Radiative events in BABAYAGA@NLO as a tool for Dark Matter searches at flavour factories

Giovanni Balossini

Liverpool, 18th September 2010

In collaboration with: L. Barzè, C. Bignamini, C. M. Carloni Calame, G. Montagna, F. Piccinini, O. Nicrosini

arXiv:1007.4984 [hep-ph]

Outlook

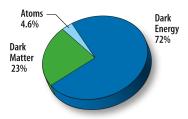
• The Dark Matter: definition, features, signals and models.

Outlook

- The Dark Matter: definition, features, signals and models.
- Searches at GeV colliders: motivations, techniques and BABAYAGA@NLO.

Outlook

- The Dark Matter: definition, features, signals and models.
- Searches at GeV colliders: motivations, techniques and BABAYAGA@NLO.
- Numerical results: effects of radiative corrections and statistical significance.

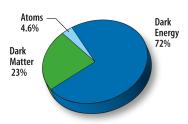


The Dark Matter

Definition and features

The Dark Matter

Definition and features


http://map.gsfc.nasa.gov/media/080998/index.html

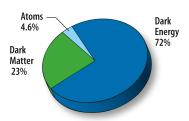
- * Fritz Zwicky (1933): something is missing in the description of the Universe.
- * This "something" is invisible (undetectable), but it gives rise to gravitational effects (e.g. anomalous galactic rotation curves, hierarchical large-scale structure of the Universe, . . .).
- \star It is the most part of the Universe!
- * It can be divided into *Dark Matter* and *Dark Energy*.

The Dark Matter

The Dark Matter

Definition and features

http://map.gsfc.nasa.gov/media/080998/index.html


- * Fritz Zwicky (1933): something is missing in the description of the Universe.
- * This "something" is invisible (undetectable), but it gives rise to gravitational effects (e.g.
- * It is the most part of the Universe!
- * It can be divided into Dark Matter and Dark
- * A few facts. Dark Matter is...
 - → ... (mostly) not baryonic.
 - → ... impossible to be explained in term of Standard Model particles.

Definition and features

The Dark Matter

Definition and features

http://map.gsfc.nasa.gov/media/080998/index.html

- * Fritz Zwicky (1933): something is missing in the description of the Universe.
- * This "something" is invisible (undetectable), but it gives rise to gravitational effects (e.g. anomalous galactic rotation curves, hierarchical large-scale structure of the Universe, ...).
- ★ It is the most part of the Universe!
- * It can be divided into *Dark Matter* and *Dark Energy*.
- * A few facts. Dark Matter is...
 - → ... (mostly) not baryonic.
 - ightarrow ... impossible to be explained in term of Standard Model particles.

Looking for new theory or, at least, for a suitable extension of the Standard Model.

The Dark Matter

Suspicious astrophysical observations

* Examples of hints of the exotic nature of Dark Matter, from astrophysical observations

[N. Arkani-Hamed et al., Phys. Rev. D79:015014, 2009, arXiv:0810.0713 [hep-ph], and references therein]

- INTEGRAL: 511 keV signal indicating $\sim 3 \times 1042 \frac{e^+}{}$ annihilating in the galactic center, far more than expected from supernovæ (already observed in balloon-borne experiment in early '70s);
 - PAMELA: excess in the positron fraction $\frac{e^+}{e^++e^-}$ in the region $10 \div 100 \,\text{GeV}$, counter to what is expected from high-energy cosmic rays interacting with the interstellar medium;
 - ATIC-2: $4 \div 6 \sigma$ excess (over a simple power law) in $e^+ + e^-$ data at energies of $\sim 300 \div 800$ GeV, with a sharp cutoff in the $600 \div 800 \, \text{GeV range}$:
 - WMAP: hard component in microwave emission from the galactic center which is not spatially correlated with any known galactic emission mechanism:
- DAMA/LIBRA: indication of an annual modulation consistent with that expected from Dark Matter induced nuclear scattering.

