

Second Strong 2020 online Workshop

14-16 September 2021 – University of York

Recent results on hadronic resonance production with the ALICE experiment

Antonina Rosano on behalf of ALICE collaboration Dipartimento MIFT - Università degli Studi di Messina INFN Sezione di Catania

Istituto Nazionale di Fisica Nucleare

Heavy-ion collisions and Quark Gluon Plasma

Ultrarelativistic heavy-ion collisions: critical value of temperature ($T_c \sim 170 \text{ MeV}$) and energy density ($\epsilon_c \sim 1 \text{ GeV/fm}^3$) \rightarrow Quark Gluon Plasma (**QGP**) formation

Fireball evolution:

- **Pre-equilibrium:** Hot and dense partonic matter created in the collision region
- **QGP:** plasma of quarks and gluons. The fireball expands because of the pressure gradients
- Hadronization: The system cools down and the energy density decreases. Quarks and gluons become confined → Interacting Hadron gas
- Chemical freeze-out: the energy is too low to allow inelastic processes
- **Kinetic freeze-out:** occurs after the chemical freeze-out, when also the elastic interactions stop

Then particles can be detected

Hadronic Phase

- The phase between chemical and kinetic freeze-out is known as hadronic phase
- During this stage, processes like re-scattering or regeneration may affect resonance measured yield

Regeneration: a given resonance can be regenerated as a consequence of pseudo-elastic collisions of the particles medium \rightarrow signal gain: yield enhancement.

Re-scattering: resonance decay daughters interact with other particles in the hadronic medium \rightarrow signal loss: yield suppression.

Why study hadronic resonances?

- Long-lived resonances, decaying outside the hadronic medium do not undergo any such processes
- Resonances with a lifetime comparable to the fireball (τ ~ 10 fm/c) instead are sensitive to these competitive effects
- Resonances with different lifetimes can help in estimating the hadronic phase lifetime
- Measurement of production of resonances with different masses, quantum numbers and quark content are useful to explore the particle production mechanisms

Resonances are the perfect probes to characterize the late-stage evolution of the system formed in A-A collisions at ultrarelativistic energies

Main resonaces studied by ALICE

Yields at kinetic freeze-out depend on:

- Resonance and hadronic phase lifetime
- Yields at the chemical freeze-out
- Scattering cross sections of decay products

Resonance yields encode the effects of interaction during the hadronic phase!

Lifetime

Resonance	ρ(770)º	K*(892)±	K*(892) ⁰	f ₀ (990)	Σ(1385)±	Ξ(1820)±	۸(1520)	Ξ(1530) ⁰	ф(1020)
Quark composition	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	us, ūs	$d\bar{s}, \bar{d}s$	unknown	uus, dds	dss	uds	uss	<i>s</i> 5
τ (fm/c)	1.3	3.6	4.2	large unc.	5-5.5	8.1	12.6	21.7	46.4
Decay	ππ	$K^{0}_{s}\pi$	Кπ	π+π·	Λπ	ΛК	рК	Ξπ	кк
B.R.(%)	100	33.3	66.6	46	87	unknown	22.5	66.7	48.9

Fireball lifetime: $\tau \sim 10$ fm/c at LHC energies

The ALICE detector

a. ITS SPD Pixel b. ITS SDD Drift c. ITS SSD Strip d. V0 and T0 e. FMD

Data collected from:

Collision System	√s _{NN} (TeV)			
рр	0.9, 2.76, 5.02, 7, 8,13			
p-Pb	5.02, 8.16			
Xe-Xe	5.44			
Pb-Pb	2.76, 5.02			

Antonina Rosano

Second Strong 2020 online Workshop

9/30

Signal extraction

Resonance yield extraction via invariant mass distribution of the decay daughters identified with TPC/TOF and topological selection criteria

- Uncorrelated background calculated via event mixing technique or like-charge method
- After subtracting the uncorrelated background, the remaining distribution is fitted with a suitable function for the residual background and a Breit-Wigner (or a Gaussian, or a Voigtian) for the signal

Signal extraction

Antonina Rosano

Second Strong 2020 online Workshop

11/30

p_{T} spectra in heavy-ion collisions

- Multiplicity event class definition based on forward/backward V0 estimator.
- *p*_T spectra get harder with increasing multiplicity (from peripheral to central collisions)
- Similar spectra obtained also for the other hadron species

→ In **heavy-ion collision**: effect due to collective expansion

p_{T} spectra in heavy-ion collisions

Xe-Xe@5.44 TeV

- Multiplicity event class definition based on forward/backward V0 estimator.
- *p*_T spectra get harder with increasing multiplicity (from peripheral to central collisions)
- Trend confirmed also in Xe-Xe collisions
- → In heavy-ion collision: effect due to collective expansion

p_{T} spectra in small collision systems

ALICE

v < 0.5

VI(<∕2⁴)

