Boris Grube for the COMPASS Collaboration

Institute for Hadronic Structure and Fundamental Symmetries Technische Universität München Garching, Germany

STRONG-2020 Workshop University of York, 16. September 2021

Constituent Quark Model

Light mesons

- $|q\bar{q}\rangle$ quantum states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

Quantum numbers

- Quark spins couple to total intrinsic spin S = 0 or 1
- Relative orbital angular Momentum 1 and \$\vec{s}\$ couple to meson spin \$\vec{l}\$ = \$\vec{L}\$ + \$\vec{s}\$\$
- Parity: $P = (-1)^{L+1}$
- Charge conjugation: $C = (-1)^{L+\delta}$
- Forbidden J^{PC} combinations: 0⁻⁻, even⁺⁻, odd⁻⁺

Constituent Quark Model

Light mesons

- $|q\bar{q}\rangle$ quantum states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

Quantum numbers

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Relative orbital angular Momentum \vec{L} and \vec{S} couple to meson spin $\vec{I} = \vec{L} + \vec{S}$

• Parity:
$$P = (-1)^{L+1}$$

• Charge conjugation: $C = (-1)^{L+S}$

• Forbidden *J^{PC}* combinations: 0⁻⁻, even⁺⁻, odd⁻⁺

Constituent Quark Model

Light mesons

- $|q\bar{q}\rangle$ quantum states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

Quantum numbers

- Quark spins couple to total intrinsic spin *S* = 0 or 1
- Relative orbital angular Momentum \vec{L} and \vec{S} couple to meson spin $\vec{I} = \vec{L} + \vec{S}$

• Parity:
$$P = (-1)^{L+1}$$

- Charge conjugation: $C = (-1)^{L+S}$
- Forbidden *J^{PC}* combinations: 0⁻⁻, even⁺⁻, odd⁻⁺

Light-Meson Frontier

- Rich spectrum
- Many states in mass region $\gtrsim 2 \text{GeV}/c^2$ need confirmation
- Many wide states
 - Identification requires
 - Overlap and mixing of

[Courtesy K. Götzen, GSI]

- Rich spectrum
- Many states in mass region
 ≥ 2 GeV/c² need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - Overlap and mixing of states with same *J*^{*PC*}

- Rich spectrum
- Many states in mass region
 ≥ 2 GeV/c² need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - Overlap and mixing of states with same *J*^{*PC*}

Goal: precision measurement

- Confirm higher excitations
- Complete SU(3)_{flavor} nonets
- Search for exotic non- $q\bar{q}$ states

[Courtesy K. Götzen, GSI]

- Rich spectrum
- Many states in mass region
 ≥ 2 GeV/c² need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - Overlap and mixing of states with same *J*^{*PC*}

Goal: precision measurement

- Important input for theory and phenomenology
- Understand QCD at low energies, i.e. nature of confinement

[Courtesy K. Götzen, GSI]

- Rich spectrum
- Many states in mass region
 ≥ 2 GeV/c² need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - Overlap and mixing of states with same *J*^{*PC*}

Analyses driven by

- High-quality data
- Advancements in analysis techniques
- More rigorous theoretical PWA models

State-of-the-Art Calculation with $m_{\pi} = 391 \,\mathrm{MeV}/c^2$

HadSpec, PRD 88 (2013) 094505

High towers of excited states

- Hybrid-meson super-multiplet; lightest state with exotic J
- First prediction for partial widths of 1^{-+} state HadSpec, PRD 103 (2021) 054

State-of-the-Art Calculation with $m_{\pi} = 391 \,\mathrm{MeV}/c^2$

HadSpec, PRD 88 (2013) 094505

- High towers of excited states
- Hybrid-meson super-multiplet; lightest state with exotic $J^{PC} = 1^{-+}$
- First prediction for partial widths of 1⁻⁺ state HadSpec, PRD 103 (2021) 05450