Radiative events in BABAYAGAONLO as a tool for Dark Matter searches at flavour factories

Extension of the Standard Model: common features

The Dark Matter

The Dark Matter

Extension of the Standard Model: common features

* A dark gauge boson U, leptophilic and light ($M_U \le 2 M_{\rm p}$), can explain astrophysical observations.

The Dark Matter

Extension of the Standard Model: common features

- * A dark gauge boson U, leptophilic and light ($M_U \le 2 M_{\rm p}$), can explain astrophysical observations.
- * Secluded *U*(1) gauge sector (under which Standard Model particles turn out to be uncharged), featuring:
 - $\,\,\,\,\,\,\,$ a Dark Matter field χ ,
 - \rightarrow a massive gauge boson U ("dark photon"),
 - $\rightarrow\,$ a single complex Higgs field $\phi.$

Extension of the Standard Model: common features

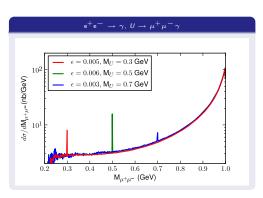
The Dark Matter

Extension of the Standard Model: common features

- * A dark gauge boson U, leptophilic and light $(M_U \le 2 M_p)$, can explain astrophysical observations.
- \star Secluded U(1) gauge sector (under which Standard Model particles turn out to be uncharged), featuring:
 - $\,\,
 ightarrow\,$ a Dark Matter field χ ,
 - \rightarrow a massive gauge boson U ("dark photon"),
 - \rightarrow a single complex Higgs field ϕ .
- \star The dark photon couples with ordinary photon through the kinetic mixing:

$$\mathscr{L}_{\rm mix} = -rac{\epsilon}{2} F_{\mu
u}^{\rm em} F_{\rm DM}^{\mu
u} \qquad (\epsilon \ll 1) \; .$$

- (ロ)(部)(E)(E)(E) E り(C)

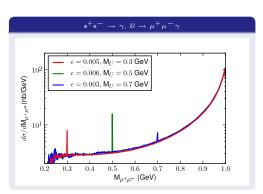


The flavour factories: an ideal environment

Looking for the dark-photon!

- $\star \mathcal{O}(\text{GeV}) \text{ e}^+\text{e}^- \text{ colliders:}$
 - \rightarrow cross-section scaling with \sqrt{s} ;
 - → high luminosity;
 - clear signature in the resonant channel.

$$\star$$
 Signal: $\frac{\mathrm{d}\sigma_{\mathsf{F}(\mathsf{ull})}}{\mathrm{d}M_{\ell^+\ell^-}} - \frac{\mathrm{d}\sigma_{\mathsf{B}(\mathsf{ackground})}}{\mathrm{d}M_{\ell^+\ell^-}}$



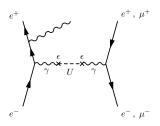
The flavour factories: an ideal environment

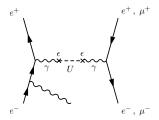
Looking for the dark-photon!

- $\star \mathcal{O}(\text{GeV}) \text{ e}^+\text{e}^- \text{ colliders:}$
 - \rightarrow cross-section scaling with \sqrt{s} ;
 - → high luminosity;
 - clear signature in the resonant channel.

$$\star$$
 Signal: $\frac{\mathrm{d}\sigma_{\mathrm{F(ull)}}}{\mathrm{d}M_{\ell^+\ell^-}} - \frac{\mathrm{d}\sigma_{\mathrm{B(ackground)}}}{\mathrm{d}M_{\ell^+\ell^-}}$

(Fairly) high number of detectable events.

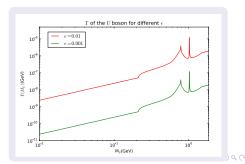

. . . but. . .


Extremely large Standard Model background!

