

Experimental aspects of Spectroscopy and Phenomenology at LHCb

Sara Mitchell

on behalf of the LHCb collaboration

STRONG: September 2021

Introduction

- Over the past 10 years the LHC has discovered 62 new hadrons, mainly from LHCb.
- The discovery of new particles provides valuable information on probing the limits of the quark model.

Could provide a deeper understanding of the hadronic structure.

 Studying heavy flavour spectroscopy allows us to further our understanding of how conventional hadrons, tetraquarks and pentaquarks are formed.

Recent Results

• Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$ LHCb-PAPER-2020-044 (published in PRL: Phys. Rev. Lett. 127, 082001)

• Evidence for a new structure in the $J/\psi p$ and $J/\psi \bar{p}$ systems in $B_s^0 \rightarrow J/\psi p \bar{p}$ decays LHCb-PAPER-2021-018 (submitted to PRL: <u>arXiv:2108.04720</u>)

• Observation of the excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays LHCb-PAPER-2021-012 (accepted by PRD Lett: <u>arXiv:2107.03419</u>)

 Observation of an exotic narrow doubly charmed tetraquark LHCb-PAPER-2021-031 (arXiv:2109.01038, arXiv:2109.01056)

Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$

New Exotic States: Z_{cs}^+

• The previous Run 1 analysis found four $X (\rightarrow J/\psi\phi)$ structures with a significance of over 5σ .

Signal Decay: $B^+ \to J/\psi \phi K^+$

 Including Run 2 and improving the selection efficiency provides an increase of ~ 6 times larger statistics.

Sara Mitchell

Run 1 Analysis: <u>Phys. Rev. Lett. 118, 022003 (2017)</u> This analysis: <u>Phys. Rev. Lett. 127, 082001 (2021)</u> [LHCb-PAPER-2020-044]

- Candidates in region of ± 15 MeV of B^+ mass peak.
- To investigate structures a full amplitude fit is performed.

New Exotic States: Z_{cs}^+

Run 1 Analysis: <u>Phys. Rev. Lett. 118, 022003 (2017)</u> This analysis: <u>Phys. Rev. Lett. 127, 082001 (2021)</u> [LHCb-PAPER-2020-044]

• Signal decay is described in the helicity formalism by three decay chains:

- Clear discrepancies are observed.
- Run 1 model needs to be improved.

• In total: nine K^{*+} , seven X, two Z_{cs}^{+} and one $J/\psi\phi$ NR component are taken as the default model, all have a statistical significance of over 5σ .

New Exotic States: Z_{cs}^+

Run 1 Analysis: <u>Phys. Rev. Lett. 118, 022003 (2017)</u> This analysis: <u>Phys. Rev. Lett. 127, 082001 (2021)</u> [LHCb-PAPER-2020-044]