State-of-the-Art Calculation with $m_{\pi} = 391 \,\mathrm{MeV}/c^2$

HadSpec, PRD 88 (2013) 094505

- High towers of excited states
- Hybrid-meson super-multiplet; lightest state with exotic $J^{PC} = 1^{-+}$
- First prediction for partial widths of 1⁻⁺ state HadSpec, PRD 103 (2021) 0545

State-of-the-Art Calculation with $m_{\pi} = 391 \,\mathrm{MeV}/c^2$

HadSpec, PRD 88 (2013) 094505

- High towers of excited states
- Hybrid-meson super-multiplet; lightest state with exotic $J^{PC} = 1^{-+}$
- First prediction for partial widths of 1⁻⁺ state HadSpec, PRD **103** (2021) 054502

The COMPASS Experiment at the CERN SPS

OMPAS

International collaboration

• ≈ 250 members from 22 institutes

SPS

LHC

The COMPASS Experiment at the CERN SPS

International collaboration

• ≈ 250 members from 22 institutes

• 400 GeV primary *p* beam from SPS on Be production target

SPS

- 190 GeV secondary hadron beam
 - h^- beam: 97 % π^- , 2 % K^- , 1 % \bar{p}

LHC

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph, NIMA 779 (2015) 69

Fixed-target experiment

- Two-stage spectrometer
- High-precision measurement of charged-particle trajectories
- Detectors for energy measurement and particle identification

Example: $\pi^-\pi^-\pi^+$ Final State

- "Golden" channel
- $46 \times 10^6 \pi^- \pi^- \pi^+$ events
 - Ca. 10× more data than previous experiments
- Well-known 3π mesons appear in m_{3π} spectrum
- Squared four-momentum transfer 0.1 < t' < 1.0 (GeV/c)²
- Resonances in $\pi^-\pi^+$ subsystem

Example: $\pi^-\pi^-\pi^+$ Final State

COMPASS, PRD 95 (2017) 032004

"Golden" channel

• $46 imes 10^{\circ} \pi^{-} \pi^{-} \pi^{+}$ events

- Ca. 10× more data than previous experiments
- Well-known 3π mesons appear in m_{3π} spectrum
- Squared four-momentum transfer 0.1 < t' < 1.0 (GeV/c)²
- Resonances in $\pi^-\pi^+$ subsystem

Example: $\pi^-\pi^-\pi^+$ Final State

Example: $\pi^-\pi^-\pi^+$ Final State

Example: $\pi^-\pi^-\pi^+$ Final State

- "Golden" channel
- $46 \times 10^6 \ \pi^- \pi^- \pi^+$ events
 - Ca. 10× more data than previous experiments
- Well-known 3π mesons appear in $m_{3\pi}$ spectrum
- Squared four-momentum transfer $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- Resonances in $\pi^-\pi^+$ subsystem

Example: $\pi^-\pi^-\pi^+$ Final State

Example: $\pi^-\pi^-\pi^+$ Final State

Example: $\pi^-\pi^-\pi^+$ Final State

Partial-Wave Analysis using the Isobar Model

Example: $\pi^-\pi^-\pi^+$ Final State

- Spin-parity quantum numbers of a resonance determine angular distribution of daughter particles
- *Analogy:* multipole radiation in classical electrodynamics
- Determine spin-parity quantum numbers of X and ξ from measured angular distributions of final-state particles

Partial-Wave Analysis using the Isobar Model

Example: $\pi^-\pi^-\pi^+$ Final State

Partial-Wave Analysis using the Isobar Model

Example: $\pi^-\pi^-\pi^+$ Final State

Partial-Wave Analysis: Isobar Model

Example: $\pi^-\pi^-\pi^+$ Final State

COMPASS, PRD 95 (2017) 032004

For $m_{3\pi} = \text{const}$, 3π kinematic distribution is completely defined by