Radiative events for discovery

★ Search by radiative return

- $\star \gamma/U$ physical coupling replaced by effective coupling to leptons.
- \star 16 diagrams and all the γ/U and s/t channel interferences kept into account.
- * Complete tree-level matrix element computed via ALPHA [F. Caravaglios and M. Moretti, Phys. Lett. B358:332, 1995, arXiv:hep-ph/9507237].
- * Complete three-body kinematics.
- * Fully implemented in BABAYAGA@NLO.



★ Computed Γ_U

$$\begin{split} &\Gamma_{U \to \ell^+ \ell^m} = \qquad \frac{\alpha \epsilon^2}{3} M_U \sqrt{1 - \frac{4 m_\ell^2}{M_U^2}} \left(1 + \frac{2 m_\ell^2}{M_U^2} \right) \\ &\Gamma_{U \to \text{hadrons}} = \qquad \frac{\epsilon^2}{3} \sqrt{1 - \frac{4 m_\mu^2}{M_U^2}} \left(1 + \frac{2 m_\mu^2}{M_U^2} \right) R \left(s \equiv M_U^2 \right) \end{split}$$

 \rightarrow R(s) compiled accordingly to [T. Teubner et al., 2010, arXiv:1001.5401 [hep-ph]]

Dramatically tiny resonance!

A Monte Carlo event generator for signal and background

★ BABAYAGA@NLO

http://www.pv.infn.it/~hepcomplex/babayaga.html

- * Yesterday...
 - \rightarrow e⁺e⁻ $\rightarrow \gamma \rightarrow$ e⁺e⁻, $\mu^+\mu^-$, $\gamma\gamma$.
 - → Commonly used for luminometry at flavour factories.
 - ightarrow Improved NLO accuracy ($\mathcal{O}\left(1\%\right)$ theoretical precision) on Standard Model processes.

A Monte Carlo event generator for signal and background

★ BABAYAGA@NLO

http://www.pv.infn.it/~hepcomplex/babayaga.html

* Yesterday...

$$\rightarrow$$
 e⁺e⁻ \rightarrow γ \rightarrow e⁺e⁻, μ ⁺ μ ⁻, $\gamma\gamma$.

- ightarrow Commonly used for luminometry at flavour factories.
- ightarrow Improved NLO accuracy ($\mathcal{O}\left(1\%\right)$ theoretical precision) on Standard Model processes.
- * Now...

$$\rightarrow \ \mathrm{e^+e^-} \rightarrow \gamma \rightarrow \mathrm{e^+e^-}, \ \mu^+\mu^-, \ \gamma\gamma \ \underline{\&} \ \mathrm{e^+e^-} \rightarrow \gamma, \ U \rightarrow \mathrm{e^+e^-}\gamma, \ \mu^+\mu^-\gamma.$$

 $\,\rightarrow\,$ A unique tool for signal and background.

A Monte Carlo event generator for signal and background

⋆ BABAYAGA@NLO

http://www.pv.infn.it/~hepcomplex/babayaga.html

- * Yesterday...
 - $\rightarrow e^+e^- \rightarrow \gamma \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma.$
 - → Commonly used for luminometry at flavour factories.
 - ightarrow Improved NLO accuracy ($\mathcal{O}\left(1\%
 ight)$ theoretical precision) on Standard Model processes.
- * Now...

$$\rightarrow \ \mathrm{e^{+}e^{-}} \rightarrow \gamma \rightarrow \mathrm{e^{+}e^{-}}, \ \mu^{+}\mu^{-}, \ \gamma\gamma \ \underline{\&} \ \mathrm{e^{+}e^{-}} \rightarrow \gamma, \ U \rightarrow \mathrm{e^{+}e^{-}}\gamma, \ \mu^{+}\mu^{-}\gamma.$$

 $\,\rightarrow\,$ A unique tool for signal and background.

