Status and perspectives on feeblyinteracting particles and other analyses from NA62

A cura di T. Spadaro e M. Piccini

Introduction

NA62 experiment approved to run until LS3

- main goal: measuring the BR($K^+ \rightarrow \pi^+ \nu$ anti- ν) with 10% accuracy;
- a broad physics program: searches for LFV/LNV modes, hidden sector particles

Present talk covers status + possible plans for dedicated searches in Run3

27/7/2021

Physics at NA62 in Run 2 and Run 3

A rich field to be explored with minimal/no upgrades to the present setup

1. Present setup for K⁺ beam + dedicated triggers: complete LFV/LNV high-sensitivity studies based on K⁺/ π^0 , e.g. see recent talks at the Phenomenology 2021 symposium:

LFV/LNV, J. Swallaw https://indico.cern.ch/event/982783/contributions/4364566/

 $K^+ \rightarrow \pi^+ X$, $\pi^0 \rightarrow \text{inv.}$, $K^+ \rightarrow \mu \nu X$, R. Volpe <u>https://indico.cern.ch/event/982783/contributions/4362249/</u>

 $K^+ \rightarrow e^+X, K^+ \rightarrow \mu^+X, M.$ Mirra <u>https://indico.cern.ch/event/982783/contributions/4362325/</u>

2. In Run3, year-long run in "beam-dump" mode, new program of NP searches for MeV-GeV mass hidden-sector candidates: Dark photons, Heavy neutral leptons, Axions/ALP's, etc.

NA62: $K^+ \rightarrow \pi^+ v v$, LNV/LFV decays, LFV/LNV @ ultimate sensitivity, hidden sector searches in K decays hidden sector searches (beam dump)

Hidden sector at NA62: motivations

If DM is a thermal relic from hot early universe, can hunt for it in particle-physics: search for non-gravitational interactions DM-SM

- A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions many possible dynamics: vector (A', aka dark photon), neutrino (HNL), axial (ALP a), scalar..
- **Various experimental hints** for hidden sector at MeV-GeV, e.g., a_{μ} 3.5- σ discrepancy:

Model dependence: experimentally driven approach

Feeble interaction: ultra-suppressed production rate, **very** long-lived states E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$ --10⁻² s, decay length ~ 10 --10000 Km at SPS energies, suppression at production 10^{-7} --10⁻¹⁰

27/7/2021

$K^+ \rightarrow \pi^+ \nu \nu$ as a search for $K^+ \rightarrow \pi^+ X$

Can re-interpret the search: assume a SM background for $\pi\nu\nu$ and assume X to be either long-lived/dominantly invisible [JHEP03 (2021) 058, **JHEP02 (2021) 201**]

"π⁰→inv.": improves on previous results (BNL) by x60

1/2 corresponding authors from INFN (TS)

Related on-going analyses with INFN contribution: Improve search for BR($\pi^0 \rightarrow A' \gamma$) @ 10⁻⁸ using Run 2 data Search for a massless A' from K⁺ $\rightarrow \pi^+\pi^0$ A' @ 10⁻⁷ -- 10⁻⁸ Interpretations as ALP and dark scalar possible, too

NA62 & hidden sector searches

High-intensity 400-GeV proton beam \rightarrow boost charm/beauty, other meson production 10¹⁸ POT / nominal year: 10¹² POT/sec on spill, 3.5-s/16.8 s, 100 days/year, 60% run efficiency 10¹⁵ D_(s), 10¹⁴ K, 10¹⁸ $\pi^0/\eta/\eta'/\Phi/\rho/\omega$ with ratios 6.4/0.68/0.07/0.03/0.94/0.95 (& B mesons, too)

1/2 WG coordinators from INFN

Compact beam dump: ~20 λ_{I} Cu/Fe-based beam-defining collimator (TAX) radioprotection-compliant even if target removed

On the phenomenological effort for FIPs

While the searches should be kept mainly model-independent, a large effort still going on by the community devoted to evaluate production/decay of feebly interacting particles (FIP)

An example, photon-coupled ALP:

"Dominant" Primakoff production, proposed and computed in JHEP 1602 (2016) 018

Later, JHEP 05 (2019) 213: production from real photons from π^0 decay usually dominates

Systematic efforts thanks to 1st mandate of PBC WG at CERN, with relevant INFN presence

Search for visible decays of FIPs: A' search in Run3

Assume 10¹⁸ 400-GeV POT (Run 3 statistics, several months at full nominal intensity)

search for displaced decays to two charged particles assume zero-background, evaluate expected 90%-CL exclusion plot

Similar scenarios for dark scalar, HNL shown in the PBS BSM report

Search for visible decays of ALP's in Run 3

Production: ALP Primakoff [JHEP 1602 (2016) 018] + real-γ induced [JHEP 05 (2019) 013] **Decay:** ALP $\rightarrow \gamma \gamma$, account for geometrical acceptance, assume zero-background

On the zero-background assumption

Ongoing background studies using Run 2 data:

3x10¹⁶ POT taken in "beam dump" mode (no beam tuning, just TAX collimator closed) 2x10¹⁷ POT taken in "parasitic" mode during standard data taking with di-muon trigger

Ongoing effort using data and MC:

simulation of muons from the beam "halo" (π , K decays in dump, etc.)

background from K_s/Λ as tertiaries of survived K⁺ mesons

Can use MC for background estimates @ 10¹⁸ POT?

CPU power: low efficiency of simulation for muons from hadronic showers, ~10⁻⁴ μ/proton NA62 work within the PBC: score + parameterize [https://doi.org/10.18429/JACoW-ICAP2018-SUPAG05] SHiP coll.: MC gun using generative adversarial networks [JINST 14 (2019) P11028] Biasing MC technique to boost by 2x10³ with ~no information loss [2106.01932 [hep-ex]]

Can use MC for background estimates @ 10¹⁸ POT?

