# $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ : stato e prospettive dell'analisi

Giuseppe Ruggiero Meeting con referee INFN 27/07/2021

### Analisi dati 2016 – 2018

- Analisi completata e risultato finale pubblicato [JHEP06(2021)093]
- Numero effettivo di decadimenti dei K nel 2018 rispetto al 2017: fattore  $\times$  1.8
- Aumento efficienza segnale analisi del 2018 rispetto al 2017: fattore × 2.1 (dati nuovo collimatore)
  - Nuovo collimatore finale
  - BDT per la reiezione dell'upstream background
  - Utilizzo dei bins d'impulso 35-40 e 40-45 GeV/c (Regione II)
  - Ottimizzazione della selezione in bins d'impulso
  - Ottimizzazione algoritmo di reiezione degli eventi multi-tracce
- Rapporto S.E.S 2018 / 2017 ≈ 3.5 (non 3.8 a causa del 20% di dati nel 2018 col vecchio collimatore)
- Rapporto S/B (2018 vs 2017) 1.4 vs 1.5 (incertezza relativa su ciascun S/B 20%)
  - N.B. Il nuovo collimatore aumenta considerevolmente l'accettanza del segnale, NON riduce il fondo.
  - 60% del fondo di tipo «upstream»

#### Analisi dati 2016-2018

|                                              | S2 2018                | S1 2018                | 2017              | 2016                      |
|----------------------------------------------|------------------------|------------------------|-------------------|---------------------------|
| $SES \times 10^{10}$                         | $0.14 \pm 0.01$        | $0.54\pm0.04$          | $0.389 \pm 0.024$ | $3.15\pm0.24$             |
| Signal expected (SM)                         | $6.02\pm0.39$          | $1.56\pm0.10$          | $2.16\pm0.13$     | $0.27\pm0.20$             |
| Background expected                          | $4.31_{-0.72}^{+0.91}$ | $1.11_{-0.22}^{+0.40}$ | $1.46\pm0.33$     | $0.152^{+0.093}_{-0.035}$ |
| Candidates observed (R1+R2)                  | 15                     | 2                      | 2                 | 1                         |
| Signal acceptance $\times 10^2$              | $6.4 \pm 0.6$          | $4.0 \pm 0.4$          | $3.0 \pm 0.3$     | $4.0 \pm 0.4$             |
| Trigger efficiency                           | $0.89\pm0.05$          | $0.89 \pm 0.05$        | $0.87 \pm 0.03$   | $0.90\pm0.03$             |
| RV efficiency                                | $0.66\pm0.01$          | $0.66 \pm 0.01$        | $0.64\pm0.01$     | $0.76\pm0.04$             |
| Effective $K^+$ decays $\times 10^{-12}$     | $\sim 1.9$             | $\sim 0.8$             | $\sim 1.5$        | $\sim 0.12$               |
| $K^+ \to \pi^+ \pi^0(\gamma)$                | $0.52\pm0.05$          | $0.23\pm0.02$          | $0.29\pm0.04$     | $0.064 \pm 0.009$         |
| $K^+ \to \mu^+ \nu(\gamma)$                  | $0.45\pm0.06$          | $0.19\pm0.06$          | $0.15\pm0.04$     | $0.020\pm0.007$           |
| $K^+ \to \pi^+ \pi^- e^+ \nu$                | $0.41\pm0.10$          | $0.10\pm0.03$          | $0.12\pm0.08$     | $0.013^{+0.019}_{-0.013}$ |
| $K^+ \to \pi^+ \pi^+ \pi^-$                  | $0.17\pm0.08$          | $0.05\pm0.02$          | $0.008 \pm 0.008$ | $0.002\pm0.002$           |
| $K^+ \to \pi^+ \gamma \gamma$                | < 0.01                 | < 0.01                 | $0.005\pm0.005$   | < 0.002                   |
| $K^+ \to \pi^0 \ell^+ \nu \ (\ell = \mu, e)$ | < 0.001                | < 0.001                | < 0.001           | < 0.001                   |
| Upstream background                          | $2.76^{+0.90}_{-0.70}$ | $0.54_{-0.21}^{+0.39}$ | $0.89 \pm 0.31$   | $0.050^{+0.090}_{-0.030}$ |

# Principali contributi efficienza di segnale

Dipendenza dall'intensita' dei vari contributi studiata usando dati (random veto) e/o overlay MC [risultati dall'analisi dati del 2018]

