

This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement STRONG-2020 - No 824093

Sardinian Workshop on Spin Studies - Cagliari, September 6-8, 2021

TMD fragmentation functions from electron-positron annihilation: experimental results

single-hadron*) (TMD) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadron FFs

single-hadron*) (TMD) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadron FFs

- relevant for unpolarized final state

single-hadron^{*)} (TMD) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadron FFs

relevant for unpolarized final state

Collins FF: $H_1^{\perp,q \to h}$ ordinary FF: $D_1^{q \rightarrow h}$

FF ... fragmentation function

single-hadron^{*)} (TMD) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadron FFs

- relevant for unpolarized final state

polarized final-state hadrons

single-hadron^{*)} (TMD) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadron FFs

- relevant for unpolarized final state

polarized final-state hadrons

FF ... fragmentation function

e⁺e⁻ annihilation at BESIII, BaBar & Belle

e⁺e⁻ annihilation at BESIII, BaBar & Belle

- BESIII: symmetric collider ($E_e=1...2.4$ GeV)
- BaBar/Belle: asymmetric beam-energy e^+e^- collider near/at $\Upsilon(4S)$ resonance
- different scales (QCD evolution) and sensitivities to quark flavor
- Integrated lumi used for FF analyses:

	$\Upsilon(4S)$ on resonance	$\Upsilon(4S)$ off resonance	other
BaBar	424.2 fb ⁻¹	43.9 fb ⁻¹	
Belle	(140+571) fb ⁻¹	(15.6+73.8) fb ⁻¹	~180 fb⁻¹ @Ƴ(r
BESIII			~62 pb ⁻¹ @3.65 Ge

*) used for the Collins analysis

Gunar Schnell

fragmentation in e^+e^- annihilation

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation function
 - $(D_{1T} \perp spontaneous transv. polarization)$

fragmentation in e^+e^- annihilation

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation function
 - $(D_1 T^{\perp} \text{ spontaneous transv. polarization})$
- inclusive "back-to-back" hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - product of fragmentation functions
 - flavor, transverse-momentum, and/or polarization tagging

fragmentation in e^+e^- annihilation

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation function
 - $(D_1T^{\perp} \text{ spontaneous transv. polarization})$
- inclusive "back-to-back" hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - product of fragmentation functions
 - flavor, transverse-momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - di-hadron fragmentation

the collinear case

- before 2013: lack of precision data at (moderately) high z and low *Js*
- Imits analysis of evolution and gluon fragmentation
- Imited information in kinematic region often used in semi-inclusive DIS

- before 2013: lack of precision data at (moderately) high z and low *Js*
- Imits analysis of evolution and gluon fragmentation
- Imited information in kinematic region often used in semi-inclusive DIS
- by now also results from BaBar and Belle:

 - Belle Collaboration, Phys. Rev. Lett. 111 (2013) 062002: π^{\pm} , K[±]
 - Belle Collaboration, Phys. Rev. D92 (2015) 092007: π^{\pm} , K[±], p+ \bar{p}
 - NEW: Belle Collaboration, Phys. Rev. D101 (2020) 092004: π^{\pm} , K[±], p+p

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)</p>
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle

kaons <0.98) 1 (2015) 014035] high-z for Belle

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]₀₄
 - slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections "undone" in FF fits

[EPJC 77 (2017) 516, NNFF1.0]

In the case of the BELLE experiment we multiply all data points by a factor 1/c, with c = 0.65 for charged pions and kaons [69] and with c a function of z for protons/antiprotons [53]. This correction is required in order to treat the BELLE data consistently with all the other SIA measurements included in NNFF1.0. The reason is that a kinematic cut on radiative photon events was applied to the BELLE data sample in the original analysis instead of unfolding the radiative QED effects. Specifically, the energy scales

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections "undone" in FF fits
- data available for (anti)protons
 - not (yet) included in DEHSS, but in NNFF 1.0 [EPJC 77 (2017) 516]
 - similar z dependence as pions
 - about $\sim \frac{1}{5}$ of pion cross sections

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections "undone" in FF fits
- data available for (anti)protons
 - not (yet) included in DEHSS, but in NNFF 1.0 [EPJC 77 (2017) 516]
 - similar z dependence as pions
 - about $\sim \frac{1}{5}$ of pion cross sections

Belle re-analysis presented in PRD 101 (2020) 092004 Gunar Schnell

- what to do with hadrons that have (somewhere) an ISR photon
 - nothing! leave it to phenomenology to deal with QED corrections
 - reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
 - use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
 - use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