Contribution		Significance $[\times \sigma]$	$M_0[{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\mathrm{FF}\left[\% ight]$
	All $K(1^+)$				$25\pm4{}^{+}_{-15}^{6}$
$2^1 P_1$	$K(1^+)$	4.5(4.5)	$1861 \pm 10 {}^{+ 16}_{- 46}$	$149 \pm 41 {}^{+ 231}_{- 23}$	
$2^3 P_1$	$K'(1^+)$	4.5(4.5)	$1911 \pm 37 {}^{+ 124}_{- \ 48}$	$276\pm50{}^{+319}_{-159}$	
$1^3 P_1$	$K_1(1400)$	9.2(11)	1403	174	$15\pm3{+}_{-11}^{+3}$
	All $K(2^-)$				$2.1\pm0.4^{+2.0}_{-1.1}$
$1^1\mathrm{D}_2$	$K_2(1770)$	7.9(8.0)	1773	186	
1^3D_2	$K_2(1820)$	5.8(5.8)	1816	276	
	All $K(1^-)$				$50\pm4{}^{+10}_{-19}$
$1^3 D_1$	$K^{*}(1680)$	4.7(13)	1717	322	$14\pm2{}^{+35}_{-8}$
2^3S_1	$K^{*}(1410)$	7.7(15)	1414	232	$38 \pm 5 {}^{+11}_{-17}$
	$K(2^+)$				
$2^{3}P_{2}$	$K_{2}^{*}(1980)$	1.6(7.4)	$1988 \pm 22 {}^{+ 194}_{- 31}$	$318\pm82{}^{+481}_{-101}$	$2.3\pm0.5\pm0.7$
	$K(0^-)$				
2^1S_0	K(1460)	12 (13)	1483	336	$10.2 \pm 1.2 {}^{+ 1.0}_{- 3.8}$
	$X(2^{-})$				
	X(4150)	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135\pm28{}^{+59}_{-30}$	$2.0\pm0.5{}^{+0.8}_{-1.0}$
	$X(1^-)$				
	X(4630)	5.5(5.7)	$4626 \pm 16^{+18}_{-110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6\pm0.5^{+2.9}_{-1.5}$
	All $X(0^+)$				$20\pm5{}^{+14}_{-7}$
	X(4500)	20 (20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6\pm0.7^{+2.4}_{-0.6}$
	X(4700)	17(18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-\ 6}$	$8.9 \pm 1.2 \substack{+4.9 \\ -1.4}$
	$\mathrm{NR}_{J/\psi\phi}$	4.8 (5.7)			$28 \pm 8 {}^{+ 19}_{- 11}$
	All $X(1^+)$				$26\pm3{}^{+8}_{-10}$
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3^{+19}_{-6}$
	X(4274)	18 (18)	$4294 \pm 4 {}^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8\pm0.5^{+0.8}_{-0.4}$
	X(4685)	15(15)	$4684 \pm 7 {}^{+13}_{-16}$	$126 \pm 15 {}^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+ 4.0}_{- 2.0}$
	All $Z_{cs}(1^+)$				$25\pm5^{+11}_{-12}$
	$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+}_{-}{}^{4}_{14}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$
	$\begin{array}{c} \hline Cor \\ 2^1 P_1 \\ 2^3 P_1 \\ 1^3 P_1 \\ \hline \\ 1^1 D_2 \\ 1^3 D_2 \\ \hline \\ 2^3 S_1 \\ 2^3 S_1 \\ 2^3 P_2 \\ 2^1 S_0 \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{tabular}{ c c c c c } \hline Contribution & All $K(1^+)$ \\ $2^1 P_1 & K(1^+)$ \\ $2^3 P_1 & K'(1^+)$ \\ $1^3 P_1 & K_1(1400)$ \\ & All $K(2^-)$ \\ $1^1 D_2 & K_2(1770)$ \\ $1^3 D_2 & K_2(1820)$ \\ & All $K(1^-)$ \\ $1^3 D_1 & K^*(1680)$ \\ $2^3 S_1 & K^*(1410)$ \\ $2^3 S_1 & K^*(1410)$ \\ $2^3 S_1 & K^*(1410)$ \\ $X(2^+)$ \\ $2^3 P_2 & K_2^*(1980)$ \\ $K(0^-)$ \\ $2^1 S_0 & K(1460)$ \\ $K(1460)$ \\ $K(1450)$ \\ $K(1450)$ \\ $X(4150)$ \\ $X(4150)$ \\ $X(4150)$ \\ $X(4700)$ \\ $N R_{J/\psi\phi}$ \\ $All $X(0^+)$ \\ $X(4140)$ \\ $X(4274)$ \\ $X(4274)$ \\ $X(4274)$ \\ $X(4274)$ \\ $X(4274)$ \\ $X(4220)$ \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Contribution & Significance [×\sigma] \\ \hline & All K(1^+) & 4.5 (4.5) \\ 2^1 P_1 & K(1^+) & 4.5 (4.5) \\ 1^3 P_1 & K_1(1400) & 9.2 (11) \\ \hline & All K(2^-) \\ 1^1 D_2 & K_2(1770) & 7.9 (8.0) \\ 1^3 D_2 & K_2(1820) & 5.8 (5.8) \\ \hline & All K(1^-) \\ 1^3 D_1 & K^*(1680) & 4.7 (13) \\ 2^3 S_1 & K^*(1410) & 7.7 (15) \\ \hline & K(2^+) \\ 2^3 P_2 & K_2^*(1980) & 1.6 (7.4) \\ \hline & K(0^-) \\ 2^1 S_0 & K(1460) & 12 (13) \\ \hline & X(2^-) \\ \hline & X(4150) & 4.8 (8.7) \\ \hline & X(1^-) \\ \hline & X(4630) & 5.5 (5.7) \\ \hline & All X(0^+) \\ \hline & X(4500) & 20 (20) \\ \hline & X(4700) & 17 (18) \\ \hline & NR_{J/\psi\phi} & 4.8 (5.7) \\ \hline & All X(1^+) \\ \hline & X(4140) & 13 (16) \\ \hline & X(4274) & 18 (18) \\ \hline & X(4685) & 15 (15) \\ \hline & All Z_{cs}(1^+) \\ \hline & Z_{cs}(4000) & 15 (16) \\ \hline & Z_{cs}(4220) & 5.9 (8.4) \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Five new exotic states included in the default