- Accettanza geometrica: -40% non dipende dall'intensita'
- Associazione temporale tra rivelatori (KTAG-GTK-RICH-CHOD): -15% dipende dall'intensita'
- K- $\pi$  matching: -10% debole dipendenza dall'intensita' (no overlay -7.5%)
- Reiezione dei muoni: -10% dipendenza lineare dall'intensita'
- PID RICH: -10% non dipende dall'intensita'
- PID calorimetrica: -17% debole dipendenza dall'intensita
- Random Veto (reiezione fotoni e molteplicita'): -34% dipendenza lineare dall'intensita'
- Reiezione dell'upstream background: -20% non dipende dall'intensita'
- Definizione cinematica delle regioni di segnale ( $m_{miss}^2 e p_{\pi^+}$ ): -66% non dipende dall'intensita'

# Analisi dei dati $\geq$ 2021: Prospettive

- Miglioramento trigger
  - Riduzione finestra di veto di muoni ( $6 \rightarrow 4$  ns)
- Aumento accettanza del segnale
  - Associazione K  $\pi$  (utilizzo GTKO, test di nuovi algoritmi)
  - PID integrata RICH + calorimetri
  - Ottimizzazione della selezione cinematica per definire le regioni di segnale
  - Associazione temporale dei segnali nei rivelatori con tecnica MVA (da studiare sui dati)
- Miglioramento reiezione fotoni (riduzione random veto)
  - LKr: nuova ricostruzione + sviluppo di algoritmi NN per identificazione di overlapping photons
  - LAV: algoritmo BDT
  - Utilizzo di HASC2 per aumentare efficienza di reiezione fotoni a basso angolo ( $P_{\pi^+} < 20$  GeV/c)
- Riduzione fondo upstream
  - Utilizzo Anti-Veto + GTK0

#### Random Veto e LKr

#### Random veto (RV) dovuto al solo LKr >10% nel 2018

- Dipendenza ~lineare dall'intensita'
- Principalmente legata alla finestra di veto  $|t_{cluster} - t_{rich}| < 50\sigma$  (~40 ns) applicata per  $E_{cluster} > 15$  GeV/c distanti > 100 mm dal punto d'impatto del  $\pi^+$
- Riduzione finestra a  $\pm 30\sigma$  comporta un aumento di ×2 del fondo  $\pi^+\pi^0$



# Esempio: LKr offline event display

 $\pi^+\pi^0$  vetati dall'algoritmo standard SOLO grazie alla presenza di clusters non associati spazialemente al  $\pi^+$ , e temporalmente entro  $(-50, -30)\sigma(t)$  o  $(+30, +50)\sigma(t)$  dal  $\pi^+$  (segnali assenti in LAV, IRC, SAC)

La finestra temporale  $|t_{cluster} - t_{rich}| < 30\sigma$  (~25 ns) non rigetterebbe questi eventi



# Visualizzazione in Energia

 $\pi^+\pi^0$  vetati dall'algoritmo standard SOLO grazie alla presenza di clusters non associati spazialemente al  $\pi^+$ , e temporalmente entro  $(-50, -30)\sigma(t)$  o  $(+30, +50)\sigma(t)$  dal  $\pi^+$  (segnali assenti in LAV, IRC, SAC)

La finestra temporale  $|t_{cluster} - t_{rich}| < 30\sigma$  (~25 ns) non rigetterebbe questi eventi



•

# Visualizzazione in Tempo

 $\pi^+\pi^0$  vetati dall'algoritmo standard SOLO grazie alla presenza di clusters non associati spazialemente al  $\pi^+$ , e temporalmente entro  $(-50, -30)\sigma(t)$  o  $(+30, +50)\sigma(t)$  dal  $\pi^+$  (segnali assenti in LAV, IRC, SAC)

La finestra temporale  $|t_{cluster} - t_{rich}| < 30\sigma$  (~25 ns) non rigetterebbe questi eventi

