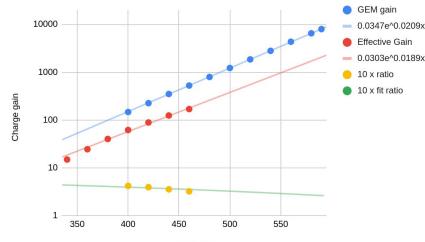


C/GNO Experiment


CYGNO simulation of GEM saturation

Giulia D'Imperio, Davide Pinci, Fabrizio Petrucci

12/07/21 CYGNO simulation meeting

GEM measurements summary

- Functional dependence of the GEM gain vs HV gain = 0.0347 exp(0.0209 * HV)
- Functional dependence of the GEM efficiency vs HV efficiency = effective/tot gain = 0.873 exp(-0.002 * HV)

- GEM gain from Fernando's measurements
- Effective gain from Francesco&Karolina's measurements

Digitization code recent updates

Updates in the "saturation" branch of the git repo:

https://github.com/CYGNUS-RD/digitization/tree/saturation

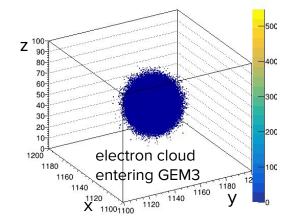
- Added absorption length for electron in gas
- Added parameterization of GEM gain vs HV
- Added parameterization of GEM efficiency vs HV
- Added saturation implementation also for ER and NR (GEant4 and SRIM data format)

Commits on Jul 8, 2021	
fix info_tree for Geant4 and SRIM files	□ 49d0ee3 <>
commits on Jul 7, 2021	
small fix	[ⁿ] 4dd20c2 <>
small fix gimperi committed 5 days ago	[th] 4dd28c2 <>
🕐 gdimperi committed 5 days ago	

Simulation of GEM gain + light production

- Single GEM gain for HV @450V from portugues group measurement
- Extraction x Collection efficiency of electrons in GEM1 and GEM2 from F&K measurements
- Light yield: 0.07 photons/electrons
- ORCA Fusion:
 - 2304 x 2304 pixels (1 pixel 6.5 um x 6.5 um)
 - Camera aperture 0.95
 - Sensor size 14.976 mm
 - Sensor calibration \rightarrow 1 photon = 2 sensor counts
- Active area: 35 cm x 35 cm
- Distance from the GEM: 30 cm
- Geometry factor of light collection: $\Omega = 1/(4(d+1)^*a)^2$
 - \circ d = ratio between image size (350 mm) and sensor size (14.976 mm)
 - a = camera aperture (0.95)

Saturation simulation

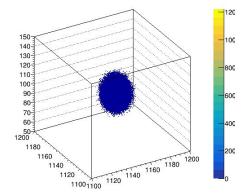

Presentation by Davide: <u>https://cernbox.cern.ch/index.php/s/tJlyEZZPLdkSrH6/download</u> Jupyter notebook test: <u>https://github.com/gdimperi/cygno-digi-test</u> New branch in digitization repository: <u>https://github.com/CYGNUS-RD/digitization/tree/saturation</u>

Method:

- Add absorption length parameter for e- in the gas λ : n = n₀ exp(-z/ λ)
- Only GEM3 saturated, G1 and G2 simulated as before
- Simulate the 3D cloud of electrons entering GEM3:
 - $\circ~$ spatial smearing given by $\sigma_{_{0T}}\!,\!\sigma_{_{T}}$ and $\sigma_{_{0L}}\!,\!\sigma_{_{L}}$ and drift distance z
 - divide electron cloud in voxels 152(x) x 152(y) x 100(z) μ m³
 - x and y voxels correspond to pixels (to be changed)
 - apply formula of saturated gain in each voxel

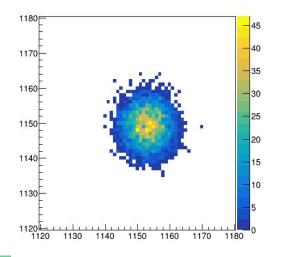
$$G = A \frac{g}{1 + \frac{n}{n_h}(g - 1)}$$

