Phenomenology of hadron production in e+e- collisions

UNIVERSITÀ DEGLI STUDI DI TORINO

J Osvaldo Gonzalez-Hernandez University of Turin

Sar WorS 2021

Outlook

• Theoretical framework for e+e- -> h X

• Global fits

 Phenomenological analysis of recent BELLE data

- zh-dependence and choice of collinear FFs
- Model for PT-dependence
- Hypotheses for gK (work in progress)

$$\begin{split} \frac{d\sigma^{\mathrm{NLO, NLL}}}{dz_{h} dT dT dP_{T}^{2}} &= \\ &= -\sigma_{B} \pi N_{C} \frac{\alpha_{S}(Q)}{4\pi} C_{F} \frac{3 + 8 \log (1 - T)}{1 - T} \exp \left\{ -\frac{\alpha_{S}(Q)}{4\pi} 3C_{F} (\log (1 - T))^{2} \right\} \times \\ &\times \sum_{f} e_{f}^{2} \int \frac{d^{2} \vec{b}_{T}}{(2\pi)^{2}} e^{i\frac{\vec{p}_{T}}{z_{h}} \cdot \vec{b}_{T}} \widetilde{D}_{1,H/f}^{\mathrm{NLL}}(z_{h}, b_{T}, Q, (1 - T) Q^{2}) \left[1 + \mathcal{O} \left(\frac{M_{H}^{2}}{Q^{2}} \right) \right] \\ \widetilde{D}_{1,H/f}(z, b_{T}; \mu, \zeta) &= \frac{1}{z^{2}} \sum_{k} \int_{z}^{1} \frac{d\rho}{\rho} d_{H/k}(z/\rho, \mu_{b}) \left[\rho^{2} \mathcal{C}_{k/f} (\rho, \alpha_{S}(\mu_{b})) \right] \times \\ &\quad \mathrm{TMD \ at \ reference \ scale} \\ &\times \exp \left\{ \frac{1}{4} \widetilde{K}(b_{T}^{*}; \mu_{b}) \log \frac{\zeta}{\mu_{b}^{2}} + \int_{\mu_{b}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{D}(\alpha_{S}(\mu'), 1) - \frac{1}{4} \gamma_{K}(\alpha_{S}(\mu')) \log \frac{\zeta}{\mu'^{2}} \right] \right] \\ &\quad \mathrm{Perturbative \ Sudakov \ Factor} \\ &\times \underbrace{(M_{D})_{j,H}(z, b_{T}) \exp \left\{ -\frac{1}{4} g_{K}(b_{T}) \log \frac{z_{h}^{2} \zeta}{M_{H}^{2}} \right\}. \\ &\quad \mathrm{Non-Perturbative \ content} \end{split}$$

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

 $\frac{d\sigma}{dP_T} = d\widehat{\sigma} \otimes D^{\star}(.$

 $D = D^* \sqrt{M_S}$

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

Same constraints to collinear FF

$$g_K(b_T) = \widetilde{K}(b_T^\star; \mu) - \widetilde{K}(b_T; \mu)$$

Same function for non-perturbative evolution

 $\frac{d\sigma}{dP_T} = d\widehat{\sigma} \otimes D^{\star}(.$

 $D = D^* \sqrt{M_S}$

What is the effect of the collinear FFs (and PDFs in general) ?

Large-bT behaviour of gK ?

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

$$e^+e^- \to hX$$

 $\frac{d\sigma}{dP_T} = d\widehat{\sigma} \otimes \mathbf{D}^\star$

Possible roadmap

Extraction of the unpolarized TMD FF, D*, for charged pions from BELLE data (using factorization definition)

Two non-perturbative functions: D*, known from step 1 Soft Model M_s

3. SIDIS

1.

Three non-perturbative functions in the cross section D*, known from step 1. Soft Model M_s , known from step 2.

Extraction of the TMD PDF, F* (in the factorization definition, $F^* \neq F$).

Some important aspects to consider:

- Which collinear functions are more appropriate?
- Which regions in bT are being mapped by extractions.
- Constraints of bT-behaviour for TMDs.
- Physical pictures/theoretical arguments /models (not parametrizations)
- Non perturbative evolution (gK) should be consistent with SIDIS, DY, e+e- two-hadron production.

Phenomenological analysis of recent BELLE data

Data overview

$$e^+e^- \to hX$$

(Charged pions)

Binned in PT, zh and T (thrust)