#### Una parte in tempo



•

### Random Veto e LKr

- Nuova ricostruzione del LKr: miglioramento dell'algoritmo di time-sharing dei clusters.
- Sviluppo di algoritmi di visual NN per identificare overlapping clusters in spazio e tempo
- Risultati preliminari incoraggianti: riduzione della finestra  $|t_{cluster} t_{rich}| < 10\sigma$  mantiene lo stesso livello di reiezione dei  $\pi^+\pi^0$ .
- Possibilita' di ridurre la finestra ulteriormente e di estendere anche la reiezione a clusters di energie < 15 GeV in studio.</li>
- Analisi on-going per avere indicazioni quantitative precise sul recupero di efficienza in funzione dell'intensita'
- Studio sinergico con il miglioramento della reiezione del LAV per sfruttare appieno la correlazione dei due rivelatori

# Random Veto e LAV

- Analisi multivariata per migliorare l'algoritmo di veto sui LAV
- Primo studio sulla capacità di distinguere i fotoni da π<sup>o</sup> dal random veto sui LAV, per il caso di un singolo hit in tempo e di due hit clusterizzati
- Campioni di training:
- -> selezione PNN eccetto LAV veto sotto picco della missing mass di  $\pi^+\pi^0$
- —> selezione  $K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \nu$  su control trigger con simulatione del LAV veto di L1



# Random Veto e LAV

- Miglioramento del random veto stimato nella reiezione del π<sup>0</sup>
- Un'analisi multivariata più complessa, che tenga conto anche della necessità di rigettare i K<sup>+</sup> → π<sup>+</sup> π<sup>+</sup> π<sup>-</sup> oltre al π<sup>0</sup> è in corso:
- Campioni di training per la discriminazione dei pioni carichi dal random veto: selezione PNN senza LAV veto nella regione cinematica di K<sub>3π</sub> (che andranno combinati con il
- sample π<sup>+</sup>π<sup>0</sup>)



# **RICH - STRAW** momentum combination

Combinazione del momento della traccia downstream misurata dallo STRAW e dal RICH:

- Migliorare la risoluzione in impulso
- Recuperare degli outliers
  - 8% meno eventi a più di 5σ per il segnale (MC) a basso impulso
  - 7% meno eventi a più di 5 $\sigma$  per per il bkg di  $\pi^+\pi^0$  a basso impulso

Combinazione dei momenti attraverso la minimizzazione di una likelihood globale



# Discriminazione di pioni vs muoni

- Studi effettuati sul MC (pioni di segnale e background di muoni)
- Selezione di variabili di discriminazione aventi come input likelihood di compatibilità in momento del RICH e delle STRAW
- Classificazione usando una Deep Neural Network (TMVA/Keras)



- A parità di efficienza di selezione dei pioni, bkg di muoni diminuisce di un fattore 2.6
- A parità di reiezione di muoni, l'efficienza di selezione di pioni aumenta del 2%
- Punto di lavoro ottimale per la selezione multivariata deve essere scelto dopo opportuni studi su campioni di dati di controllo

# Priorita' analisi per run 2021

- Riduzione random veto
  - Mantenere un'efficienza di segnale  $\sim 2018 O(65\%)$  al 100% d'intensita'
- Riduzione fondo upstream utilizzando l'anti-veto
  - Portare l'upstream al livello del  $\pi^+\pi^0$  ( $\mathcal{O}(10\%) \rightarrow \text{riduzione} \times 5$ )
  - Ridefinizione criteri di selezione «anti upstream»
- Miglioramento della particle ID
  - Recuperare O(5%) di accettanza mantenendo lo stesso livello di reiezione dei  $\mu$
  - Ottimizzazione della reiezione dei  $\mu$  per ulteriore recupero di accettanza
- Miglioramento dei criteri di selezione cinematica
  - Riduzione fondo  $\pi^+\pi^0$  e recupero accettanza sia diretta che tramite ottimizzazione della definizione delle regioni di segnale

#### Conclusioni

- Analisi dei dati del RUN1 completata
  - Significativo milgioramento dell'analisi con i dati del 2018
  - L'analisi del 2018 e' da considerarsi il punto di partenza per l'analisi dei dati del RUN2
- Punti critici dell'analisi individuati e azioni intraprese per aumentare l'efficienza di segnale e ridurre il fondo
  - Sfruttare l'aumento d'intensita' (> 30%)
  - Compensare la presenza di nuovi rivelatori quali l'anti-veto che necessariamente introducono sono nuove sorgenti d'inefficienza
- L'analisi del  $\pi\nu\nu$  sui dati del «Run2» sara' basata in Italia
  - Brizioli (Perugia)
  - Marchevski (Firenze)
  - G.R. (Firenze, coordinatore analisi almeno per un altro anno)