Reliability of hadronic interaction simulation:

The SHiP collaboration gathered data for muon flux validation [2001.04784 [physics.ins-det]] Data/MC agreement of ~20% for μ below 200 GeV (a factor x3 above), still remarkable

From the GEANT4 manual:

For the evaluation of systematic errors due to uncertainties in the Geant4 hadronic cross sections we recommend the following approach. Scaling up (e.g. **by 10%**, by using a scaling factor of 1.10) or down (e.g. using a scaling factor of 0.90) the cross sections, independently for elastic and inelastic interactions, and independently for different types of hadrons.

Even a relative uncertainty on interaction cross sections within FTFP-based models of ~10% can lead to ~x10 in flux of punch-through secondaries, e.g. K+

Known limitations from the treatment of multiple Coulomb scattering in Geant4 [Longhin, Paoloni *IEEE Trans.Nucl.Sci.* 62 (2015) 5]

Work ongoing within NA62 to track down various background sources

Conclusions: FIP searches at NA62

Run 2 data FIP-search analyses on-going with INFN contributions:

- With standard setup: $K \rightarrow \pi^+\pi^0 X$, $K \rightarrow \pi^+X$, $\pi^0 \rightarrow \gamma X$, $X \rightarrow \mu\mu$
- With few 10¹⁶ POT in "beam dump": ALP $\rightarrow \gamma \gamma$

Imminent one year long data taking (10¹⁸ POT) in "beam dump mode" in Run 3:

- Sensitivity to Dark photons, Heavy Neutral Leptons, Axion-like particles, etc.
- Rejection of upstream background improved with a new hodoscope (Anti-halo)
- Beam-line magnet tuning allows reduction of muon flux by x5

Expected sensitivity competitive to that from other initiatives in the same time range

Data demonstrate background rejection power for the searches proposed, up to 10¹⁷ POT's

- background to charged decay modes negligible at 10¹⁷ POT [tested for di-muon]
- background to $\gamma\gamma$ mode under control at 3x10^{16} POT

Particularly appealing: searches for long-lived A', photon-coupled ALP visible decays

Other analyses

27/07/2021

On-going analyses

- BR measurement of the decay $K^+ \rightarrow e^+ \nu \mu^+ \mu^-$
- BR and FF measurement in $K^+ \rightarrow e^+ v e^+ e^-$
- BR and T violation parameter measurement in $K^+ \rightarrow \pi^0 e^+ v \gamma$ (Ke3 γ)
- Search for a dark scalar in the decay $K^+ \rightarrow \pi^+ S$ with $S \rightarrow \mu^+ \mu^-$
- FF measurement of $\pi^0 \rightarrow \gamma e^+ e^-$, with π^0 tagged from $K^+ \rightarrow \pi^+ \pi^0$
- Search for $K^+ \rightarrow \mu^+ \nu X$, $X \rightarrow \gamma \gamma$ (I. Panichi, A Bizzeti, F. Bucci, M. Lenti)
- Search for $K^+ \rightarrow \pi^+ \pi^0 X$, X to invisible (<u>P. Lo Chiatto</u>, F. Bucci, A Bizzeti)

Other analyses with strong INFN contribution:

- First observation of the decay $K^+ \rightarrow \mu^+ \nu \mu^+ \mu^-$
- Search for the decay $K^+ \rightarrow \pi^+ \mu^{\pm} e^{\mp}$ (E. Minucci) e-Print: <u>2105.06759</u>
- New Ke2/Km2 = R_K measurement (M. Corvino)
- Search for the decay $K^+ \rightarrow \pi^+ X$ (R. Volpe) <u>JHEP03 (2021) 058</u>)

BR measurement of the decay $K^+ \rightarrow e^+ \nu \mu^+ \mu^-$

Motivations:

- Within the framework of Chiral Perturbation Theory (χ PT) radiative kaon decays can serve both as an important test and as source of input parameters
- IB helicity-suppressed for Ke2γ, FF measurement more interesting

Status of the art:

- ► evidence from E865 (2006): $BR(K^+ \rightarrow e^+ \nu \mu^+ \mu^-) = (1.72 \pm 0.45) \times 10^{-8}$
- > their selection is background limited, worse π/μ misID wrt NA62

27/07/2021

BR and **T** parameter measurement in $K^+ \rightarrow \pi^0 e^+ \nu \gamma$

State of the art for ξ :

•
$$|A_{\epsilon}^{theory}| < 10^{-4}$$

•
$$A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) imes 10^{-2}$$

• No measurements provided for R_1 and R_2

Internal NA62 note in preparation (protopaper), the preliminary result will be presented Thursday at EPS by Francesco, BR and ξ measurements in all the 3 regions: https://indico.desy.de/event/ 28202/contributions/107307/

27/07/2021

Search for a DS in the decay $K^+ \rightarrow \pi^+ S$ with $S \rightarrow \mu^+ \mu^-$

New approach to obtain competitive results wrt LHCb ($B \rightarrow K S$): a search involving both prompt and displaced vertexes

Analysis principles:

- Prompt + displaced vertex approach (cover all lifetimes)
- (almost) background free in the displaced region
- Main variables: M(πμμ) ; M(μμ) ; Dz

Performing a blind analysis 27/07/2021

First observation of the decay $K^+ \rightarrow \mu^+ \nu \mu^+ \mu^-$

Expected BR in the χ PT framework ~10⁻⁸, never observed before

Figure 4.16: $K_{\mu\nu\mu\mu}$ squared missing mass spectrum for 2017 data. The horizontal bars in red below the peak represent the 1σ , 2σ and 3σ signal region according to the value obtained with the fit.

27/07/2021

NA62 – Preventivi 2022