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Finally, we require �
2
/Q

2 = ⌧meas., and we remove the label “meas”, which has now

become redundant. At NLO, NLL accuracy, the cross section for e+e� ! H, X di↵erential

in zh, T and PT is then given by:
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where, according to Section 3:
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with x defined as in Eq. (3.23). For a convenient and straightforward application of

Eq. (4.6) we recall that the Wilson coe�cients C
[1]

q/q and C
[1]

g/q are presented in Eqs. (3.15)

and (3.16), the functions g1, g2 and g
K
2
, gK

3
contributing to the Sudakov are computed

in Eqs. (3.24), (3.25), (3.29) and (3.30), and the non-perturbative functions gK and MD

are defined in Eqs. (3.32) and (5.1). Notice that the cross section in Eq. (4.5) is not re-

summed in thrust. A proper resummation in T is beyond the purpose of this paper. Such

resummation must also include a correct treatment of the dependence on zh, by consider-

ing the terms that have been neglected in the approximation used in Eq. (4.4). Clearly,

this is strictly connected to the di�culties in finding a fully resummed expression for the

subtracted, renormalized function J
(�)
q/q (see the discussion at the end of Section 2.2.2) and,

ultimately, for the whole second line of Eq. (4.2).

Very recently, the factorization of the e
+
e
�
! HX cross section, as measured by the

BELLE Collaboration (Ref. [1]), has been investigated in two papers, both based on the

SCET formalism. In Ref. [12], the authors propose to integrate out the thrust T and to

reproduce the experimental cross section by combining all the measured thrust bins, within

the range [0.5�1.0]. A cross section di↵erential in zh, PT and T , is presented in Ref. [13]; it

results from matching three di↵erent kinematical regions, each associated with a di↵erent

factorized expression for the final cross section. The phenomenological application of this

formula is not shown.
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and k
+ is the plus component of the momentum of the fragmenting parton. The function

�D is the anomalous dimension of the TMD FF, while eK is the rapidity-independent kernel

of the CS-evolution. They, in turn, solve the following equations:
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where �K is the anomalous dimension of the soft kernel eK. The solution to Eqs. (3.4)

and (3.5) is given by [27, 28]:
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In the previous expression, the reference scales are µ = µb and ⇣ = µ
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We also introduce a minimum value bmin, that allows to recover the collinear FFs by

integrating over the transverse momentum of the fragmenting parton. Therefore we will

adopt the modified b
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Usual definition 
TMD FF

For this process 
TMD FF

Soft non-
perturbative 
Function

Theoretical framework for e+e- -> h X 



           
   Same function for non-perturbative evolution 

                             

Same 
constraints  
to collinear FF

Theoretical framework for e+e- -> h X 

and the functions g1 and g2 are given by:
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This result is in agreement with the Sudakov factor computed e.g. in Ref. [32]. On the

other hand, the term depending on the rapidity cut-o↵ ⇣ is given by:
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where x has been defined in Eq. (3.23), while the functions gK
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3.3 Non-Perturbative content

The last term in Eq. (3.9) encodes the whole non-perturbative content of the TMD frag-

mentation function, D1. Clearly, this cannot be predicted by perturbative QCD and hence

it has to be extracted from experimental data, through a phenomenological analysis. It

involves two functions. The first is gK , which describes the long-distance behavior of the

soft kernel eK, defined as:

gK(bT ) = eK(b?T ; µ)� eK(bT ; µ). (3.31)

In most phenomenological applications it is assumed to behave quadratically:

gK(bT ) = a b
2

T . (3.32)

with a ⇠ 0.01÷ 0.1 GeV2.
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   What is the effect of the collinear  
FFs (and PDFs in general) ?  

                             

Theoretical framework for e+e- -> h X 

           
Large-bT behaviour of gK ? 

                             



Taken from M. Boglione DIS 2021

Global Fits 
Possible roadmap



Some important aspects to consider:

(Global) Fits 

           

• Which collinear functions are more appropriate? 

• Which regions in bT are being mapped by extractions. 

• Constraints of bT-behaviour for TMDs. 

•  Physical pictures/theoretical arguments /models (not 
parametrizations) 

• Non perturbative evolution (gK) should be consistent with 
SIDIS, DY, e+e- two-hadron production. 

With  



Phenomenological analysis  
of recent BELLE data



Data overview 

           
Binned in PT, zh and T (thrust) 

                             0.06<PT<2.5   GeV

           
(Charged pions ) 

                             

0.125<zh<0.975

0.6<T<0.975



zh-dependence and choice of collinear FFs
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• We compare results obtained with NNFFnlo and JAM20nlo 



zh-dependence and choice of collinear FFs

           

• We compare results obtained with NNFFnlo and JAM20nlo 
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Transverse Momentum Dependent Fragmentation Functions from recent BELLE data.