• Conversion to number of photons as before



Example event: 6 keV ER

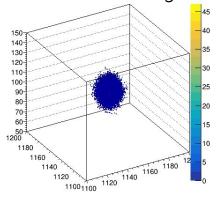
Results with parameters tuned "manually":


- A = 1.
- $1/n_{h} = \beta = 0.5e-5$
- $\lambda = 100 \text{ cm}$
- z = 20 cm

Electron cloud entering GEM3

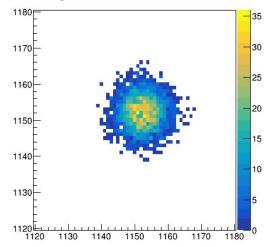
tot num of sensor counts after GEM3 including saturation: 4932
tot num of sensor counts after GEM3 without saturation: 7935
Gain GEM3 = 342.059401 Gain GEM3 saturated = 212.606568

Final image on the sensor 6 keV ER



Example event: 6 keV NR

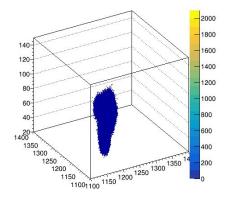
Results with parameters tuned "manually":


- A = 1.
- $1/n_{h} = \beta = 0.5e-5$
- $\lambda = 100 \text{ cm}$
- z = 20 cm

Electron cloud entering GEM3

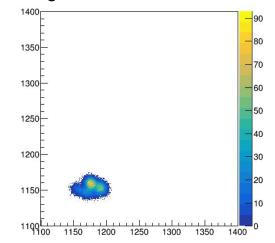
tot num of sensor counts after GEM3 including saturation: 3472
tot num of sensor counts after GEM3 without saturation: 4744
Gain GEM3 = 342.059401 Gain GEM3 saturated = 250.293355

Final image on the sensor 6 keV NR



Example event: 30 keV ER

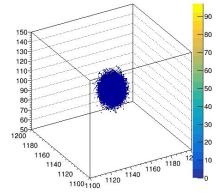
Results with parameters tuned "manually":


- A = 1.
- $1/n_{h} = \beta = 0.5e-5$
- $\lambda = 100 \text{ cm}$
- z = 20 cm

Electron cloud entering GEM3

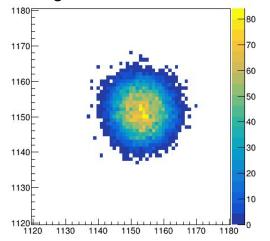
tot num of sensor counts after GEM3 including saturation: 29385
tot num of sensor counts after GEM3 without saturation: 47384
Gain GEM3 = 342.059401 Gain GEM3 saturated = 212.126131

Final image on the sensor 30 keV ER



Example event: 30 keV NR

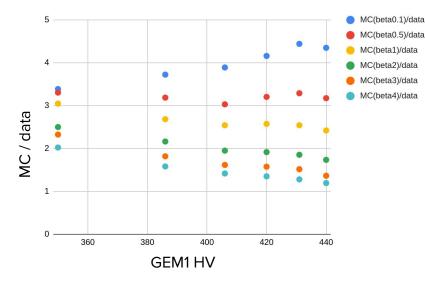
Results with parameters tuned "manually":


- A = 1.
- $1/n_{h} = \beta = 0.5e-5$
- $\lambda = 100 \text{ cm}$
- z = 20 cm

Electron cloud entering GEM3

tot num of sensor counts after GEM3 including saturation: 12964
tot num of sensor counts after GEM3 without saturation: 41579
Gain GEM3 = 342.059401 Gain GEM3 saturated = 106.649307

