

Accelerator Physics at IJCLab-ORSAY

Achille Stocchi

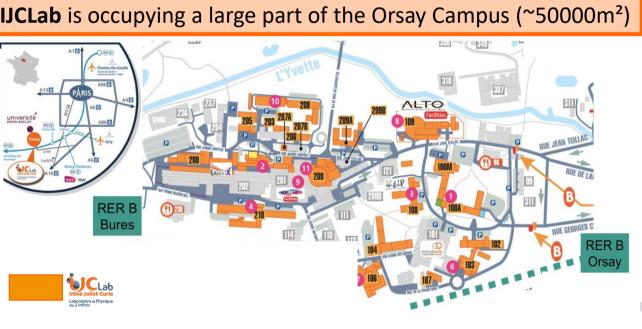
Orsay-IJCLab / Frascati-LNF Twin laboratories & EPS Historic Sites

Just 3 Slides to introduce the new laboratory

3/12/2021

i Clab	IJCLab : a New European Laboratory. Created in 2020						
	by the merging of 5 Laboratories in Orsay-France	IJCLUN					
Irène Joliot-Curie Laboratoire de Physique des 2 Infinis	CSNSM Centre de Sciences Nucléaires et de Sciences de la Ma IPN Institut de Physique Nucléaire IMNC Imagerie Modélisation en Neurobiologie et Cancérolo	~ 100 Short visiting / interships					
A new European Laboratory.	 LAL Laboratoire de l'Accélérateur Linéaire LPT Laboratoire de Physique Théorique 	^(*) CNRS/IN2P3, University Paris-Saclay University de Paris					
IJCLab is occupying a large part of the Orsay Campus (~50000m ²) 7 Research Poles							
ATE OSE		31 research teams and 2 services					

1 Engineering Pole


4 Departments with 11 Services

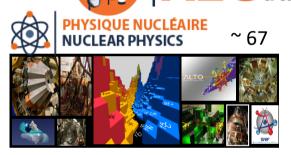
1 Administration Pole

3 Divisions + 1 Service

8 Support Services

5 Platforms (with external users) + several technical platforms

3/12/2021



IJClab 7 Pôle Scientifiques

The ensemble of all the themes of "the physics of the two infinities" with the presence of strong historical/existing poles, of emerging poles and of activities at the interfaces

R

Astroparticles, Astrophysics & Cosmology

Accelerator Physics ~ 87

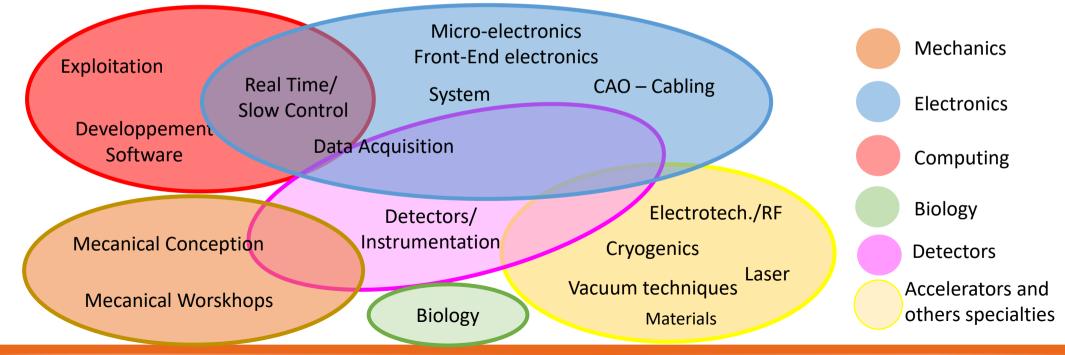
Including RF and cryogenic services

~ 120 PhD

~180 staff members

4 Departments : Electronics / Computing Instrumentation / Mechanics with 10 Services

IJClab : Technical Skills


Services in accelerator Pole

- RF
- Cryogenics
 - ~30 staff members

Technical staff with technical skills/expertise

essential pillars for the laboratory to design, draw and build instruments.