M. Boglione,⇤ J. O. Gonzalez-Hernandez,† and A. Simonelli‡

Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 1-10125, Torino, Italy
(Dated: 2 July 2021)

We analyze recent e+e� ! h + X data by the BELLE collaboration. We extract the unpolar-

ized transverse momentum dependent fragmentation functions (TMDFFs), within the formalism

presented in [], at NLO and NLL accuracy.

I. FORMALISM

(1)

II. PHENOMENOLOGY

In order to use Eq. (1) one must choose parametric
forms for MD and gK. Such choices are generally a↵ected
by the kinematical region of the data under considera-
tion. This poses a big challenge since the error estimation
of factorization theorems in QCD do not allow for sharp
boundaries to be drawn. For instance, the small-qT cross
section Eq. (1) and its associated error of O

�
q
2
T/Q

2
�
,

does not imply that the formalism should describe the
data up to qT ⇠ Q, but rather that in this region issues
describing the data are to be expected. With no further
indication of how far one can extend the description into
the larger qT region, one is left with model-dependent
phenomenological results as the only indication of the
validity of the formalism. Another delicate point is the
choice of collinear fragmentation functions. While one
expects part of the z-dependence of theory lines to come
from the behaviour of the collinear FFs, there is no re-
striction regarding a possible z-dependence in the func-
tion MD. Again, how appropriate a given set is depends
on parametric choices of the model. In the following sec-
tions we systematically explain our choices.

A. TMDFF z-dependence and choice of collinear
FFs

Similarly to the usual CSS formalism for two-hadron
production, the TMDFF in impact parameter space
in Eq. (1) is constrained at small bT by a small dis-
tance OPE, hence the appearance of the convolution of
collinear FFs with matching coe�cients C, which we de-
note by [d � C]. This factor provides an important con-
straint of the zh-dependence for the TMDFFs. As dis-
cussed before, the transition from short to large distance

⇤ mariaelena.boglione@unito.it
† joseosvaldo.gonzalezhernandez@unito.it
‡ andrea.simonelli@unito.it

of the TMD is regulated by the b⇤T-prescription, for which
a maximum value or ”freezing point” must be set, below
which one expects perturbation theory to apply. Such
maximum distance, bmax

T in Eq. (??), corresponds to a
minimum perturbative scale of µmin = b0/b

max
T . For our

studies we choose b
max
T = 1.0GeV�1, which ensures that

perturbative quantities are never evaluated bellow a scale
of 1.13GeV. This seems like a sensible choice since per-
turbation theory is known to work well in collinear ob-
servables down to a scale of around 1.0GeV. We remark
that the TMDFF extraction depends on the particular
value of bmax

T .
With this choice, we turn to the question of choosing

a set of collinear FFs. We will compare the NNFF nlo
and the JAM20 nlo sets. These are modern analyses that
represent the state of the art in collinear FF extractions
and are readily available through LHAPDF. As it can be
seen in Fig. 1, computation of [d�C] renders significantly
di↵erent results for each collinear FF set. One may sus-
pect that the extraction of the TMD is sensitive to the
choice of collinear functions. It is however not obvious
that either of the collinear set is to be preferred over the
other. It is entirely possible that by adjusting values of
the model parameters for say, MD, a similar description
of the data be achieved with the two collinear FF sets.
By any consideration, the question of which set is more
appropriate depends on the choices of the model.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.1  1  10

zh = 0.525
bmax

T

[d
 c

on
v 

C
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bT (GeV-1)
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JAM20

FIG. 1. convolution of the collinear fragmentation function

and matching coe�cients [d � C] for the NNFF and JAM20

sets. Significant di↵erences can be observed at other values

of zh.

In order to choose a set, we perform preliminary fits
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2

✓
1 +

⌘2

z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2
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z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

 0

 5

 10

 15

 20

 25

 30

 35

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

T = 0.875
Bessel-K    

Exponential 

ch
i2 do

f
zh

NNFF
JAM20

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end

NNFF perform better. 
(non-conclusive due to large values  

of chi^2/dof)
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
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zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2
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M2, ⌘2, p
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In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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FIG. 3. Minimal parameter values for fits at fixed T = 0.875
and individual zh-bins in the range 0.272 < zh < 0.675, for
the MD model in the second entry of Table I (zh-independent
Bessel-K model). Results correspond to the solid lines in

Fig. 2. In this case, where we fit zh-bins separately, the incom-

patibility ofM and p for di↵erent zh suggests a zh-dependence
is needed if the model is to describe the data on a simultane-

ous fit of the 0.272 < zh < 0.675 range. It is interesting to

note that the dimensionfull parameter M exhibits a stronger

correlation with zh.

of the selected range of qT, giving much better values of
�
2
dof. For this last model, last entry in Table I, we per-

form two more fixed-T fits for T = 0.750 and T = 0.825.
Results are shown on the right panel of Fig. 4.

