TMD fragmentation functions from electron-positron annihilation: experimental results

single-hadron*) (TMD) fragmentation functions

*) complemented by rich world of di-hadron FFs

	quark pol.			
		U	L	T
	U	D_{1}		H_{1}^{\perp}
	L		G_{1}	$H_{1 L}^{\perp}$
	T	$D_{1 T}^{\perp}$	$G_{1 T}^{\perp}$	$H_{1} H_{1 T}^{\perp}$

single-hadron*) (TMD) fragmentation functions

*) complemented by rich world of di-hadron FFs

single-hadron*) (TMD) fragmentation functions

*) complemented by rich world of di-hadron FFs

single-hadron*) (TMD) fragmentation functions

*) complemented by rich world of di-hadron FFs

single-hadron*) (TMD) fragmentation functions

*) complemented by rich world of di-hadron FFs

\rightarrow FFs act as quark flavor-tagger and polarimeter

$e^{+} e^{-}$annihilation at BESIII, BaBar \& Belle

- BESIII: symmetric collider ($E_{e}=1 . . .2 .4 \mathrm{GeV}$)
- BaBar/Belle: asymmetric beam-energy $e^{+} e^{-}$collider near/at $\Upsilon(4 S)$ resonance

$e^{+} e^{-}$annihilation at BESIII, BaBar \& Belle

- BESIII: symmetric collider ($E_{e}=1 . . .2 .4 \mathrm{GeV}$)
- BaBar/Belle: asymmetric beam-energy $e^{+} e^{-}$collider near/at $\Upsilon(4 S)$ resonance
- different scales (sensitivities to quark flavor
- integrated lumi used for FF analyses:

	$\Upsilon(4 S)$ on resonance	$\Upsilon(4 S)$ off resonance	other
BaBar	$424.2 \mathrm{fb}^{-1}$	$43.9 \mathrm{fb}^{-1}$	
Belle	$(140+571) \mathrm{fb}^{-1}$	$(15.6+73.8) \mathrm{fb}^{-1}$	$\sim 180 \mathrm{fb}^{-1} @ \Upsilon(\mathrm{nS})$
BESIII			$\left.\sim 62 \mathrm{pb}^{-1} @ 3.65 \mathrm{GeV} *\right)$

fragmentation in $e^{+} e^{-}$annihilation

- single-inclusive hadron production, $e^{+} e^{-} \rightarrow h X$
- D_{1} fragmentation function
- $\left(D_{1 T^{\perp}}\right.$ spontaneous transv. polarization)

fragmentation in $e^{+} e^{-}$annihilation

- single-inclusive hadron production, $e^{+} e^{-} \rightarrow h X$
- D_{1} fragmentation function
- ($D_{1 T^{\perp}}$ spontaneous transv. polarization)
- inclusive "back-to-back" hadron pairs, $e^{+} e^{-} \rightarrow h_{1} h_{2} X$
- product of fragmentation functions

Thrust (axis)
$T \stackrel{\max }{=} \frac{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}\right|}{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}}\right|}$

- flavor, transverse-momentum, and/or polarization tagging

fragmentation in $e^{+} e^{-}$annihilation

Thrust (axis):

- single-inclusive hadron production, $e^{+} e^{-} \rightarrow h X$
- D_{1} fragmentation function
- ($D_{1 T^{\perp}}$ spontaneous transv. polarization)
- inclusive "back-to-back" hadron pairs, $e^{+} e^{-} \rightarrow h_{1} h_{2} X$
- product of fragmentation functions
$T \stackrel{\max }{=} \frac{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}\right|}{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}}\right|}$