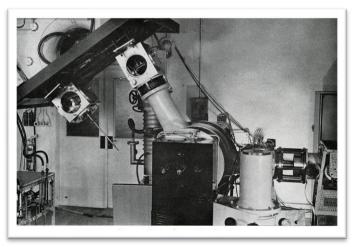
- Technical services are fuelled by the challenges of research (R&D and projects)
- The proximity of technical and research teams (integrated teams)
- The ability to combine and make coexist versatility and specialization

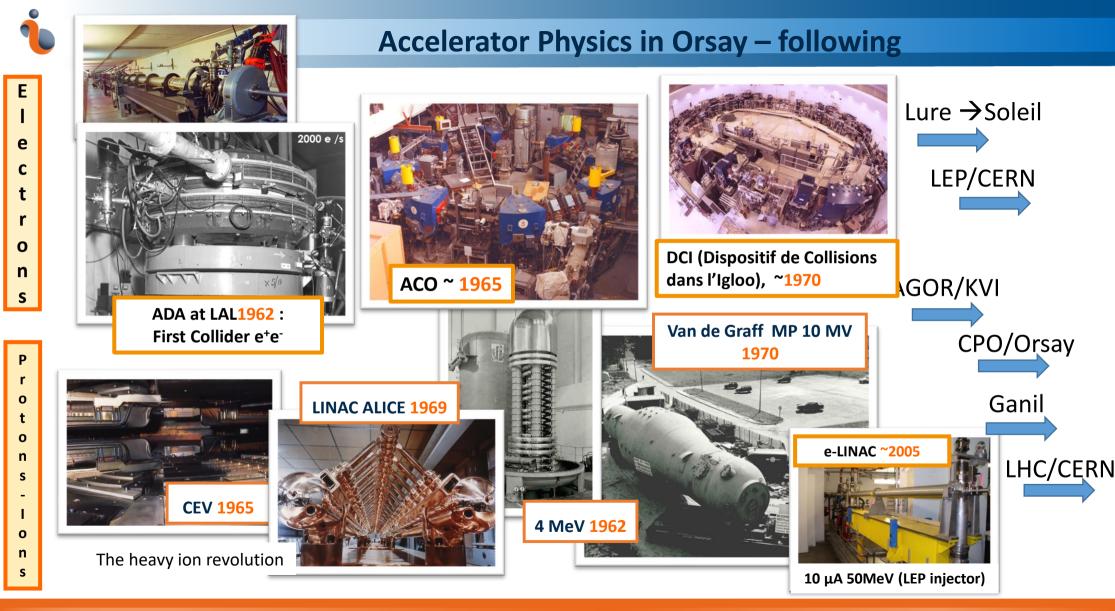
3/12/2021

I now move to talk on Accelerator Physics at IJCLab-ORSAY

Electrons, Protons, Ions beams

Orsay Campus in 1956

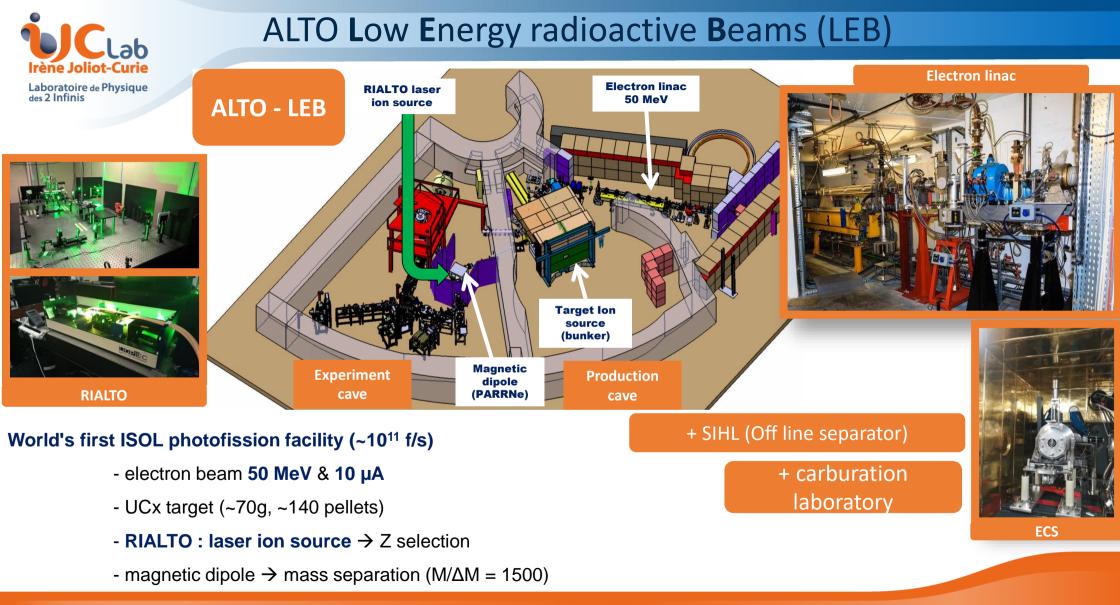

in Orsay – the beginning

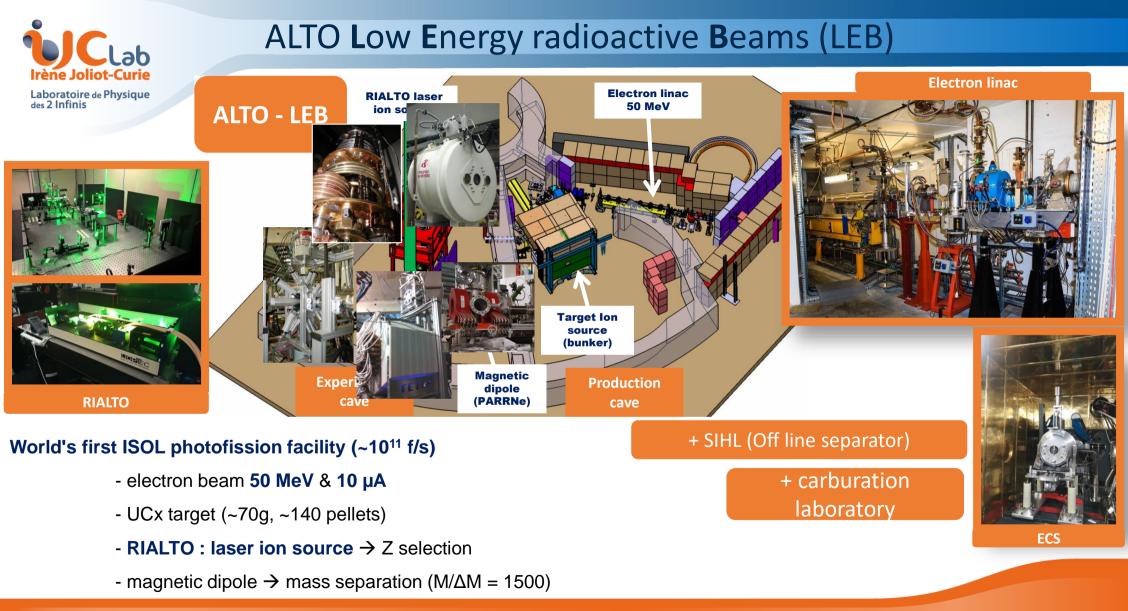

LAL 1956 : The Linear electron Accelerator **IPN** 1958 : First Beam with a synchrocyclotron

CSNSM 1965 : mass spectrometry at SC Orsay