One should be careful to interpret these results. First,
while it may seem that the last model should be the obvi-
ous choice to extract the unpolarized TMDFF, the other
two zh-dependent models we have considered here are
able to describe the data well up to qT/Q < 0.1, as we
will show in the following sub-sections. This is a delicate
point, since one does not know a priori for which max-
imum value of qT/Q one can still trust that the errors
O
�
(qT/Q)2

�
of Eq. (1) are small enough so that the for-

malism is still valid. Consider, for instance, that a cut
qT/Q < 0.1 was more appropriate. In this case, the clear
advantage of the gaussian zh-dependent model, describ-
ing the data in the region 0.1 < qT/Q < 0.2, becomes
less significant.

We close our preliminary discussion of the zh-
dependence by stating the main conclusions of this sub-
section. First, improvement of the zh-dependence is more
easily achieved by introducing zh-dependence in mass pa-
rameters. This is an observation that applies to several
models we tested, of which we provide one concrete exam-
ple (see Fig. 3). Second, in all the preceding discussions,
and despite of inadequacies in some of the models con-
sidered, the fact that a better description of the data is
always achieved with the NNFF set, does seem to indi-
cate that these FFs are more appropriate to describe the
BELLE data. We will use the NNFFs in the following
part of our analysis, although we will not yet set on a
specific model for MD.

FIG. 4. Minimal �2
dof for fits in the range

0.272 < zh < 0.675 (zh-bins fitted simultaneously),

for the zh-dependent models for MD in the last three entries

of Table I. Left panel: comparison of the results obtained

with NNFF and JAM20, for fixed T = 0.875. Right panel:

fixed-T fits for T = {0.750, 0.825, 0.875}, using the Bessel-K

model with a gaussian zh-dependent term (last entry in

Table I). As for results presented in Fig. 2, the NNFF

consistently produce smaller values of �2
dof.

B. Behaviour of the unpolarized TMDFF in the
large-bT limit.

In this subsection we will address the behaviour of the
unpolarized TMDFFs in impact parameter space. Specif-
ically, we look at possible parametric forms for MD in
Eq. (1), paying special attention to the large-bT limit.
For our purposes we define two di↵erent possible mean-
ings for ”large-bT” behaviour:

1. asymptotically large-bT

2. large-bT region.

The first one corresponds to the formal limit bT ! 1, in
which one may write asymptotic expansions for a known
parametric form. For instance, the Bessel-K model dis-
cussed in the previous subsection has an asymptotic limit

22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0)

!
p
⇡
2

3
2�p(bTM)p�

3
2

�(p� 1)
e
�bTM0 . (2)

The second one refers instead to the largest region in
bT that is accessible phenomenologically, i.e., the largest
distances at which the data can constrain the model,
which cannot be known before carrying out an analy-
sis. This distinction is necessary to understand which
features are needed in a model to describe the data. In
fact, constraining the asymptotic behaviour of a model
can only be expected provided enough data exists at suf-
ficiently small values of transverse momentum qT. On

Stronger zh-dependence in dimensionfull 
parameter 
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
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2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.
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In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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FIG. 3. Minimal parameter values for fits at fixed T = 0.875
and individual zh-bins in the range 0.272 < zh < 0.675, for
the MD model in the second entry of Table I (zh-independent
Bessel-K model). Results correspond to the solid lines in

Fig. 2. In this case, where we fit zh-bins separately, the incom-

patibility ofM and p for di↵erent zh suggests a zh-dependence
is needed if the model is to describe the data on a simultane-

ous fit of the 0.272 < zh < 0.675 range. It is interesting to

note that the dimensionfull parameter M exhibits a stronger

correlation with zh.

of the selected range of qT, giving much better values of
�
2
dof. For this last model, last entry in Table I, we per-

form two more fixed-T fits for T = 0.750 and T = 0.825.
Results are shown on the right panel of Fig. 4.

One should be careful to interpret these results. First,
while it may seem that the last model should be the obvi-
ous choice to extract the unpolarized TMDFF, the other
two zh-dependent models we have considered here are
able to describe the data well up to qT/Q < 0.1, as we
will show in the following sub-sections. This is a delicate
point, since one does not know a priori for which max-
imum value of qT/Q one can still trust that the errors
O
�
(qT/Q)2

�
of Eq. (1) are small enough so that the for-

malism is still valid. Consider, for instance, that a cut
qT/Q < 0.1 was more appropriate. In this case, the clear
advantage of the gaussian zh-dependent model, describ-
ing the data in the region 0.1 < qT/Q < 0.2, becomes
less significant.

