Heavy Quark Baryons

Sebastian Neubert STRONG2020 Online Workshop, September 16th, 2021

Heavy Quark Baryons at the LHC

3

A good example of how collecting more data leads to further discoveries

 Σ_b and Σ_b^* in $\Lambda_b^0 \pi^{\pm 1}$

$|udb\rangle$, I = 1, S = 0

Triplet incomplete. Neutral state still missing. $\Lambda_b^0 \pi^0$ experimentally challenging.

4

A new Σ_b excitation

$|udb\rangle$, I = 1, S = 0

A doublet of strangely beautiful baryons: Ξ_b

S = -1, I = 1/2

Groundstate parameters (PDG)

State	M [MeV/c ²]	Mean life [10 ⁻¹² s]
Ξ_b^-	5797.0 ± 0.9	1.572 ± 0.040
Ξ_b^0	5791.9 ± 0.5	1.477 ± 0.030

New mass measurement from LHCb:

 $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \,\mathrm{MeV}/c^2$

[PRD99(2019)052006]

in agreement with previous results

- Lifetimes benchmark for HQET
- Good agreement with HQE prediction [Int.J.Mod.Phys.A30(2015)1543005]

Evidence for a strangeness changing decay $\Xi_b^- \to \Lambda_b \pi^-$ [PRL115(2015)241801]

$$\mathcal{B}(\Xi_b^- o {\Lambda_b}^0 \pi^-) = 0.2 \cdots 0.6\%$$

in agreement with [PLB750(2015)653]

Ξ_b excitation spectrum overview

- 5 excited states known
- Isospin partner of the 1/2⁺ excitation missing
 - · probably below $\Xi_b^0 \pi^0$ threshold

The new Ξ_b (6100)⁻ at CMS

 $\Xi_b \pi^+ \pi^-$ with Xi_b reconstructed at CMS in two modes [PRL126(2021)252003]

 $m = 6100.3 \pm 0.2 \pm 0.1 \pm 0.6 \text{ MeV}$ $\Gamma < 1.9 \text{ MeV} (95\% CL)$ Possible assignment: P-wave excitation $J^P = 3/2^-$ (analog to $\Xi_c(2815)$)

News: two new Ξ_b excitations from LHCb

(shown at PWA/ATHOS)

- Example of a resent search (arXiv this August)
- Use the very abundant samples of Λ_b saved on disk
- Use both:

•	Λ_b -	⇒Λc	π		
•	Λ_b -	$\rightarrow \Lambda_{c}$	π	π^+	π

• Two narrow peaks in the Λ_b K- π + mass spectrum are observed

$$\begin{split} & m_{\Xi_b(6327)^0} = 6327.28^{+0.23}_{-0.21} \pm 0.08 \pm 0.24 \, \text{MeV}, \\ & m_{\Xi_b(6333)^0} = 6332.69^{+0.17}_{-0.18} \pm 0.03 \pm 0.22 \, \text{MeV}, \\ & \Gamma_{\Xi_b(6327)^0} < 2.20 \, (2.56) \, \text{MeV} \text{ at } 90\% \, (95\%) \, \text{CL}, \\ & \Gamma_{\Xi_b(6333)^0} < 1.55 \, (1.85) \, \text{MeV} \text{ at } 90\% \, (95\%) \, \text{CL}, \end{split}$$

$|bss\rangle$, I = 0, S = -2

__ Data ── Fit

 $J/\psi \Omega$

(a)

- Discovered at D0 and CDS
- $\cdot \ \Omega_b \to {\rm J}\!/\!\psi \Omega$
- For a long time only ground state known
- Only two decay modes established

LHCb is reconstructing Ω_b in several final states [arXiv:2107.03419]

D0 914 1.3 fb⁻¹ 1.3 fb⁻¹ $\Xi_b^0 K^-$ produced in pp collisions at the LHC. Full dataset corresponding to 9 fb⁻¹

[PRL124(2020)082002]