i

TODAY : 4 International Research Platforms : ALTO

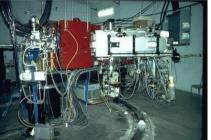

15 MV Tandem (from proton to aggregates)
 electron linac Radioactive beams by photofission


Nuclear, Health physics, Irradiation

ALTO Platform

15 permanents technical staffEquipment~60M€Running Cost~0.6M€/yearPublications~20/yearThesis on going~10Beam availability~3000h/yearExternal Users~300/year

3/12/2021



Bruno Touschek Memorial - Accelerator Physics at IJCLab-ORSAY

- 11 -



ALTO High Energy stable Beams (HEB)

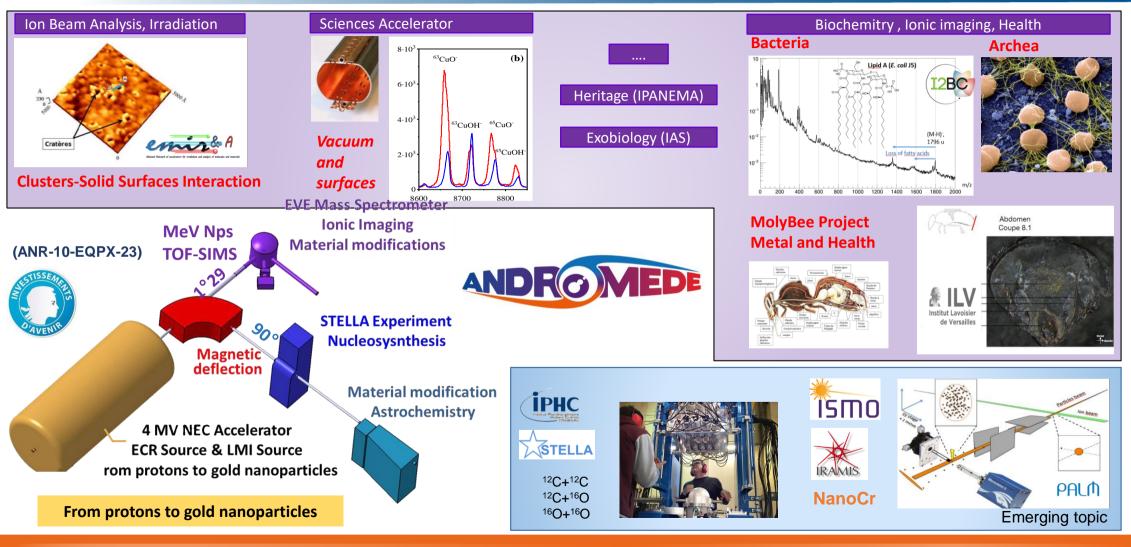
Standart beams of the Tandem : H, ³He, ⁴He, ..., ⁷Li , ¹⁴C, ... up to ¹²⁷I