We close our preliminary discussion of the zh-
dependence by stating the main conclusions of this sub-
section. First, improvement of the zh-dependence is more
easily achieved by introducing zh-dependence in mass pa-
rameters. This is an observation that applies to several
models we tested, of which we provide one concrete exam-
ple (see Fig. 3). Second, in all the preceding discussions,
and despite of inadequacies in some of the models con-
sidered, the fact that a better description of the data is
always achieved with the NNFF set, does seem to indi-
cate that these FFs are more appropriate to describe the
BELLE data. We will use the NNFFs in the following
part of our analysis, although we will not yet set on a
specific model for MD.

FIG. 4. Minimal �2
dof for fits in the range

0.272 < zh < 0.675 (zh-bins fitted simultaneously),

for the zh-dependent models for MD in the last three entries

of Table I. Left panel: comparison of the results obtained

with NNFF and JAM20, for fixed T = 0.875. Right panel:

fixed-T fits for T = {0.750, 0.825, 0.875}, using the Bessel-K

model with a gaussian zh-dependent term (last entry in

Table I). As for results presented in Fig. 2, the NNFF

consistently produce smaller values of �2
dof.

B. Behaviour of the unpolarized TMDFF in the
large-bT limit.

In this subsection we will address the behaviour of the
unpolarized TMDFFs in impact parameter space. Specif-
ically, we look at possible parametric forms for MD in
Eq. (1), paying special attention to the large-bT limit.
For our purposes we define two di↵erent possible mean-
ings for ”large-bT” behaviour:

1. asymptotically large-bT

2. large-bT region.

The first one corresponds to the formal limit bT ! 1, in
which one may write asymptotic expansions for a known
parametric form. For instance, the Bessel-K model dis-
cussed in the previous subsection has an asymptotic limit

22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0)

!
p
⇡
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3
2�p(bTM)p�

3
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�(p� 1)
e
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The second one refers instead to the largest region in
bT that is accessible phenomenologically, i.e., the largest
distances at which the data can constrain the model,
which cannot be known before carrying out an analy-
sis. This distinction is necessary to understand which
features are needed in a model to describe the data. In
fact, constraining the asymptotic behaviour of a model
can only be expected provided enough data exists at suf-
ficiently small values of transverse momentum qT. On

Stronger zh-dependence in dimensionfull 
parameter 

Next Step, try fitting  
zh-bins simultaneously 

(fixed T=0.875)



zh-dependence and choice of collinear FFs

           

• We compare results obtained with NNFFnlo and JAM20nlo 

2

at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2

✓
1 +

⌘2

z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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FIG. 3. Minimal parameter values for fits at fixed T = 0.875
and individual zh-bins in the range 0.272 < zh < 0.675, for
the MD model in the second entry of Table I (zh-independent
Bessel-K model). Results correspond to the solid lines in

Fig. 2. In this case, where we fit zh-bins separately, the incom-

patibility ofM and p for di↵erent zh suggests a zh-dependence
is needed if the model is to describe the data on a simultane-

ous fit of the 0.272 < zh < 0.675 range. It is interesting to

note that the dimensionfull parameter M exhibits a stronger

correlation with zh.

of the selected range of qT, giving much better values of
�
2
dof. For this last model, last entry in Table I, we per-

form two more fixed-T fits for T = 0.750 and T = 0.825.
Results are shown on the right panel of Fig. 4.

One should be careful to interpret these results. First,
while it may seem that the last model should be the obvi-
ous choice to extract the unpolarized TMDFF, the other
two zh-dependent models we have considered here are
able to describe the data well up to qT/Q < 0.1, as we
will show in the following sub-sections. This is a delicate
point, since one does not know a priori for which max-
imum value of qT/Q one can still trust that the errors
O
�
(qT/Q)2

�
of Eq. (1) are small enough so that the for-

malism is still valid. Consider, for instance, that a cut
qT/Q < 0.1 was more appropriate. In this case, the clear
advantage of the gaussian zh-dependent model, describ-
ing the data in the region 0.1 < qT/Q < 0.2, becomes
less significant.