model.

LHCD ГНС р

New Exotic States: Z_{cs}^+

Run 1 Analysis: <u>Phys. Rev. Lett. 118, 022003 (2017)</u> This analysis: <u>Phys. Rev. Lett. 127, 082001 (2021)</u> [LHCb-PAPER-2020-044]

• Splitting the $m_{J/\psi\phi}$ plot into two slices demonstrates the necessity of the $Z_{cs}(4000)^+$ state. Where the inclusion of this state provides an improvement in the fit quality. This new narrow state is observed with a high significance.

Spin and parity of each exotic state is probed by testing alternative J^P hypotheses and comparing the fit likelihood values.

- Previously reported J^P assignments for the four X states are confirmed with high significance.
 - X(4675) and $Z_{cs}(4000)$ states are 1⁺ at over 15 σ significance.
 - $Z_{cs}(4220)$ is either 1^+ or 1^- within 2σ .
 - Other X states cannot be uniquely determined.

Evidence for a new structure in the $J/\psi p$ and $J/\psi \bar{p}$ systems in $B_s^0 \rightarrow J/\psi p \bar{p}$ decays

Evidence for a new structure in $J/\psi p$ and $J/\psi \bar{p}$

- Interest in exotic spectroscopy is increasing due to the observation of pentaquark candidates (P_c) in $J/\psi p$ final states produced in $\Lambda_b^0 \to J/\psi p K^-$ decays. $\frac{Phys. Rev. Lett. 115, 072001 (2015)}{Phys. Rev. Lett. 122, 222001 (2010)}$
- The $B_s^0 \rightarrow J/\psi p\bar{p}$ decay was first observed in 2019 by the LHCb experiment, this decay may have sensitivity to resonant P_c structures.
- This decay mode offers a clean environment to search for new resonant structures.

Sara Mitchell

LHCb-PAPER-2021-018

arXiv:2108.04720 Evidence for a new structure in $J/\psi p$ and $J/\psi \bar{p}$

- Hints of horizontal and vertical bands in the region around (18.8 19.0) GeV² in the $m^2(J/\psi p)$ 16 and $m^2(J/\psi \bar{p})$ distributions.
- These enhancements are not compatible with the pure phase-space hypothesis.
- Three interfering decay sequences are considered:

 $B_{\rm s}^0 \to J/\psi X(\to p\bar{p})$ $B_s^0 \to P_c^+ (\to J/\psi p)\bar{p}$ $B_s^0 \to P_c^-(\to J/\psi \bar{p})p$

Sara Mitchell

CP symmetry is assumed

LHCb-PAPER-2021-018

Statistical significance in the range of $3.1 - 3.7\sigma$, depending on assigned J^P hypothesis $(1/2^{\pm}, 3/2^{\pm})$.