Double strange heavy baryons - comparison

- Most natural J^P assignment would be $1/2^-$, $1/2^-$, $3/2^-$, $3/2^-$, $5/2^-$
- Quark di-quark model predicts 5 P-wave excitations, 5/2 Ω_b state not seen? [PRD102(2020)014027]
- Molecular model can explain 3 Ω_c and 4 Ω_b states $\Xi'_Q \bar{K}, \Xi^*_Q \bar{K}, \Xi \bar{B}/\bar{D}, \Xi \bar{B}^*$ [PRD101(2020)054033] J^P assignment would be 1/2⁻, 3/2⁻, 1/2⁻, 3/2⁻ for Ω_b

12

Charmed Baryons

 Ξ_c states

Ω_c lifetime

• HQE: lifetime hierarchy

 $\tau_{\Xi_c^+} > \tau_{\Lambda_c^0} > \tau_{\Xi_c^0} > \tau_{\Omega_c^0}$

- $au_{\Omega^0_c}$ considered smallest due to constructive interference between s-quark in $c \to s$ transition and spectator s
- HQE allows inverted hierarchy depending on treatment of higher orders [hep-ph/9311331]
- $\tau_c = 69 \pm 12 \, fs$ from small statistics, fixed target experiments, consistent with hierarchy

• Measure lifetime ratio

$$r_{\Omega_c^0} = \frac{\tau_{\Omega_c^0}}{\tau_{\mathrm{D}^+}}$$

• Using semileptonic decays $\Omega_b^- \to \Omega_c^0 \mu^- \bar{\nu}_\mu X$ and $B^0 \to D^+ \mu^- \bar{\nu}_\mu X$

[PRL121(2018)092003]

Ω_c lifetime in semileptonic decays at LHCb

[PRL121(2018)092003]

Calibrated on
$$B^0 \to D^+ \mu^- \bar{\nu}_{\mu} X$$

$$\begin{vmatrix} r_{\Omega_c^0} &=& \frac{\tau_{\Omega_c^0}}{\tau_{D^+}} = 0.258 \pm 0.023 \pm 0.010 \\ \tau_{\Omega_c^0} &=& 268 \pm 24 \pm 10 \pm 2 fs \end{vmatrix}$$

- $\cdot\,\sim$ 4 times larger than world average
- new hierarchy:

Ω_c^0 and Ξ_c^0 lifetime in prompt production at LHCb

Both states reconstructed in $pK^-K^-\pi^+$. Prompt contributions unfolded by simultaneous fit of mass and separation between collision point and decay vertex. $D^0 \rightarrow K^+K^-\pi^+\pi^-$ as control.

Charmed Hadrons Lifetimes

Double-Heavy Baryons

- $\bullet \Xi_{cc}^{++}$
 - Well established in 2 different modes (as required by PDG)
 - Lifetime measured as well

Searches for double-heavy baryons

Search for the doubly charmed baryon $arOmega_{cc}^+$

Figure 2: Invariant mass $m(\Xi_c^+K^-\pi^+)$ distribution of selected Ω_{cc}^+ candidates from (black points) selection A, with (blue solid line) the fit with the largest local significance at the mass of 3876 MeV/c² superimposed.

Search for the doubly heavy baryons Ω_{bc}^0 and Ξ_{bc}^0 decaying to $\Lambda_c^+\pi^-$ and $\Xi_c^+\pi^-$

arXiv:2105.06841 $\Omega_{cc}^+ \rightarrow \Xi_c^+ K^- \pi^+$

- Rich crop from the LHC Run I and II, especially in beauty sector.
- Rare modes need more statistics

 \Rightarrow LHC Run 3 starts next year.

- In particular for spin-parity measurements.
- Belle data very valuable in Charm sector

 looking forward to Belle II.
- Searches for double-heavy baryons picking up speed.

Backup

The (formerly) heaviest Baryon

[PRL121(2018)072002]

Exclusive $\Lambda_{\rm b} {\rm K}$ with $\Lambda_{\rm b} \to \Lambda_{\rm c}^+ \pi$

Semileptonic $\Lambda_{\rm b} {\rm K}$ with $\Lambda_{\rm b} \to \Lambda_{\rm c}^+ \mu {\rm X}$

Semileptonic $\Xi_b \pi$ with $\Xi_b \to \Xi_c \mu X$

• Mass:
$$m(\Xi_b(6227)^-) = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \text{ MeV}/c^2$$

• Width: $\Gamma(\Xi_b(6227)^-) = 18.1 \pm 5.4 \pm 1.8 \text{ MeV}/c^2$