We close our preliminary discussion of the zh-
dependence by stating the main conclusions of this sub-
section. First, improvement of the zh-dependence is more
easily achieved by introducing zh-dependence in mass pa-
rameters. This is an observation that applies to several
models we tested, of which we provide one concrete exam-
ple (see Fig. 3). Second, in all the preceding discussions,
and despite of inadequacies in some of the models con-
sidered, the fact that a better description of the data is
always achieved with the NNFF set, does seem to indi-
cate that these FFs are more appropriate to describe the
BELLE data. We will use the NNFFs in the following
part of our analysis, although we will not yet set on a
specific model for MD.
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FIG. 4. Minimal �2
dof for fits in the range

0.272 < zh < 0.675 (zh-bins fitted simultaneously),

for the zh-dependent models for MD in the last three entries

of Table I. Left panel: comparison of the results obtained

with NNFF and JAM20, for fixed T = 0.875. Right panel:

fixed-T fits for T = {0.750, 0.825, 0.875}, using the Bessel-K

model with a gaussian zh-dependent term (last entry in

Table I). As for results presented in Fig. 2, the NNFF

consistently produce smaller values of �2
dof.

B. Behaviour of the unpolarized TMDFF in the
large-bT limit.

In this subsection we will address the behaviour of the
unpolarized TMDFFs in impact parameter space. Specif-
ically, we look at possible parametric forms for MD in
Eq. (1), paying special attention to the large-bT limit.
For our purposes we define two di↵erent possible mean-
ings for ”large-bT” behaviour:

1. asymptotically large-bT

2. large-bT region.

The first one corresponds to the formal limit bT ! 1, in
which one may write asymptotic expansions for a known
parametric form. For instance, the Bessel-K model dis-
cussed in the previous subsection has an asymptotic limit

22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0)
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The second one refers instead to the largest region in
bT that is accessible phenomenologically, i.e., the largest
distances at which the data can constrain the model,
which cannot be known before carrying out an analy-
sis. This distinction is necessary to understand which
features are needed in a model to describe the data. In
fact, constraining the asymptotic behaviour of a model
can only be expected provided enough data exists at suf-
ficiently small values of transverse momentum qT. On
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2

✓
1 +

⌘2

z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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FIG. 3. Minimal parameter values for fits at fixed T = 0.875
and individual zh-bins in the range 0.272 < zh < 0.675, for
the MD model in the second entry of Table I (zh-independent
Bessel-K model). Results correspond to the solid lines in

Fig. 2. In this case, where we fit zh-bins separately, the incom-

patibility ofM and p for di↵erent zh suggests a zh-dependence
is needed if the model is to describe the data on a simultane-

ous fit of the 0.272 < zh < 0.675 range. It is interesting to

note that the dimensionfull parameter M exhibits a stronger

correlation with zh.

of the selected range of qT, giving much better values of
�
2
dof. For this last model, last entry in Table I, we per-

form two more fixed-T fits for T = 0.750 and T = 0.825.
Results are shown on the right panel of Fig. 4.

One should be careful to interpret these results. First,
while it may seem that the last model should be the obvi-
ous choice to extract the unpolarized TMDFF, the other
two zh-dependent models we have considered here are
able to describe the data well up to qT/Q < 0.1, as we
will show in the following sub-sections. This is a delicate
point, since one does not know a priori for which max-
imum value of qT/Q one can still trust that the errors
O
�
(qT/Q)2

�
of Eq. (1) are small enough so that the for-

malism is still valid. Consider, for instance, that a cut
qT/Q < 0.1 was more appropriate. In this case, the clear
advantage of the gaussian zh-dependent model, describ-
ing the data in the region 0.1 < qT/Q < 0.2, becomes
less significant.

We close our preliminary discussion of the zh-
dependence by stating the main conclusions of this sub-
section. First, improvement of the zh-dependence is more
easily achieved by introducing zh-dependence in mass pa-
rameters. This is an observation that applies to several
models we tested, of which we provide one concrete exam-
ple (see Fig. 3). Second, in all the preceding discussions,
and despite of inadequacies in some of the models con-
sidered, the fact that a better description of the data is
always achieved with the NNFF set, does seem to indi-
cate that these FFs are more appropriate to describe the
BELLE data. We will use the NNFFs in the following
part of our analysis, although we will not yet set on a
specific model for MD.
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FIG. 4. Minimal �2
dof for fits in the range

0.272 < zh < 0.675 (zh-bins fitted simultaneously),

for the zh-dependent models for MD in the last three entries

of Table I. Left panel: comparison of the results obtained

with NNFF and JAM20, for fixed T = 0.875. Right panel:

fixed-T fits for T = {0.750, 0.825, 0.875}, using the Bessel-K

model with a gaussian zh-dependent term (last entry in

Table I). As for results presented in Fig. 2, the NNFF

consistently produce smaller values of �2
dof.