Featuring:

- * fully exclusive generation of the lepton pair;
- ★ multiple soft and hard collinear emission(★);
- * α_{QED} running contribution ($\Delta \alpha_{\text{hadr}}^{(5)} \leftrightarrow \text{HADR5N}$).

A Monte Carlo event generator for signal and background

BABAYAGA@NLO "SM"

- QED Parton Shower algorithm (exclusive generation of photon momenta).
- ★ Matching with full NLO computations.

A Monte Carlo event generator for signal and background

BABAYAGA@NLO "SM"

- QED Parton Shower algorithm (exclusive generation of photon momenta).
- ★ Matching with full NLO computations.

BABAYAGA@NLO "DM"

Structure function approach (ISR & FSR).

BABAYAGA@NLO "SM"

- * QED Parton Shower algorithm (exclusive generation of photon momenta).
- ★ Matching with full NLO computations.

BABAYAGA@NLO "DM"

Structure function approach (ISR & FSR).

$$d\sigma(s, t) = \int_{0}^{1} dx_{i+} dx_{i-} dx_{f+} dx_{f-} d\sigma_{0}(\hat{s}, \hat{t}) \qquad D^{(i)}(x_{i+}, \hat{s}) D^{(i)}(x_{i-}, \hat{s})$$

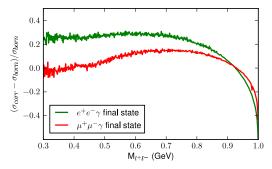
$$D^{(f)}(x_{f+}, \hat{s}) D^{(f)}(x_{f-}, \hat{s})$$

$$\begin{split} D\left(x,\,s\right) = & \frac{\exp\left[\frac{\beta}{2}\left(\frac{3}{4}-\gamma_{\rm E}\right)\right]}{\Gamma(1+\frac{\beta}{2})} \frac{\beta}{2}\left(1-x\right)^{\frac{\beta}{2}-1} - \frac{\beta}{4}\left(1+x\right) \\ & + \frac{\beta^2}{32}\left[\left(1+x\right)\left(-4\ln\left(1-x\right)+3\ln x\right) - 4\frac{\ln x}{1-x} - 5 - x\right] \\ & \beta \quad \rightarrow \quad \begin{cases} \frac{2\alpha}{\pi}\left(\log\frac{s}{m_{\rm e}^2}-1\right) & \text{(ISR)} \\ \frac{2\alpha}{\pi}\left(\log\frac{s}{m_{\rm e}^2}-1\right) & \text{(FSR)} \end{cases} \end{split}$$

Higher-order radiative corrections

Numerical results

Higher-order radiative corrections


KLOE/KLOE2

$$\rightarrow \sqrt{s} = 1.02 \, \text{GeV}$$

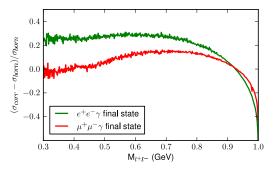
$$\rightarrow 35^{\circ} \leq \theta_{\ell \pm, \gamma} \leq 145^{\circ}$$

$$\rightarrow E_{\ell \pm, \gamma}^{\min} = 10 \, \text{MeV}$$

$$\rightarrow M_U = 0.98 \, \text{GeV}$$

$$M_{IJ} = 0,98 \, \text{GeV}, \, \epsilon = 10^{-3}.$$

* $M_U \le 2\,M_{
m p} \Rightarrow$ multiple photon radiation more relevant at Φ factories and for a "heavy" U boson.