0.06<PT<2.5 GeV

0.125<zh<0.975

0.6<T<0.975

• We compare results obtained with NNFFnIo and JAM20nIo

$$\widetilde{D}_{1,H/f}(z, b_T; \mu, \zeta) = \frac{1}{z^2} \sum_k \int_z^1 \frac{d\rho}{\rho} d_{H/k}(z/\rho, \mu_b) \left[\rho^2 \mathcal{C}_{k/f}(\rho, \alpha_S(\mu_b)) \right] \times$$

$$\text{TMD at reference scale}$$

$$\times \exp\left\{ \frac{1}{4} \widetilde{K}(b_T^*; \mu_b) \log \frac{\zeta}{\mu_b^2} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_D(\alpha_S(\mu'), 1) - \frac{1}{4} \gamma_K(\alpha_S(\mu')) \log \frac{\zeta}{\mu'^2} \right] \right\}$$

$$\text{Perturbative Sudakov Factor}$$

$$\times (M_D)_{j,H}(z, b_T) \exp\left\{ -\frac{1}{4} g_K(b_T) \log \frac{z_h^2 \zeta}{M_H^2} \right\}.$$

$$\text{Non-Perturbative content}$$

• We compare results obtained with NNFFnlo and JAM20nlo

• We compare results obtained with NNFFnlo and JAM20nlo

Nomenclature	$M_{\rm D}$ -model	parameters		
z_h -independent models				
1)Exponential-q	$e^{-(M_0b_{ m T})^q}$	M_0, q		
2)Bessel-K	$\frac{2^{2-p}(b_{\rm T}M_0)^{p-1}}{\Gamma(p-1)}K_{p-1}(b_{\rm T}M_0)$	M_0, p	C	

Proxy models: performed fits at fixed T=0.875. One INDEPENDENT fit for each zh-bin in the range 0.25<zh<0.7

• We compare results obtained with NNFFnlo and JAM20nlo

Proxy models: performed fits at fixed T=0.875. One INDEPENDENT fit for each zh-bin in the range 0.25<zh<0.7

Stronger zh-dependence in *dimensionfull* parameter

• We compare results obtained with NNFFnlo and JAM20nlo

Stronger zh-dependence in *dimensionfull* parameter

Next Step, try fitting zh-bins simultaneously (fixed T=0.875)

• We compare results obtained with NNFFnlo and JAM20nlo

Next Step, try fitting zh-bins simultaneously (fixed T=0.875)

• We compare results obtained with NNFFnlo and JAM20nlo

• We compare results obtained with NNFFnIo and JAM20nIo

Nomenclature	$M_{\rm D}$ -model	parameters	Г	т =	- 0 875		
z_h -independent models		13		- 0.013	1	JAM20	
1)Exponential-q	$e^{-(M_0b_{\mathrm{T}})^q}$	M_0, q	10			+	
2)Bessel-K	$\frac{2^{2-p}(b_{\rm T}M_0)^{p-1}}{\Gamma(p-1)}K_{p-1}(b_{\rm T}M_0)$	M_0, p	X ² dof 7			+	Bessel-K + gaussz
z_h -dependent models							
3)Bessel-K- M_1^z	$M_0 \to M_1 \left(1 - \eta_1 \log(z_h) \right)$	M_1,η_1,p	4 -			1	
4)Bessel-K- M_2^z	$M_0 \to M_2 \left(1 + \frac{\eta_2}{z_1^2} \right)$	M_2,η_2,p	1			+	
	$\sim h/$			mass2	mass gaussz	0.75	0.825 0.875
5)Bessel-K- M_g^z	$e^{(M_g b_{\rm T})^2 \log(z_h)} \times \text{Bessel-K}$	M_g, M_0, p			Next Ste	ep, try fit	ting

Systematically NNFFs outperform

zh-bins simultaneously (fixed T=0.750, 0.825, 0.875)

• Where did the improvement come from?

Nomenclature	$M_{\rm D}$ -model	parameters			
z_h -independent models					
1)Exponential-q	$e^{-(M_0b_{\mathrm{T}})^q}$	M_0, q			
2)Bessel-K	$\frac{2^{2-p}(b_{\rm T}M_0)^{p-1}}{\Gamma(p-1)}K_{p-1}(b_{\rm T}M_0)$	M_0, p			
z_h -dependent models					
3)Bessel-K- M_1^z	$M_0 \to M_1 \left(1 - \eta_1 \log(z_h) \right)$	M_1,η_1,p			
4)Bessel-K- M_2^z	$M_0 \to M_2 \left(1 + \frac{\eta_2}{z_h^2} \right)$	M_2,η_2,p			
5)Bessel-K- M_g^z	$e^{(M_g b_{\rm T})^2 \log(z_h)} \times \text{Bessel-K}$	M_g, M_0, p			

• Where did the improvement come from?

Model for PT-dependence

$$M_{\rm D} = \frac{2^{2-p} (b_{\rm T} M_0)^{p-1}}{\Gamma(p-1)} K_{p-1} (b_{\rm T} M_0) \times F(b_{\rm T}, z_h)$$

$$M_z = M_0 (1 - \eta \log(z_h))$$
Nomenclature F-model parameters
$$1) \text{Bessel-K-}F_1 \quad F = \left(\frac{1 + \log(1 + b_{\rm T} M_z)}{1 + (b_{\rm T} M_z)}\right)^q \quad M_0, \eta, p, q$$

$$2) \text{Bessel-K-}F_2 \quad F = \frac{1}{1 + (b_{\rm T} M_z)^q} \qquad M_0, \eta, p, q$$

$$3) \text{Bessel-K-}F_g \quad F = \exp\left((M_g b_{\rm T})^2 \log(z_h)\right) \qquad M_0, M_g, p$$