- standard operation < 1 MV et 14.5 MV
- Pulsed beam: pulse width 1 2 ns; repetition rate : 100 ns 100 μs
- New ion sources \rightarrow intensity x5 \rightarrow difficult beams (Mg, Ca)

LICORNE: Unique, naturally directional quasimonoenergetic neutron source 10⁸ n/s/steradian

TODAY : 4 International Research Platforms : ANDROMEDE

Several MeV protons, multicharged atomic ions, gold molecules and nanoparticles


Nuclear/A2C, Health physics, Irradiation

Andromede Platform

2 permanents technical staffEquipment~3M€Running Cost~0.05M€/yearPublications~3/yearThesis on going~6Beam availability~1200h/yearExternal users~40/year

Andromede, a facility dedicated to interdisciplinary research

3/12/2021

TODAY : 4 International Research Platforms : SCALP

Ion irradiation / implantation and *in situ* characterization techniques (TEM, IBA)

Energy, nuclear materials, Health physics, Irradiation physics and chemistry

SCALP Platform

7 permanents technical staffEquipment~6M€Running Cost~0.2M€/yearPublications~20/yearThesis on going~3Beam availability~1500h/yearExternal users~20/year

Synthesis and Characterization using ion AcceLerators for Pluridisciplinary research

The JANNuS platform

Physics and materials science with ion beams

71 chemical elements available

energy range 100 eV to 11 MeV

LN₂ to 1000°C

50 kV SIDONIE isotope separator

JAUUN SCALP

Characterization of materials chemical composition, crystallographic structure defects, nano-precipitates. impurities....

200 kV in situ dual beam Transmission Electron Microscope (TEM)

- > Ion beam analysis : RBS, Channelling, ERDA, PIXE. including in situ RBS-C with few hundred keV ions
- In situ dual ion beam Transmission Electron Microscopy with a large diversity of ions available, a controlled dosimetry and dynamical observation unique in the world ; equipped with STEM, EDX, EELS, EFTEM analytical techniques
- Scanning Electron Microscopy (equipped with EDX)
- Atomic Force Microscopy
- > **Preparation of specimen** (cutting, mechanical and ion polishing)

Founding member of EMIR&A

3/12/2021

French Accelerators federation for Irradiation and Analysis of Materials and Molecules

190 kV IRMA ion implanter and

2 MV ARAMIS Tandem-VdG,

connected together

On-going extension of the experimental hall (+280 m²) for new beam lines

TODAY : 4 International Research Platforms : LaseriX

LASERIX : laser platform providing **coherent**, **intense** and **brief** (50fs to 10 ps) **sources in the near-infrared** (800 nm) and **EUV** (30 to 90 eV) domains. Will be completed including the electron photo-injector (PHIL).

Accelerator (mainly laser-plasma), Optics, QED tests

LaseriX Platform

2 permanents technical staffEquipment~5.5M€Running Cost~0.25M€/yearPublications~5/yearThesis on going~3Beam availability~1200h/yearExternal users~5/year

LASERIX

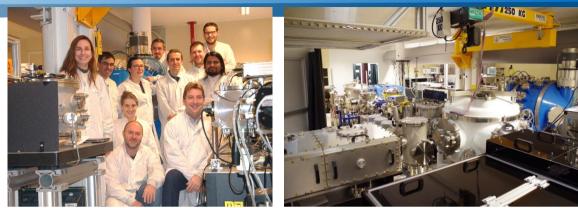
Equipment :