- what to do with hadrons that have (somewhere) an ISR photon
 - nothing! leave it to phenomenology to deal with QED corrections
 - reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
 - use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
 - use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

- what to do with hadrons that have (somewhere) an ISR photon
 - nothing! leave it to phenomenology to deal with QED corrections
 - reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
 - use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
 - use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

- what to do with hadrons that have (somewhere) an ISR photon
 - nothing! leave it to phenomenology to deal with QED corrections
 - reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
 - use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section (imagine sitting on 2-pion threshold, no phase space to radiate ISR photon and produce hadrons at then lower s)
 - use some Monte Carlo to estimate fraction of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

ISR corrections - PRD 92 (2015) 092007

- $(\equiv \text{energy loss less than } 0.5\%)$
 - $z = E_h / 0.5 \sqrt{s_{nominal}}$

keep only fraction of the events -> strictly speaking not single-inclusive annihilation

Gunar Schnell

relative fractions of hadrons as a function of z originating from ISR or non-ISR events

large non-ISR fraction at large z, as otherwise not kinematically reachable (remember

ISR corrections - PRD 101 (2020) 092004

• non-ISR / ISR fractions based on PYTHIA switch MSTP(11)

• PYTHIA model dependence; absorbed in systematics by variation of tunes

comparison old&new Belle single-hadron cross sections

Gunar Schnell

comparison old&new Belle single-hadron cross sections

Gunar Schnell

updated analysis

comparison old&new Belle single-hadron cross sections

Gunar Schnell

[PRD 101 (2020) 092004]

updated analysis

single-hadron production: hyperons.

single-hadron production: data-MC comparison

- pion and(?) kaon data reasonably well described by Jetset
- protons difficult to reproduce, especially at large z
 - MC overshoots data

pion fragmentation functions: fit comparisons

Gunar

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
 - involves sum over all final-state particles in event
 - event selection and hadron distributions dependent on thrust value T required
 - Iow thrust -> more spherical
 - high thrust -> highly collimated

$$T \stackrel{\text{max}}{=} \frac{\sum_{h} |\mathbf{P}_{h}^{\text{CMS}} \cdot \hat{\mathbf{n}}|}{\sum_{h} |\mathbf{P}_{h}^{\text{CMS}}|}$$

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
- analysis performed differential in z & P_{hT} , in various slices in thrust T (m 18x20x6 bins)
- correction steps similar as for P_{hT} -integrated cross sections
- Gaussian fits to transverse-momentum distribution provided for all hadrons in (z,T)-bins

thrust distribution: process contributions

large contribution from BB at lower thrust

large thrust dominated by uds and charm fragmentation

will concentrate mainly on 0.85<T<0.9 bin, though others available as well</p>

Gunar Schnell

[Belle, PRD 99 (2019) 112006]

(at very large T significant τ contribution for pions, not visible here)

transverse-momentum distributions

- transverse momenta almost uniformly distributed in medium-z bins
- faster drop for heavier \bigcirc hadrons

Gunar Schnell

[PRD

transverse-momentum distributions

- transverse momenta more Gaussian distributed
- Iarge-z region with large uncertainties

(2019) 112006 66

[PRD

transverse-momentum distributions

• 0.8<T<0.85

- transverse momenta mostly 0 Gaussian distributed
- possible deviations for large-Pht tails [but also larger uncertainties]

transverse-momentum distributions

• 0.85<T<0.9

- transverse momenta mostly \mathbf{O} Gaussian distributed; widths narrowing
- possible deviations for \mathbf{O} large-Pht tails [but also larger uncertainties]

Gunar Schnell

transverse-momentum distributions

• 0.9<T<0.95

- transverse momenta mostly Gaussian distributed; widths even narrower
- possible deviations for \mathbf{O} large-Pht tails [but also larger uncertainties]

Gunar Schnell

[PRD

transverse-momentum distributions

• 0.95<T<1.0

- transverse momenta mostly \mathbf{O} Gaussian distributed
- widths very narrow as particles now very collimated

Gunar Schnell

transverse-momentum: Gaussian widths

- 0.85<T<0.90
 - fit Gauss to low-Pht data
 - mostly well described with possible exception at high z
 - deviation from Gauss at large PhT
 - clear increase of width with z for low values of z

	π^{\pm}	0.15 < z < 0.20
V// = ///	π^{\pm}	0.25 < z < 0.30
	π^{\pm}	0.35 < z < 0.40
	π^{\pm}	0.45 < z < 0.50
8332 9 3323	π^{\pm}	0.55 < z < 0.60
$\langle \langle \langle \mathbf{t} \rangle \rangle \rangle$	π^{\pm}	0.65 < z < 0.70
~~d~~	π^{\pm}	0.75 < z < 0.80