- flavor, transverse-momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, $e^{+} e^{-} \rightarrow h_{1} h_{2} X$
- di-hadron fragmentation

the collinear case

single-hadron production

- before 2013: lack of precision data at (moderately) high z and low \sqrt{s}
- limits analysis of evolution and gluon fragmentation
- limited information in kinematic region often used in semi-inclusive DIS

single-hadron production

- before 2013: lack of precision data at (moderately) high z and low \sqrt{s}
- limits analysis of evolution and gluon fragmentation
- limited information in kinematic region often used in semi-inclusive DIS
- by now also results from BaBar and Belle:
- BaBar Collaboration, Phys. Rev. D88 (2013) 032011: $\pi^{ \pm}, K^{ \pm}, ~ p+\bar{p}$

- Belle Collaboration, Phys. Rev. Lett. 111 (2013) 062002: $\boldsymbol{\pi}^{ \pm}, K^{ \pm}$
- Belle Collaboration, Phys. Rev. D92 (2015) 092007: $\pi^{ \pm}$, $K^{ \pm}, ~ p+\bar{p}$
- NEW: Belle Collaboration, Phys. Rev. D101 (2020) 092004: $\pi^{ \pm}, K^{ \pm}, p+\bar{p}$

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
- slight tension at low-z for BaBar and high-z for Belle

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035].
- slight tension at low-z for BaBar and high-z for Belle

- Belle radiative corrections "undone" in FF fits
[EPJC 77 (2017) 516, NNFF1.0]
In the case of the BELLE experiment we multiply all data points by a factor $1 / c$, with $c=0.65$ for charged pions and kaons [69] and with c a function of z for protons/antiprotons [53]. This correction is required in order to treat the BELLE data consistently with all the other SIA measurements included in NNFF1.0. The reason is that a kinematic cut on radiative photon events was applied to the BELLE data sample in the original analysis instead of unfolding the radiative QED effects. Specifically, the energy scales

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
- slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections "undone" in FF fits
- data available for (anti)protons
- not (yet) included in DEHSS, but in NNFF 1.0 [EPJC 77 (2017) 516]
- similar z dependence as pions
- about $\sim 1 / 5$ of pion cross sections

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
- slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections "undone" in FF fits
- data available for (anti)protons
- not (yet) included in DEHSS, but in NNFF 1.0 [EPJC 77 (2017) 516]
- similar z dependence as pions
- about $\sim 1 / 5$ of pion cross sections
- Belle re-analysis presented in PRD 101 (2020) 092004

- what to do with hadrons that have (somewhere) an ISR photon
- nothing! - leave it to phenomenology to deal with QED corrections
- reject all events that have an isolated photon?
- detectors almost never fully hermetic, many ISR photons travel down the beam pipe
- still fully inclusive neaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than $x \%$ of total available energy (e.g., 0.5% as in earlier Belle analyses)
- what is a reasonable choice for x ?
- ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
- use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED + QCD simulation
- again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)
- what to do with hadrons that have (somewhere) an ISR photon
- nothing! - leave it to phenomenology to deal with QED corrections
- reject all events that have an isolated photon?
- detectors almost never fully hermetic, many ISR photons travel down the beam pipe
- still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than $x \%$ of total available energy (e.g., 0.5% as in earlier Belle analyses)
- what is a reasonable choice for x ?
- ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
- use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
- again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)
- what to do with hadrons that have (somewhere) an ISR photon
- nothing! - leave it to phenomenology to deal with QED corrections
- reject all events that have an isolated photon?
- detectors almost never fully hermetic, many ISR photons travel down the beam pipe
- still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than $x \%$ of total available energy (e.g., 0.5% as in earlier Belle analyses)
- what is a reasonable choice for x ?
- ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
- use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
- again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)
- what to do with hadrons that have (somewhere) an ISR photon
- nothing! - leave it to phenomenology to deal with QED corrections
- reject all events that have an isolated photon?
- detectors almost never fully hermetic, many ISR photons travel down the beam pipe
- still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than $x \%$ of total available energy (e.g., 0.5% as in earlier Belle analyses)
- what is a reasonable choice for x ?
- ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
- use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
- again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