- Quantum numbers of *X*
- Orbital angular momentum *L* between ξ and bachelor π
- Isobar resonance $\xi \Longrightarrow$ model for $m_{\pi^-\pi^+}$ dependence of amplitude; e.g. Breit-Wigner amplitude for $\rho(770) \rightarrow \pi^-\pi^+$

Partial wave: short-hand notation

$J^{PC} M^{\varepsilon} \xi \pi L$

Represents specific 5-dimensional kinematic distribution

Partial-Wave Analysis: Isobar Model

Example: $\pi^-\pi^-\pi^+$ Final State

COMPASS, PRD 95 (2017) 032004

For $m_{3\pi} = \text{const}$, 3π kinematic distribution is completely defined by

- Quantum numbers of *X*
- Orbital angular momentum *L* between ξ and bachelor π
- Isobar resonance $\xi \Longrightarrow$ model for $m_{\pi^-\pi^+}$ dependence of amplitude; e.g. Breit-Wigner amplitude for $\rho(770) \rightarrow \pi^-\pi^+$

Partial wave: short-hand notation

$$J^{PC} M^{\varepsilon} \xi \pi L$$

• Represents specific 5-dimensional kinematic distribution

Spin-Exotic Mesons

- States with $J^{PC} = 0^{--}$, even⁺⁻, or odd⁻⁺ forbidden for $|q\bar{q}\rangle$
- Finding them would be unambiguous proof for configurations beyond $|q\bar{q}\rangle$

3 candidates in light-meson sector

- **1** $\pi_1(1400)$: seen in $\eta \pi$
- ② $\pi_1(1600)$: seen in $\rho(770)\pi$, $\eta'\pi$, $b_1(1235)\pi$, and $f_1(1285)\pi$
- ③ $\pi_1(2015)$ (needs confirmation): seen in $b_1(1235)\pi$, and $f_1(1285)\pi$

• All have $J^{PC} = 1^{--}$

Some claims are controversial

Spin-Exotic Mesons

- States with $J^{PC} = 0^{--}$, even⁺⁻, or odd⁻⁺ forbidden for $|q\bar{q}\rangle$
- Finding them would be unambiguous proof for configurations beyond $|q\bar{q}\rangle$

3 candidates in light-meson sector

- $\pi_1(1400)$: seen in $\eta\pi$
- **2** $\pi_1(1600)$: seen in $\rho(770)\pi$, $\eta'\pi$, $b_1(1235)\pi$, and $f_1(1285)\pi$
- $\pi_1(2015)$ (needs confirmation): seen in $b_1(1235)\pi$, and $f_1(1285)\pi$

• All have $J^{PC} = 1^{-1}$

Some claims are controversial

Spin-Exotic Mesons

- States with $J^{PC} = 0^{--}$, even⁺⁻, or odd⁻⁺ forbidden for $|q\bar{q}\rangle$
- Finding them would be unambiguous proof for configurations beyond $|q\bar{q}\rangle$

3 candidates in light-meson sector

- $\pi_1(1400)$: seen in $\eta\pi$
- **2** $\pi_1(1600)$: seen in $\rho(770)\pi$, $\eta'\pi$, $b_1(1235)\pi$, and $f_1(1285)\pi$
- $\pi_1(2015)$ (needs confirmation): seen in $b_1(1235)\pi$, and $f_1(1285)\pi$
 - All have $J^{PC} = 1^{-+}$
 - Some claims are controversial

Model for Partial-Wave Decomposition COMPASS, PRD 95 (2017) 032004

- Wave set with 88 waves
 - Spin J up to 6
 - Orbital angular momentum *L* up to 6
 - 6 isobar resonances: $[\pi\pi]_S$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $f_0(1500)$, and $\rho_3(1690)$
- Includes spin-exotic $1^{-+} \rightarrow \rho(770)\pi P$ wave

Model for Partial-Wave Decomposition COMPASS, PRD 95 (2017) 032004

- Wave set with 88 waves
 - Spin J up to 6
 - Orbital angular momentum *L* up to 6
 - 6 isobar resonances: $[\pi\pi]_S$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $f_0(1500)$, and $\rho_3(1690)$
- Includes spin-exotic $1^{-+} \rightarrow \rho(770)\pi P$ wave