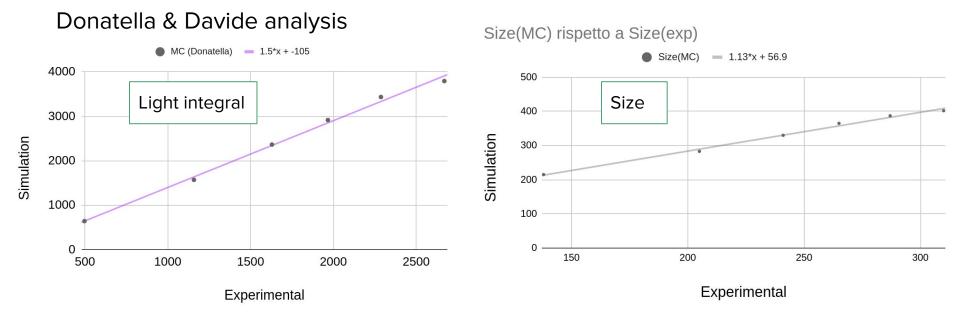
Final image on the sensor 30 keV NR



Comparison with ⁵⁵Fe data with GEM1 HV scan

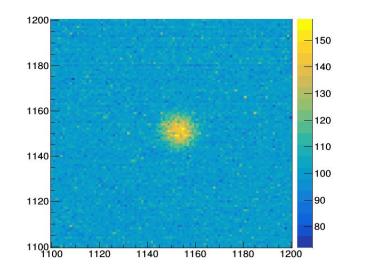
- Config file parameters to reproduce data by Donatella&Davide
 - Distance from GEM = 20 cm
 - GEM1_HV → scan: 350, 386, 406, 420, 431, 440 V
 - GEM2_HV = 440 V
 - GEM3_HV = 440 V
 - \circ A = 1.47 (free parameter of the model, to be fixed)
 - beta → scan to find the best value for our model: 0.1e-5, 0.5e-5, 1e-5, 2e-5, 3e-5, 4e-5, 5e-5
 - \circ absorption_l = 1 m

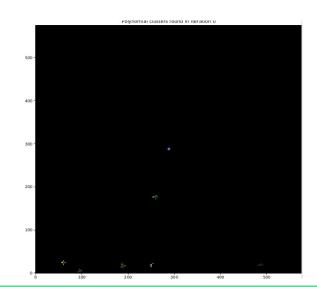
Comparison with ⁵⁵Fe data (MC no background)


- Distance from the GEM is 20 cm
- MC without background
- Donatella & Davide analysis

HV GEM1	beta=0.5e-5	data (Don_corr)	MC(beta0.5)/data
350	1326.16	578	3.305207612
386	2477.38	1159	3.18797239
406	3496.73	1624	3.032038177
420	4231.39	1960	3.204408163
431	4860.13	2280	3.290197368
440	5517.5	2661	3.175700864

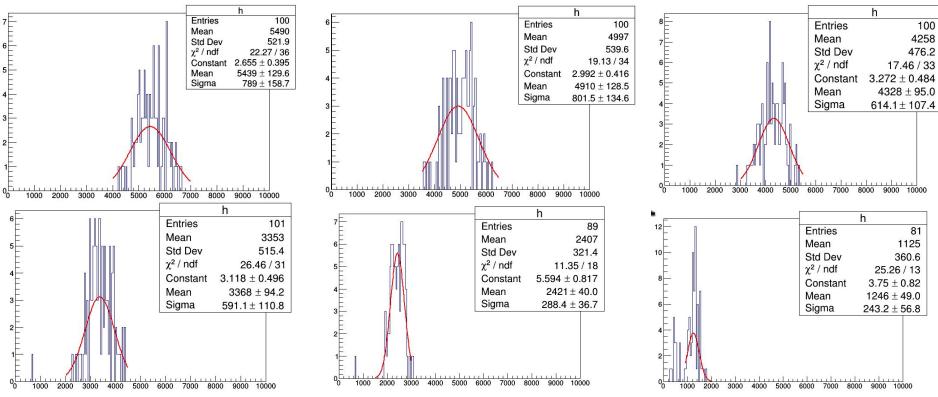
- If the saturation model is correct we expect flat ratio between MC and data
- A is a free parameter, should be changed so that the ratio is 1
- The best value for beta seems beta = 0.5e-5

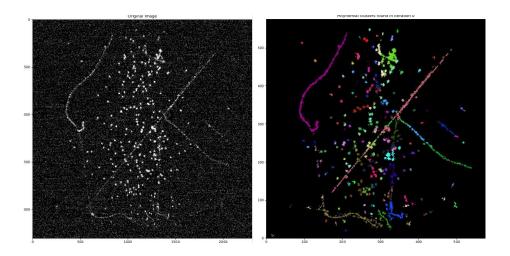

Comparison with ⁵⁵Fe data (MC bkg from run 3944)