ISR corrections - PRD 92 (2015) 092007

- relative fractions of hadrons as a function of z originating from ISR or non-ISR events (\equiv energy loss less than 0.5\%)
- large non-ISR fraction at large z, as otherwise not kinematically reachable (remember $z=E_{h} / 0.5 \sqrt{S_{\text {nominal }}}$)
- keep only fraction of the events -> strictly speaking not single-inclusive annihilation

ISR corrections - PRD 101 (2020) 092004

- non-ISR / ISR fractions based on PYTHIA switch MSTP(11)
- PYTHIA model dependence; absorbed in systematics by variation of tunes

comparison old\&new Belle single-hadron cross sections

- previous analysis

comparison old\&new Belle single-hadron cross sections

- previous analysis

- updated analysis

comparison old\&new Belle single-hadron cross sections

- updated analysis

single-hadron production: hyperons

- Λ production reasonably well described by PYTHIA
- less satisfactory for heavier hyperons (a quite common problem)
- basically fails to describe Ω^{-}production

single-hadron production: data-MC comparison

- pion and(?) kaon data reasonably well described by Jetset
- protons difficult to reproduce, especially at large z
- MC overshoots data

pion fragmentation functions: fit comparisons

- still large differences in FF extractions
- also in "SIDIS" region, where needed as flavor tagger

[PRD 104 (2021) 034007]

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
- involves sum over all final-state particles in event

- event selection and hadron distributions dependent on thrust value T required
- low thrust -> more spherical

$$
T \stackrel{\max }{=} \frac{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}\right|}{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}}\right|}
$$

- high thrust -> highly collimated

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
- analysis performed differential in z \& $P_{h t}$, in various slices in thrust T (
- correction steps similar as for Pht-integrated cross sections

$$
T \stackrel{\max }{=} \frac{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}\right|}{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}}\right|}
$$

- Gaussian fits to transverse-momentum distribution provided for all hadrons in (z, T)-bins

thrust distribution: process contributions

- large contribution from BB at lower thrust
- large thrust dominated by uds and charm fragmentation (at very large T significant τ contribution for pions, not visible here)
- will concentrate mainly on $0.85<T<0.9$ bin, though others available as well

transverse-momentum distributions

- lowest T bin -> rather spherical events
- transverse momenta almost uniformly distributed in medium-z bins
- faster drop for heavier hadrons

transverse-momentum distributions

- $0.7<T<0.8$-> particles already more collimated
- transverse momenta more Gaussian distributed
- large-z region with large uncertainties

transverse-momentum distributions

- $0.8<T<0.85$
- transverse momenta mostly Gaussian distributed
- possible deviations for large- $P_{h t}$ tails [but also larger uncertainties]

transverse-momentum distributions

- $0.85<T<0.9$
- transverse momenta mostly Gaussian distributed; widths narrowing
- possible deviations for large-Pht tails [but also larger uncertainties]

transverse-momentum distributions

- $0.9<T<0.95$
- transverse momenta mostly Gaussian distributed; widths even narrower
- possible deviations for large- $P_{h t}$ tails [but also larger uncertainties]

transverse-momentum distributions

- $0.95<T<1.0$
- transverse momenta mostly Gaussian distributed
- widths very narrow as particles now very collimated

transverse-momentum: Gaussian widths

- $0.85<T<0.90$
- fit Gauss to low-Pht data
- mostly well described with possible exception at high z
- deviation from Gauss at large Pht
- clear increase of width with z for low values of z

