Speaker
Description
CLAS12 has been performing experiments at Thomas Jefferson National Laboratory (JLab) in which electrons of energy up to 11 GeV is impinging on liquid hydrogen or deuterium targets. One of the important physics programs of these experiments is the search for exotic particles, like hybrids, tetraquarks, pentaquarks, and hexaquarks. CLAS12@JLab has a unique possibility to study hexaquarks, including the recently discovered d(2380).
Hexaquarks could have a great impact on our understanding of strong interactions, especially many-body effects within Quantum Chromo Dynamics (QCD), but also our models of neutron stars. This work is searching for a candidate for a very strange hexaquark (d_sss) (with the strangeness of -3), very negative (electric charge of -2) and with the highest possible spin, J=3. If found the d_sss hexaquark could potentially have implications on “strange stars”. The first steps of this analysis will be presented together with the studies of various conventional background channels, such as N resonances with larger decay branches to states with strangeness and evidence of excited Λ*s states.