10

р_т (GeV/*c*)

X

pp √s = 13 TeV

- pp and p-Pb collisions are typically used as baseline for A-A collisions
- p_{T} spectra get harder with increasing multiplicity: qualitatively similar to **Pb-Pb**
- **Lower panels:** ratios of p_T spectra to NSD (p-Pb collisions) and to INEL>0 (pp collisions)

 $p_T < 5$ GeV/c: p_T spectra increase from low to high multiplicity classes

p_T > 5 GeV/c: same spectral shapes for all multiplicity classes

Process dominant at low p_T

Antonina Rosano

p_T spectra in small collision systems

- Same trend observed also for Φ(1020)
- pp and p-Pb collisions show typical features of heavy-ion collisions as flow-like effects
- Colour reconnection mechanism can mimic the effect of collective-like behaviour.

Antonina Rosano

Second Strong 2020 online Workshop

Spectra mean p_{T} in small collision systems

- ⟨p_T⟩ values in pp collision at √s = 7 TeV and 13 TeV follow approximately the same trend and rise faster as a function of (dN_{ch}/dη) than in p-Pb collisions
- Among the different models EPOS-LHC gives the best agreement with data, however the predictions slightly underestimate values for K^{*0}

Antonina Rosano

Second Strong 2020 online Workshop

Spectra mean p_{T} in heavy-ion collisions

- Similar evolution in Pb-Pb and Xe-Xe collisions
- Independent of colliding nucleus size (Xe-Xe aligns with Pb-Pb)

Spectra mean p_{T} spectra

 $\langle p_{\rm T} \rangle$ in pp and p–Pb rise faster than in Pb–Pb collisions

Central Pb-Pb collisions (high multiplicity):

▶ mass ordering: particles with similar masses have similar $\langle p_T \rangle \rightarrow$ indicative of radial flow.

Peripheral Pb-Pb and small collision systems (pp; p-Pb):

> mass ordering breaks down: lower $\langle p_T \rangle$ for p than K^{*0} and Φ .

Integrated yield in small collision systems

- For both particles, dN/dy exhibits a linear increase with increasing (dN_{ch}/dη)
- Results for pp @ 7 and 13 TeV and for p–Pb @ 5.02 TeV are almost overlapped
- Similar results also for other hadron species

- EPOS-LHC and PYTHIA8 without colour reconnection describe K^{*0} data well
- Φ data are slightly overestimated by EPOS-LHC and underestimated by PYTHIA

Integrated yield in heavy-ion collisions

• As for pp and p-Pb, the yields in Pb-Pb @ 5.02 TeV and Xe-Xe @ 5.44 TeV lie on the same line

Particle production rate does not depend on collision system or energy \rightarrow it depends only on event multiplicity

• Similar results also for other hadron species

$\tau(\rho^0) = 1.3 \text{ fm/}c$

Resonance yield can be compared to long-lived particles with similar quark content to study the system size dependence.

- **Significant suppression** going from pp, p-Pb, and peripheral Pb-Pb to central Pb-Pb collisions (i.e. increasing system size)
- Hint of suppression also for high multiplicity p-Pb collisions
- \rightarrow dominance of re-scattering over regeneration
- EPOS3, although systematically higher than the data, qualitatively describes the decreasing trend

Antonina Rosano

 $\tau(K^{*0}) = 4.2 \text{ fm/c}$

- **Significant suppression** of K^{*0}/K going from pp, p-Pb, and peripheral Pb-Pb to central Pb-Pb collisions $\rightarrow K^{*0}$ re-scattering dominant over regeneration
- As for ρ/π hint of suppression in high multiplicity pp and p-Pb collisions \rightarrow hadronic phase effect in small systems as well?