B. Behaviour of the unpolarized TMDFF in the
large-bT limit.

In this subsection we will address the behaviour of the
unpolarized TMDFFs in impact parameter space. Specif-
ically, we look at possible parametric forms for MD in
Eq. (1), paying special attention to the large-bT limit.
For our purposes we define two di↵erent possible mean-
ings for ”large-bT” behaviour:

1. asymptotically large-bT

2. large-bT region.

The first one corresponds to the formal limit bT ! 1, in
which one may write asymptotic expansions for a known
parametric form. For instance, the Bessel-K model dis-
cussed in the previous subsection has an asymptotic limit
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The second one refers instead to the largest region in
bT that is accessible phenomenologically, i.e., the largest
distances at which the data can constrain the model,
which cannot be known before carrying out an analy-
sis. This distinction is necessary to understand which
features are needed in a model to describe the data. In
fact, constraining the asymptotic behaviour of a model
can only be expected provided enough data exists at suf-
ficiently small values of transverse momentum qT. On
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2
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z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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FIG. 3. Minimal parameter values for fits at fixed T = 0.875
and individual zh-bins in the range 0.272 < zh < 0.675, for
the MD model in the second entry of Table I (zh-independent
Bessel-K model). Results correspond to the solid lines in

Fig. 2. In this case, where we fit zh-bins separately, the incom-

patibility ofM and p for di↵erent zh suggests a zh-dependence
is needed if the model is to describe the data on a simultane-

ous fit of the 0.272 < zh < 0.675 range. It is interesting to

note that the dimensionfull parameter M exhibits a stronger

correlation with zh.

of the selected range of qT, giving much better values of
�
2
dof. For this last model, last entry in Table I, we per-

form two more fixed-T fits for T = 0.750 and T = 0.825.
Results are shown on the right panel of Fig. 4.

One should be careful to interpret these results. First,
while it may seem that the last model should be the obvi-
ous choice to extract the unpolarized TMDFF, the other
two zh-dependent models we have considered here are
able to describe the data well up to qT/Q < 0.1, as we
will show in the following sub-sections. This is a delicate
point, since one does not know a priori for which max-
imum value of qT/Q one can still trust that the errors
O
�
(qT/Q)2

�
of Eq. (1) are small enough so that the for-

malism is still valid. Consider, for instance, that a cut
qT/Q < 0.1 was more appropriate. In this case, the clear
advantage of the gaussian zh-dependent model, describ-
ing the data in the region 0.1 < qT/Q < 0.2, becomes
less significant.

We close our preliminary discussion of the zh-
dependence by stating the main conclusions of this sub-
section. First, improvement of the zh-dependence is more
easily achieved by introducing zh-dependence in mass pa-
rameters. This is an observation that applies to several
models we tested, of which we provide one concrete exam-
ple (see Fig. 3). Second, in all the preceding discussions,
and despite of inadequacies in some of the models con-
sidered, the fact that a better description of the data is
always achieved with the NNFF set, does seem to indi-
cate that these FFs are more appropriate to describe the
BELLE data. We will use the NNFFs in the following
part of our analysis, although we will not yet set on a
specific model for MD.
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dof for fits in the range

0.272 < zh < 0.675 (zh-bins fitted simultaneously),

for the zh-dependent models for MD in the last three entries

of Table I. Left panel: comparison of the results obtained

with NNFF and JAM20, for fixed T = 0.875. Right panel:

fixed-T fits for T = {0.750, 0.825, 0.875}, using the Bessel-K

model with a gaussian zh-dependent term (last entry in

Table I). As for results presented in Fig. 2, the NNFF

consistently produce smaller values of �2
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B. Behaviour of the unpolarized TMDFF in the
large-bT limit.

In this subsection we will address the behaviour of the
unpolarized TMDFFs in impact parameter space. Specif-
ically, we look at possible parametric forms for MD in
Eq. (1), paying special attention to the large-bT limit.
For our purposes we define two di↵erent possible mean-
ings for ”large-bT” behaviour:

1. asymptotically large-bT

2. large-bT region.