COMPASS, PRD 98 (2018) 092003

- Shape of intensity distribution changes dramatically with t'
- Low *t*': mostly non-resonant
- High t': mostly π₁(1600)

• $\pi_1(1600)$ $m_0 = (1600 + 110 - 60) \text{ MeV/c}^2$ $\Gamma_0 = (580 + 100 - 230) \text{ MeV/c}^2$

• Large systematic uncertainties

COMPASS, PRD 98 (2018) 092003

- Shape of intensity distribution changes dramatically with *t*'
- Low *t*': mostly non-resonant
- High t': mostly π₁(1600)

- $\pi_1(1600)$ $m_0 = (1600^{+110}_{-60}) \text{ MeV}/c^2$ $\Gamma_0 = (580^{+100}_{-230}) \text{ MeV}/c^2$
- Large systematic uncertainties

 $0.449 < t' < 0.724 (\text{GeV}/c)^2$

1.5

m37 [GeV/c2]

1.5

 $m_{3\pi}$ [GeV/c²]

Boris Grube, TU München

0.5

Intensity / (20 MeV/c2)

 $\times 10^3$

Model curve Resonances

Nonres, comp.

Light-Meson Spectroscopy at COMPASS

0.5

2

 $l^{-+}l^{+}\rho(770) \pi P$

COMPASS, PRD 98 (2018) 092003

- Shape of intensity distribution changes dramatically with t'
- Low *t*': mostly non-resonant
- High t': mostly π₁(1600)

Resonance parameters

• $\pi_1(1600)$ $m_0 = (1600^{+110}_{-60}) \text{ MeV}/c^2$ $\Gamma_0 = (580^{+100}_{-230}) \text{ MeV}/c^2$ • Large systematic uncertainties

1.5

 $m_{3\pi}$ [GeV/c²]

1.5

 $m_{3\pi}$ [GeV/c²]

0.5

0.5

• Data at high t' cannot be described without $\pi_1(1600)$ component (dashed curves)

t'-resolved analysis

- $\pi_1(1600)$ masked by non-resonant component for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
- Solves long-standing puzzle of seemingly contradictory BNL E852 results

• Data at high t' cannot be described without $\pi_1(1600)$ component (dashed curves)

t'-resolved analysis

- $\pi_1(1600)$ masked by non-resonant component for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
- Solves long-standing puzzle of seemingly contradictory BNL E852 results

• Data at high t' cannot be described without $\pi_1(1600)$ component (dashed curves)

t'-resolved analysis

- $\pi_1(1600)$ masked by non-resonant component for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
- Solves long-standing puzzle of seemingly contradictory BNL E852 results

BNL E852 Results on $\pi_1(1600) \rightarrow \rho(770)\pi$ explained

18.3 GeV/ $c \pi^-$ beam on p target

- 2.5×10^5 events
- $0.05 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA: 21 waves

• COMPASS data reproduce previous findings

E852, PRD 73 (2006) 072001

BNL E852 Results on $\pi_1(1600) \rightarrow \rho(770)\pi$ explained

18.3 GeV/ $c \ \pi^-$ beam on p target

• 2.5×10^5 events

- $0.05 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA: 21 waves

• COMPASS data reproduce previous findings

BNL E852 Results on $\pi_1(1600) \rightarrow \rho(770)\pi$ explained

18.3 GeV/ $c \ \pi^-$ beam on p target

• 2.5×10^5 events

- $0.05 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA: 21 waves

• PWA: 36 waves

• COMPASS data reproduce previous findings

- Conventional PWA requires complete knowledge of $\xi^0 \rightarrow \pi^- \pi^+$ amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data
- Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 11400
 - Replace fixed isobar parametrizations by step-like functions
 - Extract isobar amplitude from data
 - Reduced model dependence

[arXiv:2108.01744]