\bullet	$\pi^{ \pm}$	$0.15<z<0.20$
\square	$\pi^{ \pm}$	$0.25<z<0.30$
4	$\pi^{ \pm}$	$0.35<z<0.40$
\checkmark	$\pi^{ \pm}$	$0.45<z<0.50$
888088	$\pi^{ \pm}$	$0.55<z<0.60$
¢¢	$\pi^{ \pm}$	$0.65<z<0.70$
- \triangle n	$\pi^{ \pm}$	$0.75<z<0.80$

transverse-momentum: Gaussian widths

- $0.85<T<0.90$

- fit Gauss to low-Pht data
- mostly well described with possible exception at high z
- deviation from Gauss at large $P_{h T}$
- clear increase of width with z for low values of z
- Gaussian widths as function of z
- general increase with z with turnover at larger values of z for mesons
- protons with smaller width and a more linear rise with z

transverse-momentum: Gaussian widths

- $0.85<T<0.90$
- fit Gauss to low-Pht data
- mostly well described with possible exception at high z
- deviation from Gauss at large Pht
- clear increase of width with z for low values of z

- Gaussian widths depend on z and T
- general increase with z with turnover at larger values of z
- clear decrease of widths with increase of T
- particles more and more collimated

hadron-pair production

- single-hadron production has low discriminating power for parton flavor
- can use $2^{\text {nd }}$ hadron in opposite hemisphere to "tag" flavor, transverse momentum, as well as polarization
- mainly sensitive to product of single-hadron FFs
- if hadrons in same hemisphere: dihadron fragmentation
- a la de Florian \& Vanni [Phys. Lett. B 578 (2004) 139]

- a la Collins, Heppelmann \& Ladinsky [NPB 420 (1994) 565]; Boer, Jacobs \& Radici [PRD 67 (2003) 094003]
- raises question of defining hemispheres
- common choices: separation by plane normal to i) thrust axis or to ii) one of the two hadrons (back-to-back case)
- alternatively, via relevant kinematic variables

hadron-pair production

- single-hadron production has low discriminating power for parton flavor
- can use $2^{\text {nd }}$ hadron in opposite hemisphere to "tag" flavor, transverse momentum, as well as polarization
- mainly sensitive to product of single-hadron FFs
- various definitions for scaling variable

- traditional z ("std"):

$$
\begin{array}{ll}
z_{i}=\frac{2 P_{i} \cdot q}{q^{2}} & (i=1,2) \\
z_{1}=\frac{2 P_{1} \cdot q}{q^{2}} & z_{2}=\frac{P_{1} \cdot P_{2}}{P_{1} \cdot q}
\end{array}
$$

- Altarelli et al. ("AEMP"): [Nucl. Phys. B160 (1979) 301]
- Mulders \& van Hulse ("MVH"): [PRD 100 (2019) 034011]

$$
z_{1}=\left(P_{1} \cdot P_{2}-\frac{M_{h 1}^{2} M_{h 2}^{2}}{P_{1} \cdot P_{2}}\right) \frac{1}{P_{2} \cdot q-M_{h 2}^{2} \frac{P_{1} \cdot q}{P_{1} \cdot P_{2}}}
$$

light-meson pair production

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
- no straightforward use in fits
- systematics dominated over entire kinematic range

light-meson pair production

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
- no straightforward use in fits
- clear flavor dependence
- suppression of like-sign pairs
- suppression of kaons
- more pronounced at large z (stronger flavor sensitivity)

light-meson pair production

Tr	$\pi^{+} \pi^{-}$(AEMP) $/ \pi^{+} \pi^{-}$(std)	-6] $\pi^{+} \pi^{+}$(AEMP) $/ \pi^{+} \pi^{+}$(std)
\triangle	$\pi^{+} \pi^{-}(\mathrm{MVH}) / \pi^{+} \pi^{-}$(std)	$\square \pi^{+} \pi^{+}(\mathrm{MVH}) / \pi^{+} \pi^{+}$(std)

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
- no straightforward use in fits
- clear flavor dependence
- suppression of like-sign pairs
- suppression of kaons
- more pronounced at large z (stronger flavor sensitivity)
- similar behavior for different z definitions when imposing T>0.8

[PRD 101 (2020) 092004]

light-meson pair production

$\pi^{+} \pi^{-}$(AEMP) $/ \pi^{+} \pi^{-}$(std)
C.0> $\pi^{+} \pi^{+}$(AEMP) $/ \pi^{+} \pi^{+}$(std) प $\pi^{+} \pi^{+}(\mathrm{MVH}) / \pi^{+} \pi^{+}$(std)