No hints of the previously seen P_c states are observed.

LHCb-PAPER-2021-018

- The baseline fit is the simplest model, in which no resonant contributions are considered.
- The baseline fit does not describe the data well, two resonant contributions P_c^+ and P_c^- are added.

• The default model includes a new P_c^{\pm} state.

Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays

Observation of $\Omega_b^- \to \Xi_c^+ K^- \pi^{-\frac{\text{LHCb-PAPER-2021-012}}{arXiv:2107.03419}}$

- In 2017 there was an observation of five new resonances of Ω_c^0 (css) decaying as $\Omega_c^{**0} \to \Xi_c^+ K^-$: Now cited over 200 times!
- A way to determine the quantum numbers is from studying the decay of a known hadron (Ω_b^-) into these excited states.

Signal Decay: $\Omega_b^- \to \Xi_c^+ K^- \pi^-$

 $N(\Omega_b^- \to \Xi_c^+ K^- \pi^-) = 240 \pm 17$

Sara Mitchell

- First observation of $\Omega_b^- \to \Xi_c^+ K^- \pi^-$.
- Branching fraction relative to $\Omega_b^- \to \Omega_c^0 \pi^-$ is measured.

 $\frac{\mathscr{B}(\Omega_b^- \to \Xi_c^+ K^- \pi^-) \mathscr{B}(\Xi_c^+ \to p K^- \pi^+)}{\mathscr{B}(\Omega_b^- \to \Omega_c^0 \pi^-) \mathscr{B}(\Omega_c^0 \to p K^- K^- \pi^+)} = 1.35 \pm 0.11 \pm 0.05$

• Mass measurement from this analysis:

 $m(\Omega_b^-) = 6044.3 \pm 1.2 \pm 1.1 \text{ MeV}$

• Averaging all LHCb measurements gives a precise Ω_b^- mass:

 $m(\Omega_b^-) = 6044.8 \pm 1.3 \text{ MeV}$

Observation of the Excited Ω_c^0 States

- Four signals are consistent with those of the previously observed $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3065)^0$ and $\Omega_c(3090)^0$ baryons.
- Modelled with a relativistic Breit
 Wigner (S-wave) convolved with a
 Gaussian. Threshold modelled
 with S-wave Breit Wigner.

Production fraction:

Resonance

 $\Omega_{c}(3000)^{0}$

 $\Omega_{c}(3050)^{0}$

 $\Omega_{c}(3065)^{0}$

 $\Omega_{c}(3090)^{0}$

$$\mathsf{P} \equiv \frac{\mathscr{B}(\Omega_b^- \to \Omega_c^{**0} \pi^-) \mathscr{B}(\Omega_c^{**0} \to \Xi_c^+ K^-)}{\mathscr{B}(\Omega_b^- \to \Xi_c^+ K^- \pi^-)}$$

Prompt analysis:

Mass [MeV]

3000.4 ± 0.2 ± 0.1

 $3050.2 \pm 0.1 \pm 0.1$

 $3065.6 \pm 0.1 \pm 0.3$

 $3090.2 \pm 0.3 \pm 0.5$

7.4 ± 3.1 ± 2.8

 $0.19 \pm 0.02 \pm 0.04$

LHCb-PAPER-2021-012

8.7 ± 1.0 ± 0.8

3091.0 ± 1.1 ± 1.0

Observation of the Excited Ω_c^0 States

• Enhancement seen at $\Xi_c^+ K^-$ threshold with a significance larger than 4σ , further studies needed to determine its nature. A similar structure was seen in the prompt $\Xi_c^+ K^-$ spectrum and was interpreted as the partially reconstructed decay $\Omega_c(3065)^0 \rightarrow \Xi_c^{'+}(\rightarrow \Xi_c^+ \gamma) K^-$.

• This interpretation has been ruled out in this analysis due to cuts on the Ω_b^- mass.

Observation of the Excited Ω_c^0 States

• Three-body decay provides a way to determine the quantum numbers by exploiting angular distributions.