The first one corresponds to the formal limit bT ! 1, in
which one may write asymptotic expansions for a known
parametric form. For instance, the Bessel-K model dis-
cussed in the previous subsection has an asymptotic limit

22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0)

!
p
⇡
2

3
2�p(bTM)p�

3
2

�(p� 1)
e
�bTM0 . (2)

The second one refers instead to the largest region in
bT that is accessible phenomenologically, i.e., the largest
distances at which the data can constrain the model,
which cannot be known before carrying out an analy-
sis. This distinction is necessary to understand which
features are needed in a model to describe the data. In
fact, constraining the asymptotic behaviour of a model
can only be expected provided enough data exists at suf-
ficiently small values of transverse momentum qT. On

Next Step, try fitting  
zh-bins simultaneously 

(fixed T=0.750, 0.825, 0.875)
Systematically NNFFs outperform
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2

✓
1 +

⌘2

z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
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dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour
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In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
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dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-
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In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.
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In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
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of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

Mz = M0

�
1� ⌘ log(zh)

�

Nomenclature F -model parameters

1)Bessel-K-F1 F =

✓
1 + log (1 + bTMz)

1 + (bTMz)

◆q

M0, ⌘, p , q

2)Bessel-K-F2 F =
1

1 + (bTMz)
q M0, ⌘, p , q

3)Bessel-K-Fg F = exp
�
(MgbT)2 log(zh)

�
M0, Mg, p

Minimal �2
d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.

�
2
d.o.f. (fixed-T fits)

T = 0.750 0.825 0.875

Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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We will focus on the type of models that satisfy the
requirements suggested in [? ]. There, the authors pro-
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.
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Minimal �2
d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.
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d.o.f. (fixed-T fits)

T = 0.750 0.825 0.875

Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.
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2
d.o.f. (fixed-T fits)

T = 0.750 0.825 0.875

Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.

MD =
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d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.
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d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value
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0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.
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Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.
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d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.
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Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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We assume that bT is less than bmax. Then there are no
large logarithms involving bT or b⇤. Using the lowest-
order formula for K̃ gives

gK(bT; bmax) '
↵s(C1/b⇤)CF

⇡
ln
�
1 + b2T/b

2
max

�
. (67)

This has b2T behavior at small bT but a slower rise above
bmax. It is the form used in Ref. [54] to optimize matching
between the perturbative calculation and gK(bT; bmax) at
moderate bT.

To compare with fitted values of gK with gK = 1
2g2b

2
T,

we propose two methods. One is to expand at small bT:

gK(bT; bmax) '
↵s(C1/b⇤)CF

⇡

b2T
b2max

, (68)

and then to replace C1/b⇤ by C1/bmax, since fits for gK
concerns bT not far from bmax. Then we equate the co-
e�cients of b2T in this formula and in the fitted gK , to
obtain

g2 ' 2↵s(C1/bmax)CF

⇡b2max

(by small bT expansion). (69)

The other method is to equate the derivatives with re-
spect to b2max at bT = bmax; this may be more represen-
tative of how gK a↵ects the evolution of the cross section
because this is where gK gives a substantial correction
to the cut-o↵ K̃. The result gives an estimate that is a
factor of two smaller:

g2 ' ↵s(C1/bmax)CF

⇡b2max

(by derivative at bmax). (70)

Neither method can exactly reproduce the fitted gK ,
since the perturbative estimate for gK has a di↵erent
functional form than the fitted gK ; the best we can do is
an approximate match.

To obtain numerical values, we use the two-loop
parametrization of ↵s(µ) from Ref. [107] with 3 active fla-
vors of quark. We make the standard choice C1 = 2e��E .
For the two standard values bmax = 0.5GeV�1 and
bmax = 1.5GeV�1, we find

CF

⇡

1

b2max

↵s(C1/bmax)

����
bmax=0.5GeV�1

⇡ 0.45GeV2, (71)

CF

⇡

1

b2max

↵s(C1/bmax)

����
bmax=1.5GeV�1

⇡ 0.13GeV2. (72)

We compare with the measured values in Table I. We
see a rough agreement, with the two methods of match-
ing a value of g2 to (67) giving results that bracket the
measured value. We deduce that some of the work in

with no dependence on bT.

g2 values in quadratic parametrizations:

bmax Fitted Expansion
Method

Derivative
Method

0.5GeV�1 0.68+0.01
�0.02 GeV2 0.9GeV2 0.45GeV2

1.5GeV�1 0.18± 0.02GeV2 0.26GeV2 0.13GeV2

TABLE I.

the fits simply reproduces perturbative predictions in a
region where the predictions have a useful, if approxi-
mate validity. We also deduce that the values of bmax

are conservative. If one wants to genuinely measure the
nonperturbative part of gK , one needs a more general pa-
rameterization and one needs to ensure that data is used
that is sensitive to higher values of bT. We will address
this issue in the next section.
Of course, the above estimates are crude and meant

only to check for general consistency. At large bT,
Eq. (67) is not expected to be an accurate parametriza-
tion of gK(bT; bmax). First, it is based on an extrapo-
lation of a low order perturbative calculation. Second,
at large bT it depends strongly on bmax. The complete
TMD factorization formalism is bmax independent, and
fully optimized fits should approximately reflect this if
they are to account for large bT behavior.
Notice that the arguments for approximately quadratic

behavior for gK(bT) at small bT equally apply to the func-
tions gj/H defined in Eq. (21). This small bT behavior
corresponds, after exponentiation, to a Gaussian for a
TMD parton density.
We should emphasize that our result that perturbation

theory approximately reproduces the fitted values of g2
does not imply that it should get them exactly correct:
The fitted values have also to allow for both uncalcu-
lated higher-order perturbative terms and for genuinely
nonperturbative e↵ects.