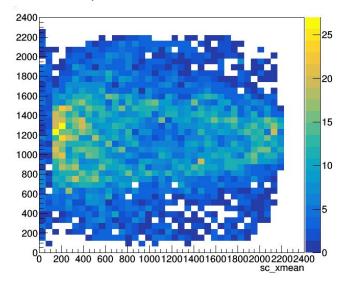
- Linear behaviour as expected
- Linear coefficient not exactly 1 and intercept not 0 → to be understood

Signal + background simulation


- Use pedestal run taken before the HV scan (4159)
- Use official reconstruction code (by Emanuele)
- (Simple) selection:
 - \circ round spots: sc_lgaussmean/sc_lgaussmean < 1.5
 - MC density cut : sc_integral/sc_nhits > 13 (to avoid fake clusters)

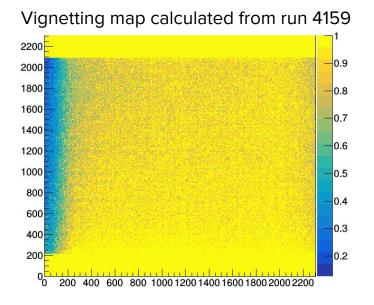

some small "fake" superclusters in the lower part of the image

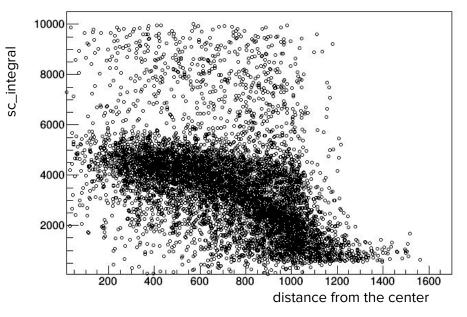
Reconstructed MC: light integral



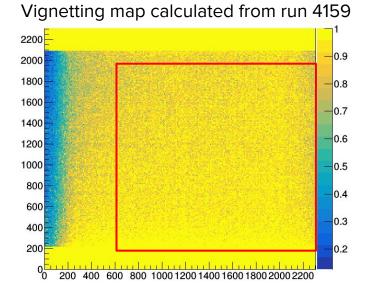
Data reconstruction example

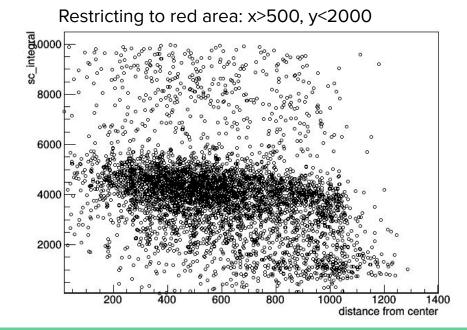
- Use pedestal run taken before the HV scan (4159)
- Use official reconstruction code (by Emanuele)
- (Simple) selection:
 - round spots: sc_lgaussmean/sc_lgaussmean < 1.5
 - data density cut : 8 < sc_integral/sc_nhits < 18