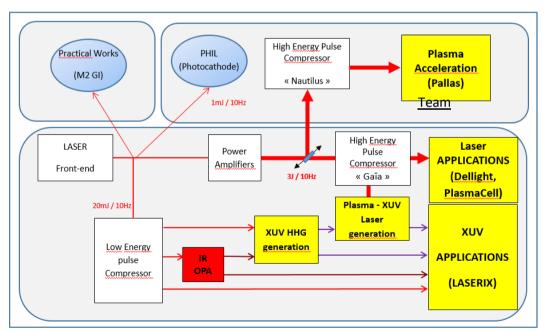
40fs - 40TW laser @10Hz (potential 300TW @0.4Hz)

Three XUV beamlines fully equiped (diagostic, interaction chambers) :

- Femtosecond HHG (High-order Harmonic Generation) beamline
- High energy X-ray laser beamline
- High intensity seeded X-ray beamline

Main activities :

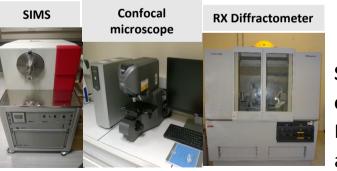

- R&D on intense sources (laser, XUV) and diags
- Applications : Plasma physics, material studies, irradiation, spectral and time-resolved experiments in XUV-NIR regions, beam manipulation...
- Formation for CPA lasers (Practicals)


New research area/projects :

QED (Dellight) : high field vacuum perturbation Plasma acceleration (**PALLAS**) : prototyping of a reliable fully controlable compact laser based e- accelerator (150-200MeV)

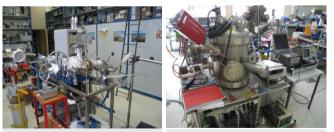
Main collaborations :

- LOA : UHI lasers, XUV sources and e- acceleration (LAPLACE project)
- ISMO : XUV sources, diagnostics and applications
- SOLEIL : X-ray sources and manipulation
- APOLLON : UHI Lasers, laser diagnostics, e- acceleration


Opening to Materials, atomic physics, detectors

SUPRATECH

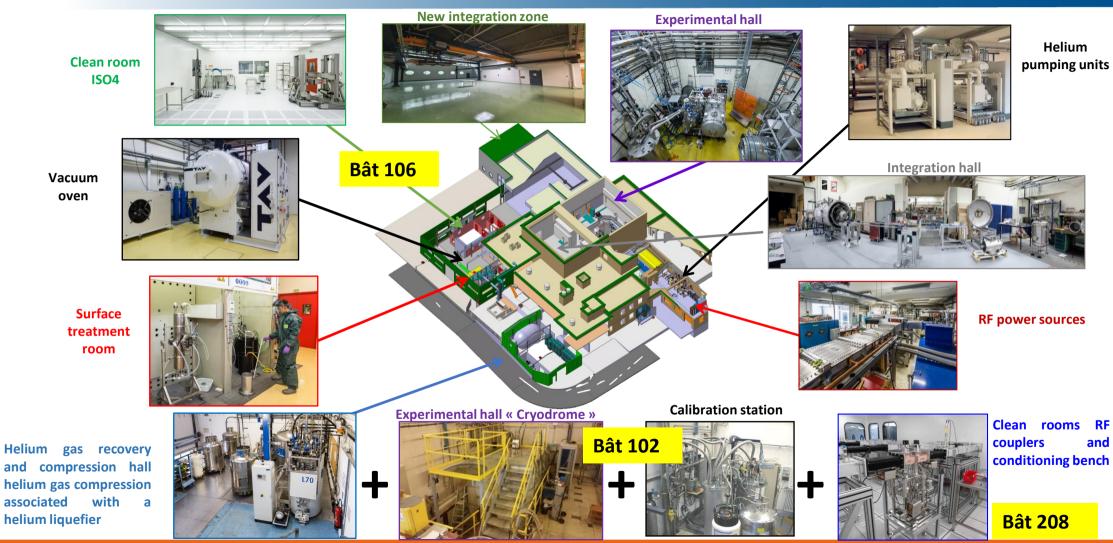
R&D on the superconducting cavities for future high-energy and highpower particle accelerators (prepare, package, assemble & test of the superconducting RF cavities).