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
- no straightforward use in fits
- clear flavor dependence
- suppression of like-sign pairs
- suppression of kaons
- more pronounced at large z (stronger flavor sensitivity)
- similar behavior for different z definitions when imposing T>0.8
- larger suppression (low z) for fully
 inclusive pairs ("any hemisphere")

polarization
 despite unpolarized initial state

polarizing fragmentation

- large hyperon polarization in unpolarized hadron collision observed

polarizing fragmentation
- ... as well as in inclusive lepto-production

- large hyperon polarization in unpolarized hadron collision observed

polarizing fragmentation
- ... as well as in inclusive lepto-production
- caused by polarizing FF?

- large hyperon polarization in unpolarized hadron collision observed

polarizing fragmentation function

- polarization measured normal to production plane, i.e. $\propto\left(" \mathrm{Pq}^{\prime \prime} \times \mathrm{P}_{\Lambda}\right)$

- reference axis to define transverse momentum:
- "hadron frame" - use momentum direction of "back-to-back" hadron
- "thrust frame" - use thrust axis
- exploit self-analyzing weak decay of Λ to determine polarization
polarizing fragmentation function
[Belle, PRL 122 (2019) 042001]

- flavor tagging through hadrons in opposite hemisphere:
- large-zh hadrons tag quark flavor more efficiently
\Rightarrow enlarges differences between oppositely charged hadrons
- MC-based quark-flavor decomposition in backup

$$
z_{n}=\frac{E_{n}}{\sqrt{s} / 2}
$$

polarizing fragmentation function

- polarization measured as function of z and p_{T}
- strong dependence on both kinematics
- somewhat unexpected behavior for $\mathrm{p}_{\mathrm{T}}>0$

hadron pairs: angular correlations

- angular correlations between nearly back-to-back hadrons used to tag transverse quark polarization \rightarrow Collins fragmentation functions
- RFO: one hadron as reference axis $\rightarrow \cos \left(2 \phi_{0}\right)$ modulation
- RF12: thrust (or similar) axis $\quad>\cos \left(\phi_{1}+\phi_{2}\right)$ modulation

- RFO and RF12: different convolutions over transverse momenta
- debatable: MC used to "correct" thrust axis to qā axis

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)
- construct double ratio of normalized-yield distributions R12, e.g. unlike-/like-sign:

$$
\begin{aligned}
\frac{R_{12}^{U}}{R_{12}^{L}} & =\frac{1+\left\langle\left\langle\frac{\sin ^{2} \theta_{n}}{1+\theta^{n}}\right\rangle\right.}{1+\left\langle\frac{\sin ^{2} \theta_{\text {th }}}{1+\cos ^{2} \theta_{\text {th }}}\right\rangle G^{U} \cos \left(\phi_{1}+\phi_{2} \cos \left(\phi_{1}+\phi_{2}\right)\right.} \\
& \simeq 1+\left\langle\frac{\sin ^{2} \theta_{\text {th }}}{1+\cos ^{2} \theta_{\text {th }}}\right\rangle\left\{G^{U}-G^{L}\right\} \cos \left(\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

- suppresses flavor-independent sources of modulations
- GU/L: specific combinations of FFs
- remaining MC asymmetries

(b)

Collins asymmetries (RFO)

- first measurement of Collins asymmetries by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
- significant asymmetries rising with z
- used for first transversity and Collins FF extractions

Collins asymmetries (RFO)

- first measurement of Collins asymmetries by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
- significant asymmetries rising with z
- used for first transversity and Collins FF extractions

[Phys. Rev. D90 (2014) 052003]

- BaBar results [PRD 90 (2014) 052003] consistent with Belle

Collins asymmetries (RFO)

[Phys. Rev. D90 (2014) 052003]