Model for PT-dependence

$M_{\rm D} = \frac{2^{2-p} (b_{\rm T} M_0)^{p-1}}{\Gamma(p-1)} K_{p-1}(b_{\rm T} M_0) \times F(b_{\rm T}, z_h)$		$\chi^2_{\rm d.o.f.}$ (fixed-T fits)				
		$T = 0.750 \ 0.825 \ 0.875$				
$M_z = M_0 \left(1 - \eta \log(z_h) \right)$		Bessel-K- F_1	3.06	1.24	0.65	
Nomenclature	<i>F</i> -model	parameters	Bessel-K- F_2	3.02	1.26	0.97
1)Bessel-K- F_1	$F = \left(\frac{1 + \log(1 + b_{\rm T}M_z)}{1 + (b_{\rm T}M_z)}\right)^q$	M_0,η,p,q	Bessel-K- F_a	2.82	1.29	0.68
2)Bessel-K- F_2	$F = \frac{1}{1 + (b_{\mathrm{T}}M_z)^q}$	M_0,η,p,q	g			
$3) Bessel-K-F_g$	$F = \exp\left((M_g b_{\rm T})^2 \log(z_h)\right)$	M_0, M_g, p	Fit all zh-bins in the range 0.25 <zh<0.7< td=""></zh<0.7<>			
			qT/Q<0.2			

Hard to discriminate bT-models

Model for PT-dependence

Model for PT-dependence

All three models match the data, different asymptotic behaviour Which choice?

Model for PT-dependence

P. Schweitzer, M. Strikman, and C. Weiss, JHEP 1301, 163 (2013)

J. Collins and T. Rogers, Phys. Rev. D91 (2015) 074020, [1412.3820].

We consider $\log(M_{\rm D}) \sim -C b_{\rm T} + o(b_{\rm T})$

TMDFF ~
$$M_{\rm D} \exp\left(-\frac{g_{\rm K}(b_{\rm T})}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right)$$

$$\log (\text{TMDFF}) \sim -Cb_{\text{T}} - \frac{g_{\text{K}}(b_{\text{T}})}{4} \log \left(\frac{\zeta}{\zeta_0}\right) + o(b_{\text{T}})$$

We consider $\log(M_{\rm D}) \sim -C b_{\rm T} + o(b_{\rm T})$

TMDFF ~
$$M_{\rm D} \exp\left(-\frac{g_{\rm K}(b_{\rm T})}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right)$$

$$\log (\text{TMDFF}) \sim -Cb_{\text{T}} - \frac{g_{\text{K}}(b_{\text{T}})}{4} \log \left(\frac{\zeta}{\zeta_0}\right) + o(b_{\text{T}})$$

If $g_{\rm K}(b_{\rm T}) = O(b_{\rm T})$, the argument of exponential may flip sign depending on ζ_0 and ζ (relevant for global fits)

We consider $\log(M_{\rm D}) \sim -C b_{\rm T} + o(b_{\rm T})$

TMDFF ~
$$M_{\rm D} \exp\left(-\frac{g_{\rm K}(b_{\rm T})}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right)$$

$$\log (\text{TMDFF}) \sim -Cb_{\text{T}} - \frac{g_{\text{K}}(b_{\text{T}})}{4} \log \left(\frac{\zeta}{\zeta_0}\right) + o(b_{\text{T}})$$

If $g_{\rm K}(b_{\rm T}) = o(b_{\rm T})$ limit of TMDFF always zero for $b_{\rm T} \to \infty$

This avoids a fast decaying behaviour for $\,g_{
m K}(b_{
m T})\,$ as $\,b_{
m T}
ightarrow\infty$

We consider $\log(M_{\rm D}) \sim -C b_{\rm T} + o(b_{\rm T})$

TMDFF ~
$$M_{\rm D} \exp\left(-\frac{g_{\rm K}(b_{\rm T})}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right)$$

$$\log (\text{TMDFF}) \sim -Cb_{\text{T}} - \frac{g_{\text{K}}(b_{\text{T}})}{4} \log \left(\frac{\zeta}{\zeta_0}\right) + o(b_{\text{T}})$$

If $g_{\rm K}(b_{\rm T}) = o(b_{\rm T})$ limit of TMDFF always zero for $b_{\rm T} \to \infty$

This avoids a fast decaying behaviour for $\,g_{
m K}(b_{
m T})\,$ as $\,b_{
m T}
ightarrow\infty$

For instance
$$g_{\rm K} = \log \left(1 + (M_k b_{\rm T})^{p_k}\right)$$

Final remarks

- NNFF seem to work well to extract TMDFF in Belle data
- Gaussian behaviour in bT describes the data but NOT because of its asymptotic behaviour
- Cannot constrain phenomenologically the asymptotic behaviour of the TMDFF
- Instead we use the hypothesis that its logarithm should be dominantly linear.
- We attempted to describe multidimensional data without modifying such leading behaviour of the TMDFF by parameterising gk with a logarithmic asymptotic behaviour.
- Results are promising but must improve limited range of T

Thanks