9 01 N N 9 5

[PRD

transverse-momentum: Gaussian widths

- 0.85<T<0.90
 - fit Gauss to low-Pht data
 - mostly well described with possible exception at high z
 - deviation from Gauss at large P_{hT}
 - clear increase of width with z for low values of z
- Gaussian widths as function of z
 - general increase with z with turnover at larger values of z for mesons
 - protons with smaller width and a more linear rise with z

9
0
0
\sim
5
Ο
N
$\mathbf{\tilde{\mathbf{C}}}$
66
5

-	
5)
C	
C)
5	J
-	-

2019

66

[PRC

transverse-momentum: Gaussian widths

- 0.85<T<0.90
 - fit Gauss to low-Pht data
 - mostly well described with possible exception at high z
 - deviation from Gauss at large PhT
 - clear increase of width with z for low values of z
- Gaussian widths depend on z and T
 - general increase with z with turnover at larger values of z
 - clear decrease of widths with increase of T
 - particles more and more collimated

Gunar Schnell

9
0
0
\sim
5
Ο
N
$\mathbf{\tilde{\mathbf{C}}}$
66
5

)
Δ	
0	
	1

-	
S	
C	
C	
0	J
-	ł

[PRI

single-hadron production has low discriminating power for parton flavor

- can use 2nd hadron in opposite hemisphere to "tag" flavor, transverse momentum, as well as polarization
 - mainly sensitive to product of single-hadron FFs
- If hadrons in same hemisphere: dihadron fragmentation
 - a la de Florian & Vanni [Phys. Lett. B 578 (2004) 139]
 - a la Collins, Heppelmann & Ladinsky [NPB 420 (1994) 565]; Boer, Jacobs & Radici [PRD 67 (2003) 094003]
- raises question of defining hemispheres
 - common choices: separation by plane normal to i) thrust axis or to ii) one of the two hadrons (back-to-back case)
 - alternatively, via relevant kinematic variables

Gunar Schnell

hadron-pair production

- single-hadron production has low discriminating power for parton flavor
- can use 2nd hadron in opposite hemisphere to "tag" flavor, transverse momentum, as well as polarization
 - mainly sensitive to product of single-hadron FFs
- various definitions for scaling variable
 - traditional z ("std"):
 - Altarelli et al. ("AEMP"): **(**) $z_1 =$ [Nucl. Phys. B160 (1979) 301]
 - Mulders & van Hulse ("MVH"): [PRD 100 (2019) 034011]

Gunar Schnell

hadron-pair production

$$z_{i} = \frac{2P_{i} \cdot q}{q^{2}} \qquad (i = 1, 2)$$

$$z_{1} = \frac{2P_{1} \cdot q}{q^{2}} \qquad z_{2} = \frac{P_{1} \cdot P_{2}}{P_{1} \cdot q}$$

$$z_{1} = \left(P_{1} \cdot P_{2} - \frac{M_{h1}^{2} M_{h2}^{2}}{P_{1} \cdot P_{2}}\right) \frac{1}{P_{2} \cdot q - M_{h2}^{2} \frac{P_{1} \cdot q}{P_{1} \cdot P_{2}}}$$

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
 - no straightforward use in fits
- systematics dominated over entire kinematic range

Sar WorS 2021

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
 - no straightforward use in fits
- clear flavor dependence
 - suppression of like-sign pairs
 - suppression of kaons
 - more pronounced at large z (stronger flavor sensitivity)

[PRD 101 (2020) 092004]

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
 - no straightforward use in fits
- clear flavor dependence
 - suppression of like-sign pairs
 - suppression of kaons
 - more pronounced at large z (stronger flavor sensitivity)
- similar behavior for different z definitions when imposing T>0.8

33

- systematics dominated over entire kinematic range
- strongly asymmetric systematics
 - no straightforward use in fits
- clear flavor dependence
 - suppression of like-sign pairs
 - suppression of kaons
 - more pronounced at large z (stronger flavor sensitivity)
- similar behavior for different z definitions when imposing T>0.8

larger suppression (low z) for fully inclusive pairs ("any hemisphere") Gunar Schnell

Sar WorS 2021

polarization despite unpolarized initial state

polarizing fragmentation

Gunar Schnell

p

polarizing fragmentation

- Iarge hyperon polarization in unpolarized hadron collision observed
- ... as well as in inclusive lepto-production

polarizing fragmentation

- Iarge hyperon polarization in unpolarized hadron collision observed
- ... as well as in inclusive lepto-production
- caused by polarizing FF?

polarizing fragmentation function

polarization measured normal to production plane, i.e. \propto ("P_q" × P_A)

reference axis to define transverse momentum:

