$K^+ \to \pi^+ \nu \overline{\nu}$: stato e prospettive dell'analisi

Giuseppe Ruggiero

Meeting con referee INFN

27/07/2021

Analisi dati 2016 – 2018

- Analisi completata e risultato finale pubblicato [JHEP06(2021)093]
- Numero effettivo di decadimenti dei K nel 2018 rispetto al 2017: fattore × 1.8
- Aumento efficienza segnale analisi del 2018 rispetto al 2017: $fattore \times 2.1$ (dati nuovo collimatore)
 - Nuovo collimatore finale
 - BDT per la reiezione dell'upstream background
 - Utilizzo dei bins d'impulso 35-40 e 40-45 GeV/c (Regione II)
 - Ottimizzazione della selezione in bins d'impulso
 - Ottimizzazione algoritmo di reiezione degli eventi multi-tracce
- Rapporto S.E.S 2018 / 2017 ≈ 3.5 (non 3.8 a causa del 20% di dati nel 2018 col vecchio collimatore)
- Rapporto S/B (2018 vs 2017) 1.4 vs 1.5 (incertezza relativa su ciascun S/B 20%)
 - N.B. Il nuovo collimatore aumenta considerevolmente l'accettanza del segnale, NON riduce il fondo.
 - 60% del fondo di tipo «upstream»

Analisi dati 2016-2018

	S2 2018	S1 2018	2017	2016
$SES \times 10^{10}$	0.14 ± 0.01	0.54 ± 0.04	0.389 ± 0.024	3.15 ± 0.24
Signal expected (SM)	6.02 ± 0.39	1.56 ± 0.10	2.16 ± 0.13	0.27 ± 0.20
Background expected	$4.31^{+0.91}_{-0.72}$	$1.11^{+0.40}_{-0.22}$	1.46 ± 0.33	$0.152^{+0.093}_{-0.035}$
Candidates observed (R1+R2)	15	2	2	1
Signal acceptance $\times 10^2$	6.4 ± 0.6	4.0 ± 0.4	3.0 ± 0.3	4.0 ± 0.4
Trigger efficiency	0.89 ± 0.05	0.89 ± 0.05	0.87 ± 0.03	0.90 ± 0.03
RV efficiency	0.66 ± 0.01	0.66 ± 0.01	0.64 ± 0.01	0.76 ± 0.04
Effective K^+ decays $\times 10^{-12}$	~ 1.9	~ 0.8	~ 1.5	~ 0.12
$K^+ \to \pi^+ \pi^0(\gamma)$	0.52 ± 0.05	0.23 ± 0.02	0.29 ± 0.04	0.064 ± 0.009
$K^+ \to \mu^+ \nu(\gamma)$	0.45 ± 0.06	0.19 ± 0.06	0.15 ± 0.04	0.020 ± 0.007
$K^+ \to \pi^+ \pi^- e^+ \nu$	0.41 ± 0.10	0.10 ± 0.03	0.12 ± 0.08	$0.013^{+0.019}_{-0.013}$
$K^+ \to \pi^+ \pi^+ \pi^-$	0.17 ± 0.08	0.05 ± 0.02	0.008 ± 0.008	0.002 ± 0.002
$K^+ \to \pi^+ \gamma \gamma$	< 0.01	< 0.01	0.005 ± 0.005	< 0.002
$K^+ \to \pi^0 \ell^+ \nu \ (\ell = \mu, e)$	< 0.001	< 0.001	< 0.001	< 0.001
Upstream background	$2.76^{+0.90}_{-0.70}$	$0.54^{+0.39}_{-0.21}$	0.89 ± 0.31	$0.050^{+0.090}_{-0.030}$

27/07/202

Principali contributi efficienza di segnale

Dipendenza dall'intensita' dei vari contributi studiata usando dati (random veto) e/o overlay MC [risultati dall'analisi dati del 2018]