Supralech Platform							
Equipment	~6M€						
Running Cost	~0.3M€/year						
Publications	~3/year						
Thesis on going	~3						

SEE NEXT SLIDE

Vacuum and Surfaces Platform (in construction)

Specialized vacuum technology and characterization of material for accelerators. Investigation of material properties, including analyses of their surface to work in ultravacuum, or for superconducting RF acceleration.



Setup for degazing rate measurement

Setup for desorption and SEY measurement

Supratech

and

Two dedicated services on RF and Cryogenic

RF Technology.

R&D programs to further push the performances of all systems of the RF chain

- RF power sources (reliability, efficiency)
- Low level RF systems for control of the acceleration (phase, amplitude, frequency)
- RF components (design and optimization of room temperature and superconducting RF structures, power couplers, frequency tuning systems, RFguns for particle generations, RF beam diagnostics).

Cryogenics.

The cryogenic technology for accelerators

- design and operation of superconducting modules (cryomodules)
- cryogenic metrology and specific instrumentation
- Measurement/characterization of material at cryogenic temperatures, heat exchange at low temperature, cryo-generators
- cryogenic targets for nuclear physics.

RF Technology : 20 persons 15 permanents 5 non permanents 11 engineers / 9 technical staff

Cryogenic: 9 persons

7 permanents 2 non permanents7 engineers / 2 technical staff

Accelerators Physics- research themes

IELS (Innovative electron and light sources)

Electron/laser interactions, and development of high performing optical devices (Fabry-Perot cavities) to store very high average power in pulsed mode [X-ray or g by Compton back-scattering]

 \rightarrow X or g sources, of high brilliance, for health science (ThomX), nuclear physics (gamma factory) particle physics (polarimetry measurements).

LPAC (Laser Plasma Acceleration & high-energy Colliders)

R&D programs oriented towards future accelerators

- Nanobeam in IP / high intensity positron sources (FCC-ee, ILC, SuperKEKB)
- Collimations studies with crystal (UA9)
- Dynamic vacuum/surface properties of vacuum chamber materials (LHC, FCC)
- Prototype laser plasma injector in the range 150-200 MeV at 10 Hz, (PALLAS)
- Demonstrator of a multi-turn 10 MW ERL (PERLE @ Orsay).

SCPL (Superconducting RF Cavities & High-Power Proton Linacs):

Development of high power proton linac

- ✓ <u>Research programs</u> :
- beam physics modelling to improve the reliability and efficiency of the critical technologies future MW-class accelerators
- superconducting RF science to push the performances of superconducting cavities
- ✓ Construction programs. Contributions to ESS, MYRRHA, PIP-2

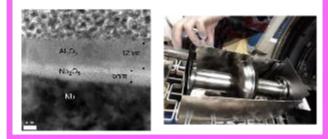
3 teams/2 Services 15 permanents 16 PHD 2 PostDoc 2 Emeriti 48 Engineers

SRHI (Stable & Radioactive Heavy-Ion production & acceleration):

Studies/Mastering the physics processes to produce stable and radioactive ions with the highest possible intensities and purities. Development of Penning traps GANIL (low-energy RIB using ISOL technics) . DESIR facility at GANIL in 2026 ALTO-LEB Within France, most of these projects are done with other IN2P3 laboratories and with strong contributions from IRFU/CEA-Saclay

~100 FTE in Accelerator Physics

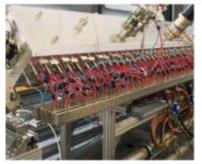
- ~20 FTE ESS Strong contributions (cavities and cryomodules). *Finishing in 2022*
- ~10 FTE Myrrha in the projects since the beginning now in Minerva
- ~25 FTE **ThomX** in site project now commissioning *Construction finished*
- ~ 5 FTE for R&D activities in this domain.
- ~ 5 FTE **PIP II** starting contribution
- ~10 FTE Activities in Future Colliders (LHC, SuperKeKB, FCC, ILC ...)

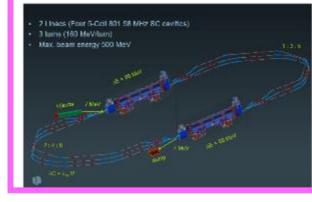

\rightarrow Two strong axes for present \rightarrow future with manpower rapidly increasing

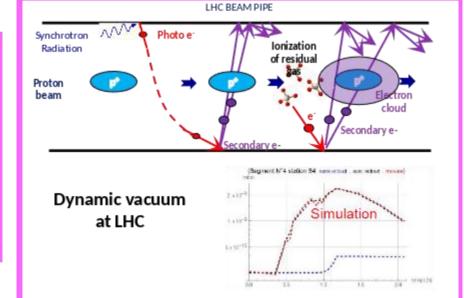
PALLAS – Laser Plasmain situ experiment with LaseriX laserPERLE- ERL@Orsay with international collaborators