- BaBar results [PRD 90 (2014) 052003] consistent with Belle
- BESIII [PRL 116 (2016) 042001] (at smaller s) consistent with TMD evolution [Kang et al., PRD 93 (2016) 014009]

Collins asymmetries - going further

- PT dependence for charged pions from BaBar and BES
- typical rise with $\mathrm{pr}_{\text {; }}$ turnover around 0.8 GeV

Collins asymmetries - going further

[PRD 90 (2014) 052003]

- PT dependence for charged pions from BaBar and BES
- typical rise with рт; turnover around 0.8 GeV
- ... now also from Belle in R12 frame:

Collins asymmetries - going further

- ... as well as for neutral pion and eta

$$
\begin{aligned}
& R_{12}^{\pi^{0}}=\frac{R_{12}^{0 \pm}}{R_{12}^{L}}=\frac{\pi^{0} \pi^{+}+\pi^{0} \pi^{-}}{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}} \\
& R_{12}^{\eta}=\frac{R_{12}^{\eta \pm}}{R_{12}^{L}}=\frac{\eta \pi^{+}+\eta \pi^{-}}{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}}
\end{aligned}
$$

- no significant differences observed

Collins asymmetries - going further

$$
\left.\begin{array}{rl}
R_{12}^{\pi^{0}}= & \frac{R_{12}^{0 \pm}}{R_{12}^{L}} \approx 1+\cos \left(\phi_{12}\right) \frac{\sin ^{2}(\theta)}{1+\cos ^{2}(\theta)} \\
\times & \left\{\frac{5\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right) \otimes\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right)+4 H_{1, s \rightarrow \pi}^{\perp, d i s} \otimes H_{1, s \rightarrow \pi}^{\perp, d i s}}{\left.5\left(D_{1}^{f a v}+D_{1}^{d i s}\right) \otimes\left(D_{1}^{f a v}+D_{1}^{d i s}\right)+4 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}\right)}\right. \\
& 5\left(H_{1}^{\perp, f a v} \otimes H_{1}^{\perp, \text { dis }}+H_{1}^{\perp, d i s} \otimes H_{1}^{\perp, f a v}\right)+2 H_{1, s \rightarrow \pi}^{\perp, d i s} H_{1, s \rightarrow \pi}^{\perp, d i s}
\end{array}\right\} \quad \text { isospin }=A_{12}^{=}-A_{12}^{U C}
$$

Collins asymmetries - going further

$$
\begin{aligned}
& R_{12}^{\pi^{0}}=\frac{R_{12}^{0 \pm}}{R_{12}^{L}} \approx 1+\cos \left(\phi_{12}\right) \frac{\sin ^{2}(\theta)}{1+\cos ^{2}(\theta)} \\
& \times\left\{\frac{5\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, \text { dis }}\right) \otimes\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, \text { dis }}\right)+4 H_{1, s \rightarrow \pi}^{\perp, \text { dis }} \otimes H_{1, s \rightarrow \pi}^{\perp, \text { dis }}}{\left.5\left(D_{1}^{f a v}+D_{1}^{d i s}\right) \otimes\left(D_{1}^{f a v}+D_{1}^{d i s}\right)+4 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}\right)}\right. \\
& \left.\left.-\frac{5\left(H_{1}^{\perp, f a v} \otimes H_{1}^{\perp, \text { dis }}+H_{1}^{\perp, \text { dis }} \otimes H_{1}^{\perp, f a v}\right)+2 H_{1, s \rightarrow \pi}^{\perp, \text { dis }} H_{1, s \rightarrow \pi}^{\perp, \text { dis }}}{5\left(D_{1}^{f a v} \otimes D_{1}^{\text {dis }}+D_{1}^{\text {dis }} \otimes D_{1}^{f a v}\right)+2 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}}\right\} .\right\} \\
& \stackrel{\text { isospin }}{=} A_{12}^{U L}-A_{12}^{U C}
\end{aligned}
$$