- 《ロ》 《圖》 《意》 《意》 - 意 - 釣りの

Numerical results

Higher-order radiative corrections

KLOE/KLOE2

$$\begin{array}{l} \rightarrow \quad \sqrt{s} = 1.02 \, \mathrm{GeV} \\ \rightarrow \quad 35^{\circ} \leq \quad \theta_{\ell^{\pm}, \; \gamma} \leq 145^{\circ} \\ \rightarrow \quad E_{\ell^{\pm}, \; \gamma}^{\mathrm{min}} = 10 \, \mathrm{MeV} \\ \rightarrow \quad M_U = 0.98 \, \mathrm{GeV} \end{array}$$

$$M_{IJ} = 0,98 \, \text{GeV}, \, \epsilon = 10^{-3}.$$

- $\star~M_U < 2\,M_{\rm p}~\Rightarrow~$ multiple photon radiation more relevant at Φ factories and for a "heavy" U boson.
- * Signal invariant mass distribution altered by FS radiation, above all in Bhabha scattering.

イロト 4個ト 4度ト 4度ト

INFN-PV

Numerical results

Experimental sensitivity

★ Statistical significance:

$$\frac{\textit{N}_{\textrm{S}}}{\sqrt{\textit{N}_{\textrm{B}}}} \equiv \frac{\textit{L}\left(\sigma_{\textrm{F}} - \sigma_{\textrm{B}}\right)}{\sqrt{\textit{L}\sigma_{\textrm{B}}}}$$

 $N_S \rightarrow$ expected number of signal events;

 $N_{\mbox{\footnotesize{B}}} \longrightarrow \mbox{\footnotesize{expected number of background events;}}$

 $\sigma_{\mathsf{F}} \longrightarrow \text{ full cross section (i.e. } \gamma + \textit{U} \text{ exchange)};$

 $\sigma_{\text{B}} \rightarrow \text{ background cross section};$

L → luminosity.

Numerical results

Experimental sensitivity

* Statistical significance:

$$\frac{\textit{N}_{\textrm{S}}}{\sqrt{\textit{N}_{\textrm{B}}}} \equiv \frac{\textit{L}\left(\sigma_{\textrm{F}} - \sigma_{\textrm{B}}\right)}{\sqrt{\textit{L}\sigma_{\textrm{B}}}}$$

N_S → expected number of signal events;

N_R → expected number of background events;

 $\sigma_F \rightarrow \text{ full cross section (i.e. } \gamma + U \text{ exchange)};$

σ_R → background cross section;

L → luminosity.

* From:

→
$$\frac{N_{\rm S}}{\sqrt{N_{\rm B}}} \ge 5$$
 requirement (to claim discovery),
→ $\frac{N_{\rm S}}{\sqrt{N_{\rm D}}}$ dependence on ϵ and on M_U ,

$$\rightarrow \frac{N_{\rm S}}{\sqrt{N_{\rm B}}}$$
 dependence on ϵ and on M_U ,

Numerical results

Experimental sensitivity

* Statistical significance:

$$\frac{N_{\mathsf{S}}}{\sqrt{N_{\mathsf{B}}}} \equiv \frac{L\left(\sigma_{\mathsf{F}} - \sigma_{\mathsf{B}}\right)}{\sqrt{L\sigma_{\mathsf{B}}}}$$

 $N_{\mbox{\scriptsize S}}
ightarrow \mbox{\scriptsize expected number of signal events;}$

 $N_{\mbox{\footnotesize{B}}} \longrightarrow \mbox{\footnotesize{expected number of background events;}}$

 $\sigma_{\mathsf{F}} \longrightarrow \text{ full cross section (i.e. } \gamma + \textit{U} \text{ exchange)};$

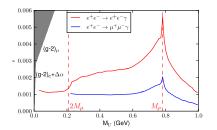
 $\sigma_{\text{B}} \rightarrow \text{ background cross section};$

L → luminosity.

- * From:
 - $ightarrow \frac{N_S}{\sqrt{N_B}} \ge 5$ requirement (to claim discovery),
 - $\rightarrow \frac{N_{\rm S}}{\sqrt{N_{\rm R}}}$ dependence on ϵ and on M_U ,
- * it follows:
 - \Rightarrow 5 σ bound imposes a constraint on the accessible (M_U , ϵ) pairs.