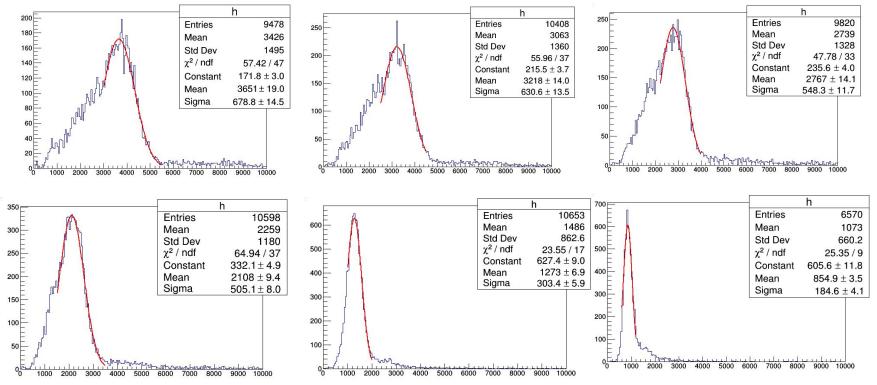

Map of reconstructed superclusters in run 4160

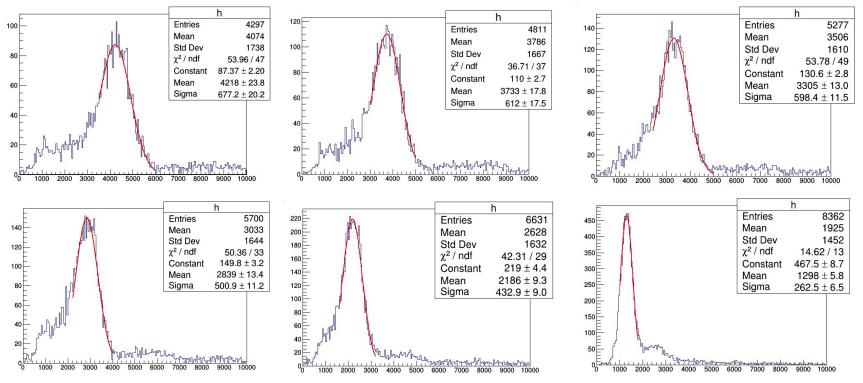
Vignetting correction


Vignetting correction is not working properly, need to fix and/or restrict the analysis to the center of the active area

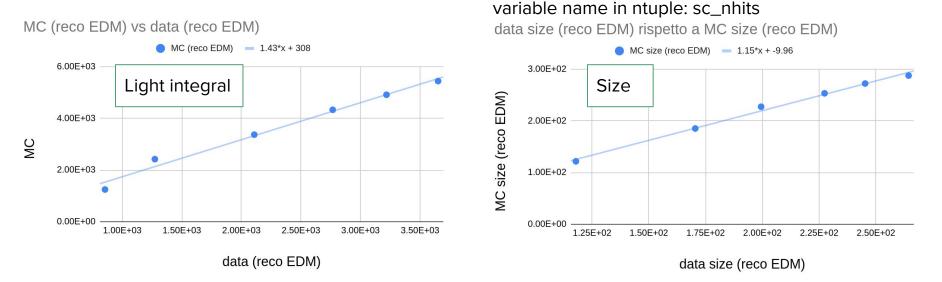


Vignetting correction


Vignetting correction is not working properly, need to fix and/or restrict the analysis to the center of the active area

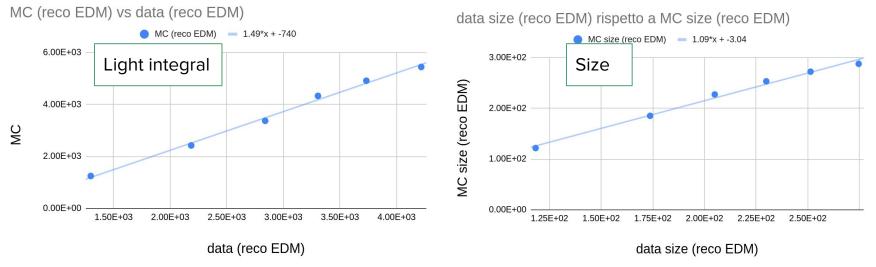

Data: light integral

No selection in supercluster position → affected by vignetting problem



Data: light integral

Add selection in supercluster position: sc_xmean>600 && sc_ymean<2000


Comparison data vs MC

- Linear behaviour as expected
- Linear coefficient not exactly 1 and intercept not 0
- result similar to what obtained with the independent analysis by Donatella, but absolute values of light and size

Comparison data vs MC

Add selection in supercluster position: sc_xmean>600 && sc_ymean<2000

- Linear behaviour as expected
- Linear coefficient not exactly 1 and intercept not 0
- result similar to what obtained with the independent analysis by Donatella, but absolute values of light and size

Conclusions & next steps

- Saturation simulation is able to the non-linear behaviour of the saturated gain vs GEM HV
- Some parameters of the simulation still to be tuned
 - coefficient of linear behaviour not1, intercept not 0
- Need to check also analysis parameters
 - vignetting
 - pedestal subtraction
 - selection
 - other differences between analysis code versions