MC Generators for Multiparticle Processes

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

- 1. Motivation
- 2. CMD-2 and SND experience
- 3. Experience of BaBaR
- 4. Ideas for future

Motivation

A number of physical problems involve measurements of exclusive cross sections of $e^+e^- \rightarrow$ hadrons at low energy:

- Determination of R in this energy range ($\sqrt{s} < 2 \text{ GeV}$) is only possible in the exclusive approach, i.e., measuring specific final states and then summing their cross sections
- Knowledge of R gives an opportunity to calculate the LO and HO (not LBL) hadronic contributions to $(g-2)_{\mu}$, $\alpha(M_Z^2)$, estimate various QCD parameters $(\alpha_s, \Lambda_{\rm QCD}, \text{ quark masses, condensates})$
- Exclusive cross sections rather than total R are needed for resonance studies, e.g., 4π for the $\rho(1450, 1700, ...)$, $3/5\pi$ for the $\omega(1420, 1650)$
- Exclusive isovector cross sections are used for conserved vector current (CVC) tests, e.g., $4, 6\pi, \eta \pi^+ \pi^-, \ldots$

This necessitates preparing corresponding Monte Carlo generators, first of all, for multiparticle final states

Final States and Intermediate Mechanisms

- $\pi^{+}\pi^{-}\pi^{0} \rho\pi$
- $\pi^+\pi^-\pi^+\pi^- a_1\pi$, $f_0\rho^0$, $a_2\pi$, $\pi'\pi$
- $\pi^+\pi^-\pi^0\pi^0 a_1\pi$, $\omega\pi$, $f_0\rho^0$
- $\pi^+\pi^-\pi^+\pi^-\pi^0 \omega\pi^+\pi^-, \eta\pi^+\pi^-, \phi\pi^+\pi^-, \rho^0\pi^+\pi^-\pi^0$
- $3\pi^+3\pi^- \rho^0(4\pi)^0$, $2\pi^+2\pi^-2\pi^0 \rho^0f_2(1270)$, $\omega\pi^+\pi^-\pi^0$, $\eta\pi^+\pi^-\pi^0$, ...
- $K^+K^-\pi^0 \phi\pi^0$, $K^{*\pm}K^{\mp}$; $K_S^0K^{\pm}\pi^{\mp} K^{*0}K^0$, $K^{*\pm}K^{\mp}$
- $K^+K^-\pi^+\pi^- K^{*0}K^{\pm}\pi^{\mp}, \phi\pi^+\pi^-, (K\rho)K$
- Other final states observed: $K^+K^-\eta$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$, $K^+K^-2(\pi^+\pi^-)$, ...
- Interference effects should be taken into account

Production of Four Pions at CMD-2 – I

- There are two possible final states $-\pi^+\pi^-\pi^+\pi^-$ and $\pi^+\pi^-\pi^0\pi^0$ with two pairs and one pair of identical pions in the 1st and 2nd cases
- The amplitude of the process should be symmetric with respect to permutations of identical particles
- For example, for the $\pi_1^+ \pi_2^- \pi_3^+ \pi_4^-$ final state produced via ρf_0 $\mathcal{A} = f_0(1,2)\rho(3,4) + f_0(1,4)\rho(2,3) + f_0(3,4)\rho(1,2) + f_0(2,3)\rho(1,4)$
- The $a_1^+\pi^-$ case with $a_1^+ \to \rho^0\pi^+$ and $\rho^0 \to \pi^+\pi^-$ gives even more 8 combinations
- Additional difficulty in some cases more than one Lorentz-invariant structure is needed to describe the process, so that new form factors arise

Production of Four Pions at CMD-2 – II

Mechanism	$\pi^+\pi^-\pi^+\pi^-$	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
$a_1(1260)\pi$	8	4
$a_2(1320)\pi$	8	4
$\omega\pi$	_	6
$h_1(1170)\pi$	_	6
$\rho^+ \rho^-$	_	8
$\pi'(1300)\pi$	8	4
$f_0 ho$	4	1