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - り Q ()

KLOE/KLOE2


$$\rightarrow \sqrt{s} = 1.02 \text{ GeV}$$

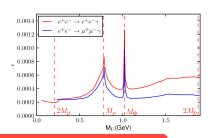
$$\rightarrow$$
 35° $\leq \theta_{\ell \pm} \sim \leq 145^{\circ}$

$$\rightarrow E_{\ell \pm \gamma}^{\min} = 10 \text{ MeV}$$

$$\rightarrow I = 5 \text{ fb}^-$$

$$\rightarrow |M_U - M_{\rho + \rho}| \leq \delta_M = 1 \text{ MeV}$$

Super B factory


$$\rightarrow \sqrt{s} = 10.56 \,\text{GeV}$$

$$\rightarrow$$
 30° < θ_{a+} < 150°

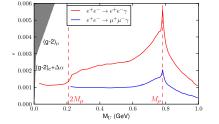
$$\rightarrow E_{\gamma, (\ell \pm)}^{\min} = 20 (30) \text{ MeV}$$

$$\rightarrow L = 100 \text{ ab}^{-1}$$

$$\rightarrow |M_U - M_{
ho +
ho -}| \leq \delta_M \sim [1 \div 10] \; {
m MeV}$$

Minimum accessible threshold (for discovery): $\epsilon^2 \propto \frac{\sqrt{s}}{\sqrt{L}}$ $\sim 1 \times 10^{-3}$ at KLOE $\Rightarrow (2 \div 3) \times 10^{-4}$ at Super-B

₹ ୭९୯


ŏ

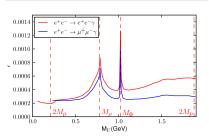
KLOE/KLOE2

$$\begin{array}{ll} \rightarrow & \sqrt{s} = 1.02 \, \mathrm{GeV} \\ \rightarrow & 35^\circ \leq \theta_{\ell \pm , \ \gamma} \leq 145^\circ \\ \rightarrow & E_{\mathrm{min}}^{\min} & = 10 \, \mathrm{MeV} \end{array}$$

$$\rightarrow L = 5 \text{ fb}^{-1}$$

$$\rightarrow |M_U - M_{\varrho + \varrho -}| \leq \delta_M = 1 \, \text{MeV}$$

Super B factory


$$\rightarrow \sqrt{s} = 10.56 \,\text{GeV}$$

$$\rightarrow 30^{\circ} < \theta_{a} + < 150^{\circ}$$

$$\rightarrow E_{\gamma, (\ell^{\pm})}^{\min} = 20 (30) \text{ MeV}$$

$$\rightarrow L = 100 \text{ ab}^{-1}$$

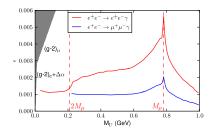
$$\rightarrow |M_U - M_{\rho + \rho}| \leq \delta_M \sim [1 \div 10] \text{ MeV}$$

Statistical significance strongly degraded around hadronic resonance (e.g. $M_{IJ} \sim M_{O,\Phi}$).

= 4) d (4

ŏ

KLOE/KLOE2


$$\rightarrow \sqrt{s} = 1.02 \, \text{GeV}$$

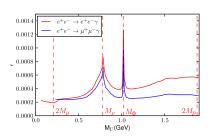
$$\rightarrow 35^{\circ} \leq \theta_{\ell} \pm_{, \gamma} \leq 145^{\circ}$$

$$\rightarrow E_{\ell^{\pm}, \gamma}^{\text{IIIII}} = 10 \text{ MeV}$$

$$\rightarrow L = 5 \, \text{fb}^{-1}$$

$$\rightarrow |M_U - M_{\rho + \rho}| \leq \delta_M = 1 \, \text{MeV}$$

Super B factory


$$\rightarrow \sqrt{s} = 10.56 \,\text{GeV}$$

$$\rightarrow$$
 30° $< \theta$ \perp $<$ 150°

$$\rightarrow E_{\gamma_{+}(\ell^{\pm})}^{\min} = 20 (30) \text{ MeV}$$

$$\rightarrow L = 100 \text{ ab}^{-1}$$

$$\rightarrow |M_U - M_{\varrho + \varrho -}| \leq \delta_M \sim [1 \div 10] \text{ MeV}$$

Statistical significance slightly affected by radiative corrections.