- consistency between neutral and charged pions
- typical rise with z also seen for neutral pions

Collins asymmetries - going further

$$
\left.\begin{array}{rl}
R_{12}^{\pi^{0}}= & \frac{R_{12}^{0 \pm}}{R_{12}^{L}} \approx 1+\cos \left(\phi_{12}\right) \frac{\sin ^{2}(\theta)}{1+\cos ^{2}(\theta)} \\
\times & \left\{\frac{5\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right) \otimes\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right)+4 H_{1, s \rightarrow \pi}^{\perp, d i s} \otimes H_{1, s \rightarrow \pi}^{\perp, d i s}}{\left.5\left(D_{1}^{f a v}+D_{1}^{d i s}\right) \otimes\left(D_{1}^{f a v}+D_{1}^{d i s}\right)+4 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}\right)}\right. \\
& \left.-\frac{5\left(H_{1}^{\perp, f a v} \otimes H_{1}^{\perp, d i s}+H_{1}^{\perp, d i s} \otimes H_{1}^{\perp, f a v}\right)+2 H_{1, s \rightarrow \pi}^{\perp, d i s} H_{1, s \rightarrow \pi}^{\perp, d i s}}{5\left(D_{1}^{f a v} \otimes D_{1}^{d i s}+D_{1}^{d i s} \otimes D_{1}^{f a v}\right)+2 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}}\right\} .
\end{array}\right\} \stackrel{\text { isospin } A_{12}^{U L}-A_{1}^{U C}}{ }=
$$

- consistency between neutral and charged pions
- typical rise with z also seen for neutral pions
- ... while basically flat for eta

Collins asymmetries - going further

- qualitative changes in 2019 Belle analysis w.r.t. previous Belle analyses:
- no correction to qā axis; \rightarrow rather to thrust axis, which is observable
- upper limit on opening angle imposed
- no correction for charm contribution; $\rightarrow \rightarrow$ provide charm fraction

the future

- several analyses still in the pipeline, e.g.,
- k_{T}-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII \& BaBar)
- Collins asymmetries:
- pion update w/ increased statistics (BESIII)
- kaon \& pion-kaon pairs; k_{T} dependence of Collins asymmetries (Belle, BESIII)
- Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
- lower-s data (BESIII)

the future

- several analyses still in the pipeline, e.g.,
- k_{T}-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII \& BaBar)
- Collins asymmetries:
- pion update w/ increased statistics (BESIII)
- kaon \& pion-kaon pairs; k_{T} dependence of Collins asymmetries (Belle, BESIII)
- Collins asymmetries w/o double ratios (BaBar)

- single-hadron production
- lower-s data (BESIII)

the future

- several analyses still in the pipeline, e.g.,
- k_{T}-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII \& BaBar)
- Collins asymmetries:
- pion update w/ increased statistics (BESIII)
- kaon \& pion-kaon pairs; k_{T} dependence of Collins asymmetries (Belle, BESIII)
- Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
- lower-s data (BESIII)

BESIII region

$$
\begin{gathered}
\sim 62 \mathrm{pb}^{-1} @ 3.52 \mathrm{GeV} \text { used for Collins asym's } \\
\text { aim at } 250 \mathrm{pb}^{-1} \text { data set }
\end{gathered}
$$

the future

- several analyses still in the pipeline, e.g.,
- k_{T}-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII \& BaBar)
- Collins asymmetries:
- pion update w/ increased statistics (BESIII)
- kaon \& pion-kaon pairs; k_{T} dependence of Collins asymmetries (Belle, BESIII)
- Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
- lower-s data (BESIII)
- new data from Belle II

BESIII region ~62pb ${ }^{-1}$ @3.52 GeV used for Collins asym's aim at $250 \mathrm{pb}^{-1}$ data se \dagger

the future

backup

quark-flavor contributions to Lambda prod.

[arXiv:1611.06648]

Z_{π}^{-}