- Accettanza geometrica: -40% non dipende dall'intensita'
- Associazione temporale tra rivelatori (KTAG-GTK-RICH-CHOD): -15% dipende dall'intensita'
- K- π matching: -10% debole dipendenza dall'intensita' (no overlay -7.5%)
- Reiezione dei muoni: -10% dipendenza lineare dall'intensita'
- PID RICH: -10% non dipende dall'intensita'
- PID calorimetrica: -17% debole dipendenza dall'intensita
- Random Veto (reiezione fotoni e molteplicita'): -34% dipendenza lineare dall'intensita'
- Reiezione dell'upstream background: -20% non dipende dall'intensita'
- Definizione cinematica delle regioni di segnale (m_{miss}^2 e p_{π^+}): -66% non dipende dall'intensita'

Analisi dei dati \geq 2021: Prospettive

- Miglioramento trigger
 - Riduzione finestra di veto di muoni ($6 \rightarrow 4$ ns)
- Aumento accettanza del segnale
 - Associazione K π (utilizzo GTKO, test di nuovi algoritmi)
 - PID integrata RICH + calorimetri
 - Ottimizzazione della selezione cinematica per definire le regioni di segnale
 - Associazione temporale dei segnali nei rivelatori con tecnica MVA (da studiare sui dati)
- Miglioramento reiezione fotoni (riduzione random veto)
 - LKr: nuova ricostruzione + sviluppo di algoritmi NN per identificazione di overlapping photons
 - LAV: algoritmo BDT
 - · Utilizzo di HASC2 per aumentare efficienza di reiezione fotoni a basso angolo ($P_{\pi^+} < 20$ GeV/c)
- Riduzione fondo upstream
 - Utilizzo Anti-Veto + GTKO

Random Veto e LKr

Random veto (RV) dovuto al solo LKr >10% nel 2018

- Dipendenza ~lineare dall'intensita'
- Principalmente legata alla finestra di veto $|t_{cluster} t_{rich}| < 50\sigma \ (\sim 40 \ \text{ns}) \ \text{applicata}$ per $E_{cluster} > 15 \ \text{GeV}/c \ \text{distanti} > 100 \ \text{mm}$ dal punto d'impatto del π^+
- Riduzione finestra a $\pm 30\sigma$ comporta un aumento di $\times 2$ del fondo $\pi^+\pi^0$

Esempio: LKr offline event display

- $\pi^+\pi^0$ vetati dall'algoritmo standard SOLO grazie alla presenza di clusters non associati spazialemente al π^+ , e temporalmente entro $(-50, -30)\sigma(t)$ o $(+30, +50)\sigma(t)$ dal π^+ (segnali assenti in LAV, IRC, SAC)
 - La finestra temporale $|t_{cluster} t_{rich}| < 30\sigma$ (~25 ns) non rigetterebbe questi eventi

Visualizzazione in Energia

- $\pi^+\pi^0$ vetati dall'algoritmo standard SOLO grazie alla presenza di clusters non associati spazialemente al π^+ , e temporalmente entro $(-50, -30)\sigma(t)$ o $(+30, +50)\sigma(t)$ dal π^+ (segnali assenti in LAV, IRC, SAC)
 - · La finestra temporale $|t_{cluster} t_{rich}| < 30\sigma$ (~25 ns) non rigetterebbe questi eventi

Visualizzazione in Tempo

- $\pi^+\pi^0$ vetati dall'algoritmo standard SOLO grazie alla presenza di clusters non associati spazialemente al π^+ , e temporalmente entro $(-50, -30)\sigma(t)$ o $(+30, +50)\sigma(t)$ dal π^+ (segnali assenti in LAV, IRC, SAC)
 - La finestra temporale $|t_{cluster} t_{rich}| < 30\sigma$ (~25 ns) non rigetterebbe questi eventi

Random Veto e LKr

- Nuova ricostruzione del LKr: miglioramento dell'algoritmo di time-sharing dei clusters.
- Sviluppo di algoritmi di visual NN per identificare overlapping clusters in spazio e tempo
- Risultati preliminari incoraggianti: riduzione della finestra $|t_{cluster} t_{rich}| < 10\sigma$ mantiene lo stesso livello di reiezione dei $\pi^+\pi^0$.
- Possibilita' di ridurre la finestra ulteriormente e di estendere anche la reiezione a clusters di energie < 15 GeV in studio.
- Analisi on-going per avere indicazioni quantitative precise sul recupero di efficienza in funzione dell'intensita'
- Studio sinergico con il miglioramento della reiezione del LAV per sfruttare appieno la correlazione dei due rivelatori