* The existence of a large fraction of undetectable matter in the Universe is a widely shared convinction. Dark Matter is assumed to be unaccountable by the Standard Model.

* The existence of a large fraction of undetectable matter in the Universe is a widely shared convinction. Dark Matter is assumed to be unaccountable by the Standard Model.

* Cogent astronomical observations allow to make fairly definite hypothesis on the nature of Dark Matter. Many models feature a *U*(1)-symmetric secluded sector of the Standard Model with a massive (even though light) *U* vector boson kinematically coupled with the ordinary photon.

* The existence of a large fraction of undetectable matter in the Universe is a widely shared convinction. Dark Matter is assumed to be unaccountable by the Standard Model.

- * Cogent astronomical observations allow to make fairly definite hypothesis on the nature of Dark Matter. Many models feature a *U*(1)-symmetric secluded sector of the Standard Model with a massive (even though light) *U* vector boson kinematically coupled with the ordinary photon.
- * U is supposed to be detectable at low energies e^+e^- colliders since it should contribute to lepton pair production processes (Bhabha, $\mu^+\mu^-$). Discovery could be reached by performing radiative return.

- < □ > < 圖 > < ≣ > < ≣ > ○ Q ()

* BABAYAGA@NLO has been modified to exclusive generate also this kind of three—body processes. Now, it represents a unique tool for both signal and background.

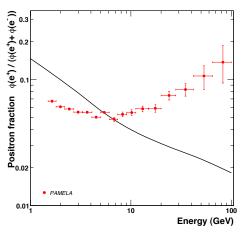
* BABAYAGA@NLO has been modified to exclusive generate also this kind of three—body processes. Now, it represents a unique tool for both signal and background.

 \star Radiative corrections have been added to signal by means of structure functions. Invariant mass distribution altered by radiation. More important for "heavy" U detection at Φ factories.

* BABAYAGA@NLO has been modified to exclusive generate also this kind of three—body processes. Now, it represents a unique tool for both signal and background.

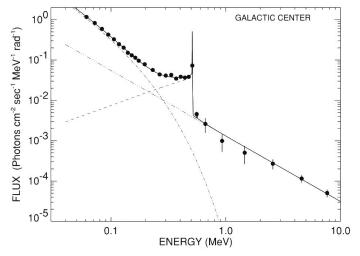
 \star Radiative corrections have been added to signal by means of structure functions. Invariant mass distribution altered by radiation. More important for "heavy" U detection at Φ factories.

 \star Statistical significance studies suggest that the accessible dark coupling for discovery is $\sim 1\times 10^{-3}$ at present flavour factories, (2 \div 3) \times 10 $^{-4}$ at future Super–B.


BACKUP SLIDES

4 D > 4 A > 4 B > 4 B > B 900

 \star The inclusion of the $U\!-\!$ boson channel involves only a small relative correction on the background integrated cross section.



- Signal events are detected as peaks in $M_{\ell^+\ell^+}$:
- → A "zoom" on the region of interest is performed, i.e.
- \rightarrow d $\sigma_{\rm S}$ is integrated on $M_{\ell^+\ell^+} \in [M_U \delta_M, M_U + \delta_M]$
- ightarrow δ_M should optimally coincide with the detector resolution.

Excess of positrons, PAMELA

[W. N. Johnson III and R. C. Haymes, Astrophys. J. 184:103, 1973]

511 keV line, confirmed by CGRO and INTEGRAL satellites