VII. LARGE-bT BEHAVIOR OF CORRELATION
FUNCTION

A. General properties

Appropriate parameterizations for the nonperturba-
tive large-bT behavior of TMD parton densities and of
the CSS kernel K̃ need to be informed by the expecta-
tions from the general principles of quantum field theory.
All of these quantities are certain kinds of Euclidean cor-
relation function. Therefore we generally expect them to
decay exponentially (supplemented by a power law):

1

bT
↵ e

�mbT (73)

for large distance bT. Here m is the mass of the lowest
mass state that can be exchanged in the relevant channel.

4

the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
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Minimal �2
d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.
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Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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We will focus on the type of models that satisfy the
requirements suggested in [? ]. There, the authors pro-

We consider 
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posed that in the limit bT ! 1, TMDs should decay
exponentially, based in general field-theoretical consider-
ations. In our case we require that in the limit bT ! 1

log(MD) ⇠ �C bT + o (bT) , (3)

with C a positive mass parameter and where we have
used the little-o symbol to indicate terms of order smaller
than O (bT). Thus, we will concentrate on the first two
models in Table II, leaving out the The Bessel-K-Fg

model since taking its logarithm gives a quadratic leading
term in the limit bT ! 1.

C. Behaviour of gK in the large-bT limit.

D. TMDFF z-dependence and choice of collinear
FFs

Appendix A: notes

• collins reogers 2015:

Both the perturbative calculability of the small
bT dependence and the universality of the
large bT dependence are important fea-
tures of the TMD factorization theorem,
and predictive power is optimized when
both are fully exploited

gk is strongly universal, thus providing an im-
portant test for TMD factorization.

... we agree with Schweitzer et al. [53] that

TMD parton densities and fragmentation
functions should decay exponentially at
large bT, with a decay length correspond-
ing to the mass of the lowest relevant
state.

As regards the CSS evolution kernel K˜ , the
same argument suggests that it goes to a
constant at large bT (and hence that our
master function A goes to zero).

The quadratic form for K˜ (and hence A) can
only be valid over a limited range of mod-
erately large bT. One should not continue
the b2 T form to the larger values of bT
that are important for processes at low
Q. The result is then that the evolution of
TMD pdfs is much weaker at low Q than
would otherwise happen. A related pro-
posal for the nonperturbative form was
given by Collins and Soper [54]. Their
form was logarithmic instead of quadratic,
and the particular formula was designed
to provide a better match to the pertur-
bative part of K˜ in the extrapolation to
large bT
Appendix B: to include

• in CR paper, they shoe fig 1 and explain what our
fig 5 shows. Make remarks on this.

Non-
perturbative 
function

Mass parameter
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
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Minimal �2
d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same
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TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.

�
2
d.o.f. (fixed-T fits)

T = 0.750 0.825 0.875
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tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
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as far as describing the selected data is concerned. This
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detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.

FIG. 5.

We will focus on the type of models that satisfy the
requirements suggested in [? ]. There, the authors pro-
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only be valid over a limited range of mod-
erately large bT. One should not continue
the b2 T form to the larger values of bT
that are important for processes at low
Q. The result is then that the evolution of
TMD pdfs is much weaker at low Q than
would otherwise happen. A related pro-
posal for the nonperturbative form was
given by Collins and Soper [54]. Their
form was logarithmic instead of quadratic,
and the particular formula was designed
to provide a better match to the pertur-
bative part of K˜ in the extrapolation to
large bT
Appendix B: to include

• in CR paper, they shoe fig 1 and explain what our
fig 5 shows. Make remarks on this.
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Final remarks  
           

• NNFF seem to work well to extract TMDFF in Belle data 
• Gaussian behaviour in bT describes the data but NOT 

because of its asymptotic behaviour 
• Cannot constrain phenomenologically the asymptotic 

behaviour of the TMDFF  
• Instead we use the hypothesis that its logarithm should be 

dominantly linear.  
• We attempted to describe multidimensional data without 

modifying such leading behaviour of the TMDFF by 
parameterising gk with a logarithmic asymptotic 
behaviour. 

• Results are promising but must improve limited range of T 
 Should  



Thanks