Random Veto e LAV

- Analisi multivariata per migliorare l'algoritmo di veto sui LAV
- Primo studio sulla capacità di distinguere i fotoni da π^0 dal random veto sui LAV, per il caso di un singolo hit in tempo e di due hit clusterizzati
- Campioni di training:
- -> selezione PNN eccetto LAV veto sotto picco della missing mass di $\pi^+\pi^0$
- \rightarrow selezione $K^+ \rightarrow \mu^+\nu$ su control trigger con simulatione del LAV veto di L1

Random Veto e LAV

- Miglioramento del random veto stimato nella reiezione del π^0
- Un'analisi multivariata più complessa, che tenga conto anche della necessità di rigettare i $K^+ \to \pi^+ \pi^+ \pi^-$ oltre al π^0 è in corso:
- Campioni di training per la discriminazione dei pioni carichi dal random veto: selezione PNN senza LAV veto nella regione cinematica di $K_{3\pi}$ (che andranno combinati con il sample $\pi^+\pi^0$)

 Primi risultati promettenti

RICH - STRAW momentum combination

Combinazione del momento della traccia downstream misurata dallo STRAW e dal RICH:

- Migliorare la risoluzione in impulso
- Recuperare degli outliers
 - 8% meno eventi a più di 5σ per il segnale (MC) a basso impulso
 - 7% meno eventi a più di 5 σ per per il bkg di $\pi^+\pi^0$ a basso impulso

Combinazione dei momenti attraverso la minimizzazione di una likelihood globale

Discriminazione di pioni vs muoni

- Studi effettuati sul MC (pioni di segnale e background di muoni)
- Selezione di variabili di discriminazione aventi come input likelihood di compatibilità in momento del RICH e delle STRAW
- Classificazione usando una Deep Neural Network (TMVA/Keras)

- A parità di efficienza di selezione dei pioni, bkg di muoni diminuisce di un fattore 2.6
- A parità di reiezione di muoni, l'efficienza di selezione di pioni aumenta del 2%
- Punto di lavoro ottimale per la selezione multivariata deve essere scelto dopo opportuni studi su campioni di dati di controllo

Priorita' analisi per run 2021

Riduzione random veto

- Mantenere un'efficienza di segnale $\sim 2018~\mathcal{O}(65\%)$ al 100% d'intensita'
- Riduzione fondo upstream utilizzando l'anti-veto
 - · Portare l'upstream al livello del $\pi^+\pi^0$ ($\mathcal{O}(10\%)
 ightarrow \mathrm{riduzione} imes 5)$
 - Ridefinizione criteri di selezione «anti upstream»
- Miglioramento della particle ID
 - Recuperare $\mathcal{O}(5\%)$ di accettanza mantenendo lo stesso livello di reiezione dei μ
 - · Ottimizzazione della reiezione dei μ per ulteriore recupero di accettanza
- Miglioramento dei criteri di selezione cinematica
 - Riduzione fondo $\pi^+\pi^0$ e recupero accettanza sia diretta che tramite ottimizzazione della definizione delle regioni di segnale

Conclusioni

- Analisi dei dati del RUN1 completata
 - Significativo milgioramento dell'analisi con i dati del 2018
 - L'analisi del 2018 e' da considerarsi il punto di partenza per l'analisi dei dati del RUN2
- Punti critici dell'analisi individuati e azioni intraprese per aumentare l'efficienza di segnale e ridurre il fondo
 - Sfruttare l'aumento d'intensita' (> 30%)
 - Compensare la presenza di nuovi rivelatori quali l'anti-veto che necessariamente introducono sono nuove sorgenti d'inefficienza
- L'analisi del $\pi \nu \nu$ sui dati del «Run2» sara' basata in Italia
 - Brizioli (Perugia)
 - Marchevski (Firenze)
 - G.R. (Firenze, coordinatore analisi almeno per un altro anno)