$\tau(\Phi) = 46.4 \text{ fm/}c$

Flat behaviour for Φ/K for each collision system \rightarrow larger Φ lifetime: it probably decays after the end of the hadronic phase

ALI-DER-336306

RECENT result: $\Sigma^*(1385)^{\pm}$ in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

 $\tau(\Sigma^{*\pm}) = 5-5.5 \text{ fm/}c$

- The ratio Σ*±/Λ remains flat in small collisions systems
- A suppression is observed for the first time in central Pb-Pb collisions
- The suppression is not predicted by EPOS or thermal model
- Pb-Pb data are lower than STAR Au-Au value

$\tau(\Lambda^*) = 12.6 \text{ fm/}c$

- Significant decrease of Λ*/Λ with increasing charged-particle multiplicity from peripheral to central Pb-Pb collisions
- The trend of suppression is similar to the one seen from STAR data in Au-Au collisions @ 200 GeV
- \rightarrow Consistent with re-scattering as dominant effect
- EPOS3, although systematically higher than the data, qualitatively describes the decreasing trend

Antonina Rosano

$\tau(\Xi^{*0}) = 21.7 \text{ fm/}c$

- Like Φ/K, the Ξ*⁰/Ξ ratio also does not show remarkable suppression in Pb-Pb nor in elementary collisions
- Ξ^{*0} probably decays outside the hadronic medium
- Models overestimate data

Ratios to long-lived particle yields: overview

Small collision systems (pp, p-Pb):

- Φ/K Σ*±/Λ Λ(1520)/Λ, and Ξ*0/Ξ ratios are independent of charged particle multiplicity
- ρ^0/π , $K^{*0}/K \rightarrow$ hint of suppression (possible re-scattering effect)

Heavy-ion collision systems (Pb-Pb, Xe-Xe):

- ρ⁰/π, K*⁰/K, Σ*[±]/Λ, and Λ(1520)/Λ ratios are suppressed with respect to pp, p-Pb and peripheral Pb-Pb: dominance of re-scattering compared to regeneration
- Φ/K and Ξ*⁰/Ξ no suppression: larger lifetime → decay outside the medium

K*(892)[±]: recent results and ongoing analysis

- $K^*(892)^{\pm}$ reconstructed via $K^{\pm} \rightarrow K^0_S + \pi^{\pm}$ with $K^0_S \rightarrow \pi^{+} + \pi^{-}$ <u>NOTE</u>: $K^*(892)^0$ reconstructed via $K^{*0} \rightarrow K^{\mp} + \pi^{\pm}$
- Lower systematic uncertainties on K⁰_S measurement than K[±] due to the different strategies used for their identification in ALICE
- The spectra of K^{*±} and K^{*0} are consistent within the uncertainties
- These measurements complement and confirm the previous results for K^{*0} with smaller systematic uncertainties

K*(892) [±] multiplicity-dependent analysis in pp collisions @ 13 TeV is ongoing

Antonina Rosano

Second Strong 2020 online Workshop

f₀(980) resonance production with ALICE

- $f_0(980)$ quark structure is still controversial
- It has been considered as a (q)²(q
)² tetraquark and as a mixture of qq
 and tetraquark
- The analysis in pp collisions can provide a baseline for measurement in larger collision systems (p-Pb, Pb-Pb)
- In addition enhancement of particles containing strange quarks has been observed even in small systems

Measurement of $f_0(980)$ enhancement would give a hint of its quark content

f₀(980) resonance production with ALICE

ALICE Preliminary

pp $\sqrt{s} = 13 \text{ TeV}$

- Resonance reconstruction via $f_0(980) \rightarrow \pi^+\pi^-$
- Large contribution by other resonances in the considered invariant mass window \rightarrow very challenging signal extraction
- The $f_0(980)$ peak is parametrized with a relativistic Breit-Wigner function
- Overlap with the broad $\rho^0(770)$ and $f_2(1270) \rightarrow$ two additional relativistic Breit-Wigner functions are included
- The residual combinatorial background is computed with a Maxwell-Boltzmann distribution
- Results on $f_0(980)$ production in pp @ 5.02 TeV will be soon available! ٠

Rich set of resonances measured by ALICE for several collision systems and energies

- Resonance production is independent of collision system and collision energy at LHC energies and it is driven by the event multiplicity
- The hardening of p_{T} spectra with increasing multiplicity is observed also in small collision systems
- Similar <p_T> is measured for p, K^{*0} and Φ in central Pb-Pb collisions, as expected from hydrodynamics since they have similar masses. Steeper increase of <p_T> with multiplicity in small systems. Mass ordering, observed for central Pb-Pb, breaks down for small systems.
- Short-lived resonances (ρ⁰, K^{*0}, Σ^{*±}, and Λ⁰) are suppressed in the most central heavy-ion collisions compared to small collision systems. No suppression for longer-lived resonances [τ(Ξ^{*0}) = 21.7 fm/c and τ(Φ) = 46.4 fm/c]
- Hint of suppression for short-lived resonances (ρ⁰ and K^{*0}) in high multiplicity pp and p-Pb collisions
 → non zero lifetime of hadronic phase in small systems?
- Exotic resonances like $f_0(980)$ and $\Xi(1820)$ are beeing explored

Thank you for your attention