Human and Financial Resources Plan in progress also accordingly to the ESPP Accelerator Roadmap

Accelerators Physics-very selected hightlights - last months

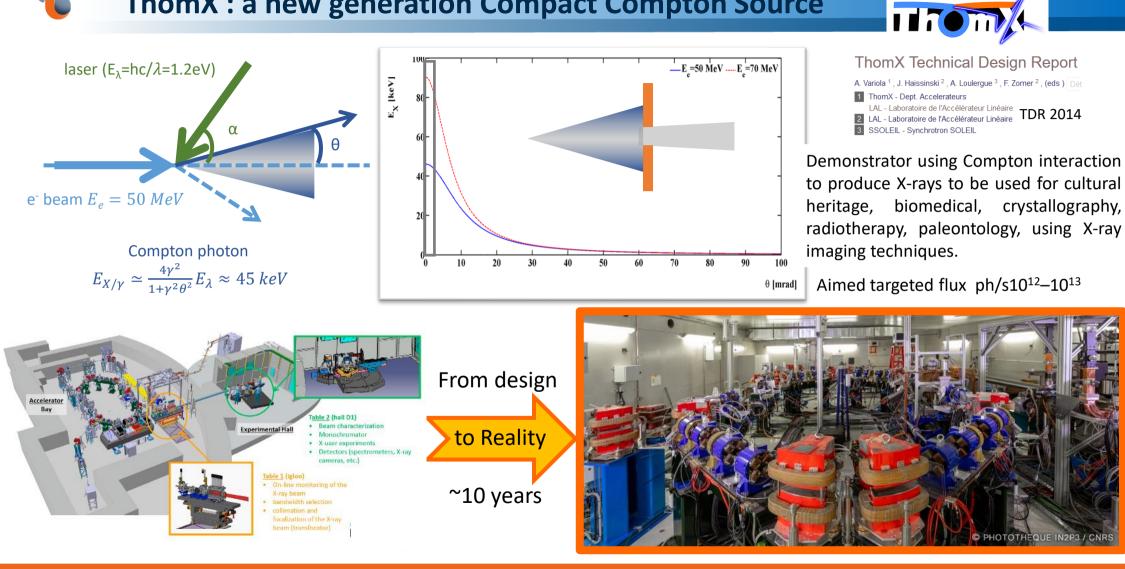

SRF: Thin films (Al₂O₃, Y₂O₃, MgO): SEY measurement and MET analysis


5 spoke cryomodules (over 13 in total) of the CNRS contribution to the European Spallation Source (ESS): validated and delivered @ Lund

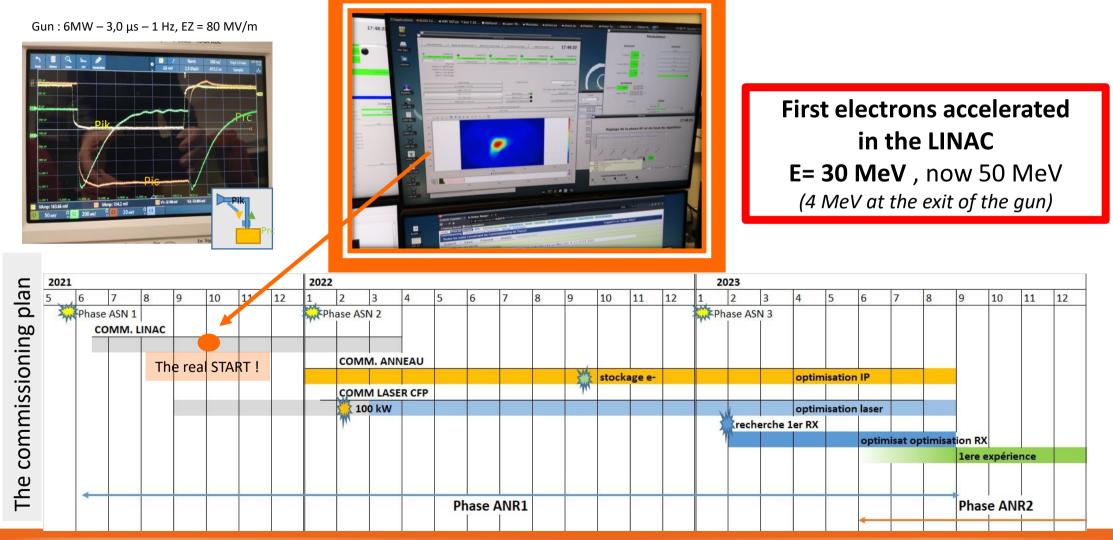


First beam with the RFQ @ Louvainla-neuve: major contribution of IJCLab with the RFQ low level RF !