- The spin of a state is determined by comparing the value of the observable with the expected values under different hypotheses.
- $\Omega_c(3050)^0$ and $\Omega_c(3065)^0$ are not spin-1/2 with 2.2 σ and 3.6 σ significance.

• Reject common interpretation of spin assignment J = 1/2, 1/2, 3/2, 3/2 with 3.5σ significance.

Observation of an exotic narrow doubly charmed tetraquark

• The measured mass of the Ξ_{cc}^{++} baryon implies that the mass of the $cc\bar{u}d$ tetraquark is close to the D^0D^{*+} threshold.

• Theoretical predictions of δm relative to the $D^0 D^{*+}$ mass threshold lie in the range $-300 < \delta m < 300$ MeV.

$$\delta m \equiv m_{T_{cc}^+} - (m_{D^{*+}} + m_{D^0})$$

Searching for the T_{cc}^+ state in the $D^0 D^0 \pi^+$ mass spectrum.

Observation of T_{cc}^+

• Signal component is modelled by the combination of the detector resolution and a relativistic Breit-Wigner (P-wave) function.

Expected $J^P = 1^+$

- The statistical significance is estimated using Wilks' theorem, it is found to be 22σ.
- A more sophisticated model is used to determine the properties of T_{cc}^+ , more information can be found here: <u>arXiv:2109.01056</u>

$$\delta m_{pole} = -360 \pm 40^{+4}_{-0} \text{ keV/c}^2$$

 $\Gamma_{pole} = 48 \pm 2^{+0}_{-14} \text{ keV}$

Summary

- Lots of new particles and excited states have been discovered at LHCb!
- Including the tetraquarks X(4685), X(4150), X(4630), $Z_{cs}(4000)^+$, $Z_{cs}(4220)^+$ and T_{cc}^+ .
- 1⁺ assignment favoured for new X(4685) state, $Z_{cs}(4000)^+$ state determined to be 1⁺ and $Z_{cs}(4220)^+$ could be 1^+ or 1^-
- Evidence found for a pentaquark like state at a mass of $4337_{-4}^{+7} \pm 2$ MeV.
- First observation of the decay $\Omega_b^- \to \Xi_c^+ K^- \pi^-$.
- Precise measurement of the Ω_h^- mass: $m(\Omega_h^-) = 6044.8 \pm 1.3$ MeV.
- Four excited Ω_c^0 states observed with a significance over 6σ . Rejected common interpretation of spin assignment J = 1/2, 1/2, 3/2, 3/2 with a significance of 3.5σ . In the LHCb upgrade we plan to collect about 50 fb⁻¹ of data by 2030, further searches with larger data samples should increase the signal sensitivity for these decay modes!

Thanks for Listening!

STRONG 2021

Observation of two new excited Ξ_b^0 states decaying to $\Lambda_b^0 K^- \pi^+$

Observation of the excited Ξ_b^0 states

- Several excited Λ_b^0 states have been observed, leading to the investigation of the excited Ξ_b states due to their similar properties.
 - $\begin{array}{c} \Lambda_{b}(5920)^{0} \\ \Lambda_{b}(5912)^{0} \\ \Lambda_{b}(6072)^{0} \\ \Lambda_{b}(6072)^{0} \\ \Lambda_{b}(6146)^{0} \\ \Lambda_{b}(6152)^{0} \end{array}$ Recently the LHCb collaboration reported the observation of the $\Xi_{b}(6227)^{-}$ baryon and its isospin partner $\Xi_{b}(6227)^{0}$. $\begin{array}{c} Phys. Rev. Lett. 121 (2018) 072002 \\ Phys. Rev. D 103 (2021) 012004 \\ \Xi_{b}(6227)^{-} \rightarrow \Lambda_{b}^{0}K^{-} \qquad \Xi_{b}(6227)^{-} \rightarrow \Xi_{b}^{0}\pi^{-} \qquad \Xi_{b}(6227)^{0} \rightarrow \Xi_{b}^{-}\pi^{+} \\ \Lambda_{b}(6146)^{0} \\ \Lambda_{b}(6152)^{0} \end{array}$ The CMS collaboration reported an observation of the $\Xi_{b}(6100)^{-}$ baryon. $\begin{array}{c} Phys. Rev. Lett. 126 (2021) 252003 \\ Phys. Rev. Phys. Phys$

• Two 1D Ξ_b^0 states are predicted with decays dominated by the $\Sigma_b^{(*)}K$ and $\Xi_b^{*,'}\pi$ modes.

