, Pisano, Mulders, Zhou, 2016]

Dijet production at EIC

 $h_{I} \perp g$ (WW) is also accessible in dijet production at EIC

[Metz, Zhou 2011; Pisano, Boer, Brodsky, Buffing, Mulders, 2013; Boer, Pisano, Mulders, Zhou, 2016]

Linear gluon polarization shows itself through a $cos2\phi$ distribution ("v₂")

Quarkonium production in pp

 $pp \rightarrow \eta_c X \text{ or } pp \rightarrow \chi_c X \text{ allow to probe the linearly polarized gluon TMD}$

The relative contribution to the diff. cross section w.r.t. the unpolarized gluons:

Bottomonium production in pp

The range of predictions for C-even bottomonium production:

Boer & den Dunnen, 2014

Echevarria, Kasemets, Mulders, Pisano, 2015

Very large theoretical uncertainties (from the nonperturbative part of the TMDs), even more for charmonium production, but contribution of 20% or more is expected

γ^* -jet production

 $h_1 \perp g$ is power suppressed in $pp \rightarrow \gamma$ jet X It is not power suppressed in $pp \rightarrow \gamma^*$ jet X if $Q^2 \sim P_{\perp,jet}^2$ [Boer, Mulders, Zhou & Zhou, 2017] Consider $Q^2 \sim P_{\perp,jet}^2$ also to avoid a three-scale problem

[Boer, Mulders, Pisano, 2008]

 $pp \to \gamma \gamma X \mid pA \to \gamma^* \text{ jet } X \mid e p \to e' Q \overline{Q} X \mid pp \to \eta_{c,b} X \mid pp \to J/\psi \gamma X$ $e p \to e' j_1 j_2 X \mid pp \to H X \mid pp \to \Upsilon \gamma X$ $h_1^{\perp g [+,+]}$ (WW) \times $h_{1}^{\perp g [+,-]}$ (DP) \times \times \times \times

 $pp \rightarrow \gamma^*$ jet X offers a unique opportunity to study the DP linear gluon polarization

At high gluon density (large A and/or small x) the DP linear gluon polarization is expected to become maximal, as was first shown in the MV model for the CGC

$$xh_{1,DP}^{\perp g}(x,k_{\perp}) = 2xf_{1,DP}^{g}(x,k_{\perp})$$

[Metz & Jian Zhou, 2011; Boer, Cotogno, van Daal, Mulders, Signori & Ya-Jin Zhou, 2016]

Sudakov suppression of linear gluon polarization

Despite the DP linear gluon polarization becoming maximal at small x, there is amplitude and Sudakov suppression of the $cos(2\varphi)$ asymmetry in $pA \rightarrow \gamma^*$ jet X: ~5% asymmetry at RHIC [Boer, Mulders, Jian Zhou & Ya-Jin Zhou, 2017] It becomes effectively power suppressed as Q~P \perp increases from 6 to 90 GeV

Linear gluon polarization in di-J/ Ψ production

At LHC h_1^g can be probed in $p\,p o J/\psi\,J/\psi\,X$

Estimated to lead to I-5% level azimuthal modulations [Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, 2019]

Conclusions

Conclusions

- Gluon TMDs measurements generally require higher energy collisions, less inclusive observables (particle pair correlations) and several processes (process dependence)
- Even the unpolarized gluon TMDs have not been extracted yet, but there are plenty of future opportunities
- For the linearly polarized gluon TMDs small x will be beneficial, for the f-type gluon Sivers TMD small x is not favorable
- The f-type [+,+] gluon Sivers TMD enters di-hadron production in SIDIS and satisfies the sign-change relation
- The d-type [+,-] gluon Sivers TMD at small x corresponds to the spin-dependent odderon, a C-odd Wilson loop matrix element that fully determines A_N at negative x_F

Main opportunities

$f_1^{g[+,+]}$	$pp \to \gamma J/\psi X$	LHC
	$pp \to \gamma \Upsilon X$	LHC
$f_1^{g[+,-]}$	$pp \to \gamma \operatorname{jet} X$	LHC & RHIC
$h_1^{\perp g [+,+]}$	$e p \to e' Q \overline{Q} X$	EIC
	$e p \to e' \text{jet jet} X$	EIC
	$pp \to \eta_{c,b} X$	LHC & NICA
	$pp \to H X$	LHC
$h_1^{\perp g [+,-]}$	$pp \to \gamma^* \operatorname{jet} X$	LHC & RHIC
$f_{1T}^{\perp g [+,+]}$	$e p^{\uparrow} \to e' Q \overline{Q} X$	EIC
	$e p^{\uparrow} \to e' \text{jet jet} X$	EIC
$f_{1T}^{\perp g \left[-,-\right]}$	$p^{\uparrow}p \to \gamma \gamma X$	RHIC
$f_{1T}^{\perp g [+,-]}$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$	RHIC
~~	$p^{\uparrow} A \to h X \ (x_F < 0)$	RHIC & NICA