Perle@Orsay - design study - TDR



3/12/2021



ThomX : a new generation Compact Compton Source

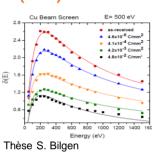
THOMX : The first electrons in the LINAC ! October 2021 !

Accelerators Physics – Roadmap

		2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Innovative electron & light source (IELS)	тномх	Construction / Commissioning	- Commissioning					Operation ?			
	PERLE	, TDR + Phase 0				Phase 1 (250 MeV)		Phase 2 (500 MeV)			
	R&D Opt. Cavities										
Laser Plasma Acceleration & high energy Colliders (LPAC)	PALLAS	Phase 1 (150 MeV, 15 pC) Phase 2 (200 M			MeV, 30 pC)	Phase 3 (high quality beams, stable operation)		Second laser plasma acceleration stage ?			
	FCC-NPC (R&D)										
	I-FAST (R&D)			R&D							
SC Cavities & High power proton Linacs (SCPL)	ESS	Constr	uction	Contribute to commissioning							
	MYRRHA	Protoyping and pre-series Conti			ribution to MINERVA construction ? Contribu			tribution to MYF	tion to MYRRHA construction ?		
	PIP-2	, Prototyping			Construction						
	Linac SP2	Contribution to commissioning									
	SRF (R&D)										
Radioactive Heavy-	ALTO-LEB										
	DESIR	Design and c			construction		·				
	Plain colors: comm	nited to		Dashed colors	: under discuss	ion					

- <u>Complete</u> ThomX <u>installation and start commissioning</u>
- <u>Achieve ESS cryomodules production in early 2022 and the spoke cryogenic distribution in 2021</u>
- **<u>Start scientific production</u>** on laser plasma acceleration with the completion of **PALLAS phase 1**
- <u>Conduct</u> the PERLE TDR phase and shape the scientific/technological/financial to build **PERLE** @ Orsay
- Perform the first experiments on MYRRHA prototype cryomodule. Prepare future contribution to MINERVA construction
- **<u>Build and install</u>** the **new vacuum and surface platform** (within D3/D4 building)
- **Pursue contributions** to **GANIL** (S3, DESIR, Spiral-2 commissioning, MLLTRap@ALTO). Build new research coll. with GANIL
- Prepare and test the PIP-2 prototypes (cavity, coupler, tuning system) in 2021/2022 and prepare for the production phase
- <u>Pursue</u> the on-going activities on our structured R&D projects: activities for future colliders (FCC/NPC), developments on high finesse optical cavities (Minicav), Superconducting RF R&D (SRF), additive manufacturing for accelerators (I3DMetal)

MORE MATERIAL



Equipment of the V&S plateformes (some Examples)

dedicated to characterization and surface analysis of materials used in accelerator technology

Secondary Electron Yield (SEY)

SIMS of bi-layer TiN-Al2O3-Nb with Argon beam (automatic rastering)

Al (27)

→ Ti (48) → Nb (93) MAX : 1.3 kC/s

5 nm/div

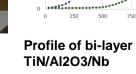
Dose (Atom/mm2) *1E12

1250

1000

1500

outgassing rate



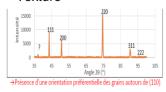
Heat treatment (H2)

Secondary Ion Mass Spectrometry (SIMS)

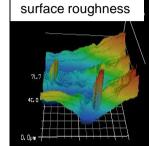
Compact SIMS Hiden Analytical

Thèse S. Birra

X-ray difractometer


NEG coating chamber (Ti,Zr,V)

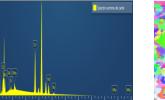
molecular desorption energy

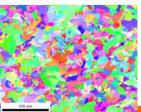


Surface Structure and Texture

Confocal Microscope

scanning electron microscope




 Imp
 EVF = 301W
 Emped = 482
 Date : 1 May 2011
 Empid

 Imp
 EVF = 3 film
 Empid = 423
 Date : 1 May 2011
 Empid

Composition (EDS) Struc