Observation of the excited Ξ_b^0 states

- Candidates with mass in a 2.5 σ window around the Λ_b^0 mass are used to form $\Lambda_b^0 K^- \pi^+$.
- To estimate the background generated from random combinations, the wrong sign candidates are reconstructed with a $\Lambda_b^0 K^+ \pi^-$ final state.

28

LHCb-PAPER-2021-025

Observation of the excited Ξ_b^0 states

- Resonance structures in excited Ξ_b^0 decays are studied by performing many $\Lambda_b^0 K^- \pi^+$ mass fits in 5 MeV wide slices of the $\Lambda_b^0 \pi^+$ mass spectrum.
- Mass and width parameters of the two Ξ_b^0 states are fixed to the nominal fit values.

Signal yield of the $\Xi_b(6327)^0$ and $\Xi_b(6333)^0$ states as a function of the $\Lambda_b^0 \pi^+$ mass: $\Xi_b(6327)^0\to \Sigma_b^+(\to\Lambda_b^0\pi^+)K^ \Xi_b(6333)^0 \to \Sigma_b^{*+}(\to \Lambda_b^0\pi^+)K^-$ Yield / (5 MeV) ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ Yield / (5 MeV) LHCb 5.7 fb⁻¹ LHCb 5.7 fb⁻¹ Preliminary Data Data Total fit Total fit Preliminary NR NR 40 10 20 5780 580 5820 5840 5780 5800 5820 5840 5760 5760 $m(\Lambda_b^0\pi^+)$ [MeV] $m(\Lambda_b^0\pi^+)$ [MeV] A large fraction of the $\Xi_b(6333)^0$ baryons $\Sigma_{h}^{+} \rightarrow \Lambda_{h}^{0} \pi^{+}$ contributes to decay without $\Lambda_{k}^{0}\pi^{+}$ resonances. most of the $\Xi_{h}(6327)^{0}$ decays.

• Resonance structures consistent with the theoretical predictions to the 1D excited Ξ_b^0 doublets.

Search for the doubly charmed baryon Ξ_{cc}^+ in the $\Xi_c^+\pi^-\pi^+$ final state

Search for the doubly charmed baryon Ξ_{cc}^+

- First evidence of Ξ_{cc}^+ was reported by the SELEX collaboration in the $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to p D^+ K^-$ decays, future searches by the FOCUS, BaBar, and Belle experiments show no evidence for this baryon. The LHCb collaboration performed a search for the Ξ_{cc}^+ baryon in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decays, no significant signal was observed.
- In 2017 the first observation of the Ξ_{cc}^{++} baryon in the $\Lambda_c^+ K^- \pi^+ \pi^+$ invariant mass spectrum, it was later confirmed in the $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$ decay.

Sara Mitchell

Normalisation mode: $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

$$R = \frac{\epsilon_{norm}}{\epsilon_{sig}} \frac{N_{sig}}{N_{norm}}$$

- No significant signal excess is seen.
- This mass spectrum is used to evaluate the upper limit on R.

Search for the doubly charmed baryon Ξ_{cc}^+

• Combine results with the search in the $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decay.

Combined local and global significance is 4.0σ and 2.9σ respectively (at a mass of 3623 MeV).

- Curves determined by generating 3×10^5 pseudoexperiments.
- Mass of Ξ_{cc}^+ range from 3400 3800 MeV in steps of 2 MeV for four lifetime hypotheses.
- R varies between 2 and 5 at 95 $\%\,$ CL.