"hadron frame" - use momentum direction of "back-to-back" hadron

"thrust frame" - use thrust axis

exploit self-analyzing weak decay of Λ to determine polarization Gunar Schnell

37

polarizing fragmentation function

- flavor tagging through hadrons in opposite hemisphere:
 - Iarge-z_h hadrons tag quark flavor more efficiently
 - enlarges differences between oppositely charged hadrons
 - MC-based quark-flavor decomposition in backup

 $\sqrt{s}/2$ Sar WorS 2021

polarizing fragmentation function

polarization measured as function of z and p_T

- strong dependence on both kinematics
 - somewhat unexpected behavior for p_T -> 0

hadron pairs: angular correlations

- polarization -> Collins fragmentation functions
 - RFO: one hadron as reference axis $\rightarrow cos(2\phi_0)$ modulation
 - RF12: thrust (or similar) axis $\rightarrow cos(\phi_1 + \phi_2)$ modulation

• angular correlations between nearly back-to-back hadrons used to tag transverse quark

- ivolutions over transverse momenta
- 'ect" thrust axis to qq axis

Sar WorS 2021

hadron pairs: angular correlations

challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)

Gunar Schnell

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)
- construct double ratio of normalized-yield distributions R₁₂, e.g. unlike-/like-sign:

$$\begin{split} \frac{R_{12}^U}{R_{12}^L} &\simeq \frac{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^U \cos(\phi_1 + \phi_2)}{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^L \cos(\phi_1 + \phi_2)} \\ &\simeq 1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle \{G^U - G^L\} \cos(\phi_1 + \phi_2)\} \end{split}$$

- suppresses flavor-independent sources of modulations
- $G^{U/L}$: specific combinations of FFs
- remaining MC asymmetries **systematics**

Gunar Schnell

 $(\phi_1 + \phi_2)$

- first measurement of Collins asymmetries by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
 - significant asymmetries rising with z
 - used for first transversity and Collins FF extractions

Collins asymmetries (RFO)

Sar WorS 2021

- first measurement of Collins asymmetries by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
 - significant asymmetries rising with z
 - used for first transversity and Collins FF extractions

Gunar Schnell

consistent with Belle

Gunar Schnell

Sar WorS 2021

Gunar Schnell

43

p_T dependence for charged pions from BaBar and BES
 typical rise with p_T; turnover around 0.8 GeV

arXiv:1507.06824

• ... as well as for neutral pion and eta

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} = \frac{\pi^{0}\pi^{+} + \pi^{0}\pi^{-}}{\pi^{+}\pi^{+} + \pi^{-}\pi^{-}}$$
$$R_{12}^{\eta} = \frac{R_{12}^{\eta\pm}}{R_{12}^{L}} = \frac{\eta\pi^{+} + \eta\pi^{-}}{\pi^{+}\pi^{+} + \pi^{-}\pi^{-}}$$

no significant differences observed

Gunar Schnell

 A_{12}

 A_{12}

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1})}{5(D_{1}^{fav} + I_{1})} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s \to \pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s \to \pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

- consistency between neutral and charged pions
 - typical rise with z also seen for neutral pions

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

[PRD 100 (2019) 92008]

Gunar Schnell

- consistency between neutral and charged pions
 - typical rise with z also seen for neutral pions
 - ... while basically flat for eta

- qualitative changes in 2019 Belle analysis w.r.t. previous Belle analyses:
 - no correction to qq axis;
 - upper limit on opening angle imposed
 - no correction for charm contribution; provide charm fraction

- k_-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII & BaBar)
- Collins asymmetries:
 - pion update w/ increased statistics (BESIII) **(**)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
 - Iower-s data (BESIII)

the future

- k_-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII & BaBar)
- Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
 - lower-s data (BESIII

the future

Sar WorS 2021

- k_-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII & BaBar)
- Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
 - Iower-s data (BESIII)

the future

BESIII region

~62pb⁻¹ @3.52 GeV used for Collins asym's aim at 250pb⁻¹ data set

- k_-dependent D1 FFs (back-to-back hadrons) (Belle, possibly BESIII & BaBar)
- Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
- single-hadron production
 - Iower-s data (BESIII)
- new data from Belle II

Gunar Schnell

the future

BESIII region

~62pb⁻¹ @3.52 GeV used for Collins asym's aim at 250pb⁻¹ data set

Gunar Schnell

the future

similar data sample as at 1st generation B-factories by 2022

quark-flavor contributions to Lambda prod.

 Z_{π} -

flavor tagging through opposite-hemisphere hadrons

Gunar Schnell

U