The number of combinations for various mechanisms

Production of Four Pions at CMD-2 – III

- 1. At the first stage of analysis it was shown that the $\pi^+\pi^-\pi^+\pi^-$ is dominated by the $a_1(1260)\pi$ intermediate mechanism
- 2. Two mechanisms contribute to the $\pi^+\pi^-\pi^0\pi^0$ final state $-a_1\pi$ and $\omega\pi$
- 3. The nominal model is an $a_1\pi + \omega\pi$ combination. We also studied possible admixtures of all other modes one by one
 - $\bullet \ a_1\pi + \omega\pi + \rho f_0$
 - $\bullet \ a_1\pi + \omega\pi + h_1\pi$
 - $\bullet \ a_1\pi + \omega\pi + a_2\pi$
 - $a_1\pi + \omega\pi + \pi'\pi$
 - $\bullet \ a_1\pi + \omega\pi + \rho^+\rho^-$
- 4. Each mechanism has its weight in general a complex form factor

p.7/14

Illustrations of Monte Carlo for $e^+e^- \to \pi^+\pi^-2\pi^0$

 $\omega\pi$ enriched

 $a_1\pi$ enriched

S.Eidelman, BINP

SND Experience

- A set of processes studied almost the same as at CMD-2, SND has their own generators
- Has additionally studied various 3- and 4-body QED final states: $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$, 3γ , $e^+e^-e^+e^-$, $e^+e^-\mu^+\mu^-$, $e^+e^-\gamma\gamma$ with corresponding MC generators based on E. Kuraev's studies

Experience of BaBar

- EVA-based event generator is used
- The list of the processes follows
- The processes with HC, among them vector-pseudoscalar (VP) and vector-scalar (VS) are simulated with proper hadronic currents
- Most of other modes are generated using uniform phase space (PS) distribution
- For tagged ISR measurements the dependence of the detection efficiency on hadron system dynamics is low

Processes simulated at BaBar – I

Process	С	Process	C
$\mu^+\mu^-$	EM	$K^0_S K^\pm \pi^\mp$	Н
$\pi^+\pi^-$	Н	$K^+K^-\pi^0$	Н
$\pi^+\pi^-\pi^+\pi^-$	Н	$par{p}$	Н
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	Н	$\eta\pi^+\pi^-$	Н
$\pi^{+}\pi^{-}\pi^{0}$	Н	$\pi^0 \phi(K^+ K^-)$	Н
K^+K^-	Н	$\eta\phi(K^+K^-)$	Н
$K_S^0K_L^0$	Н	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	PS

Processes simulated at BaBar – II

Process	С	Process	\mathbf{C}
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	PS	$K_S^0K_L^02\pi^0$	PS
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	PS	$K_S^0K_L^02\pi^0$	PS
$K^+K^-\pi^+\pi^-$	PS	$K^+K^-K^+K^-$	PS
$K^+K^-2\pi^0$	PS	$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	PS
$K_S^0 K_S^0 \pi^+ \pi^-$	PS	$K^{+}K^{-}K_{S}^{0}K_{L}^{0}$	PS
$K^0_S K^0_S 2\pi^0$	PS	$p\bar{p}\pi^+\pi^-$	PS
$K_S^0K_L^0\pi^+\pi^-$	PS	$p\bar{p}2\pi^0$	PS

Future

- We expect much higher precision and higher energy \Rightarrow new requirements for both experiment and analysis
- Higher precision imposes special constraints on the description of physical processes, i.e. on the amplitudes and form factors
- Interference effects demand additional form factors: $\mathcal{A}(4\pi) = \mathcal{A}(a_1\pi) + f(s)\mathcal{A}(f_0\rho)$
- Higher precision appears due to higher statistics ⇒ we can use data for studying dynamics of various processes and better model their description needed for the MC input
- Higher energy results in a rich variety of physics so that new mechanisms arise and new particles are produced
- $f_0 = f_0(600), f_0(980), f_0(1370), \ldots, \rho = \rho(770), \rho(1450), \ldots$

"New" Monte Carlo

A new code has been created to generate multiparticle processes:

- The matrix element (m.e.) of each final state is written manually in the Lorentz-invariant form
- The code automatically calculates the m.e. squared and prepares a subroutine for MC generation
- Permutations of identical particles are done automatically
- Interference of different mechanisms can be on/off
- We started working on a library of different mechanisms

Additional checks are in progress. We hope to use it for CMD-III.

D.Anipko, SE, A.Pak, hep-ph/0308209, both students gone

New "automatic" ideas needed (K. Kolodziej)

Instead of Conclusions

- Radiative corrections (ISR) some approximation with some "reasonable" energy and angular distribution of a photon emitted by initial e^+e^- followed by the Lorentz boost of the hadronic final state
- Radiative corrections (FSR) PHOTOS?
- For some modes $(2\pi, 4\pi, \omega\pi, \ldots)$ CVC can be used to add more information from high-statistics τ data
- Hard work is needed to prove that MC generators for multiparticle processes are not limiting the precision of R
- What about generators for $\gamma\gamma \to \text{hadrons}$?
- Needed for BESIII, CMD-3, SND + ISR at BABAR and Belle and for planned DAFNE-II, Super- $\tau-c$ factory