- Conventional PWA requires complete knowledge of $\xi^0 \rightarrow \pi^- \pi^+$ amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data

Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 114008

- Replace fixed isobar parametrizations by step-like functions
- Extract isobar amplitude from data
- Reduced model dependence

[arXiv:2108.01744]

- Conventional PWA requires complete knowledge of $\xi^0 \rightarrow \pi^- \pi^+$ amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data

Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 114008

- Replace fixed isobar parametrizations by step-like functions
- Extract isobar amplitude from data
- Reduced model dependence

$\pi^{-}\pi^{+}$ Amplitude in $1^{-+} \rightarrow [\pi\pi]_{1^{--}} + \pi^{-}$ 0.326 < t' < 1.000 (GeV/c)²

• Intensity peak at $m_{3\pi} \approx 1.6 \,\text{GeV}/c^2$ and $m_{\pi^-\pi^+} \approx 0.8 \,\text{GeV}/c^2$

• Clear $\rho(770)$ signal: peak in intensity + circular structure in Argand diagram

• $\rho(770)$ parametrization used in conventional PWA agrees fairly well with measured amplitude of $\pi^-\pi^+$ subsystem

$\pi^{-}\pi^{+}$ Amplitude in $1^{-+} \rightarrow [\pi\pi]_{1^{--}} + \pi^{-}$ 0.326 < t' < 1.000 (GeV/c)²

- Intensity peak at $m_{3\pi} \approx 1.6 \,\text{GeV}/c^2$ and $m_{\pi^-\pi^+} \approx 0.8 \,\text{GeV}/c^2$
- Clear $\rho(770)$ signal: peak in intensity + circular structure in Argand diagram
- $\rho(770)$ parametrization used in conventional PWA agrees fairly well with measured amplitude of $\pi^-\pi^+$ subsystem

$\pi^{-}\pi^{+}$ Amplitude in $1^{-+} \rightarrow [\pi\pi]_{1^{--}} + \pi^{-}$ 0.326 < t' < 1.000 (GeV/c)²

- Intensity peak at $m_{3\pi} \approx 1.6 \,\text{GeV}/c^2$ and $m_{\pi^-\pi^+} \approx 0.8 \,\text{GeV}/c^2$
- Clear $\rho(770)$ signal: peak in intensity + circular structure in Argand diagram
- $\rho(770)$ parametrization used in conventional PWA agrees fairly well with measured amplitude of $\pi^-\pi^+$ subsystem

Comparison with Conventional PWA

Coherent Sum over full $m_{\pi^-\pi^+}$ Range

• Freed-isobar PWA confirms existence of $\pi_1(1600) \rightarrow \rho(770)\pi$

Model for the Non-Resonant Component

[arXiv:2108.01744]

- MC pseudodata generated according to simple model for Deck amplitude based on ACCMOR, NPB 182 (1981) 269
 - Upper vertex: amplitude from $\pi\pi$ scattering up to *F*-wave

Hyams et al., NPB 64 (1973) 134

• Partial-wave decomposition using same 88-wave set as for real data

Model for the Non-Resonant Component

- Deck intensity normalized to intensity of non-resonant component in resonance-model fit for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
 - Similar shape of mass spectra for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
 - Different shape at high *t*′

Summary and Outlook

COMPASS has acquired high-precision data sets on pion diffraction

- Performed most detailed and comprehensive PWA of $\pi^-\pi^-\pi^+$ and $\eta^{(\prime)}\pi$ so far
- Studied 11 resonances of a_I and π_I families \implies PDG 2019
- Confirmation of disputed $\pi_1(1600) \rightarrow \rho(770)\pi$

Ongoing search for exotic mesons

• Analyze additional final states, e.g.

•
$$\pi^-\pi^0\omega$$
(782)

- $\pi^-\pi^-\pi^+\eta$ • $\pi^-\pi^+ K^0 K^\pm$
- ...
- Tight collaboration with theorists to improve analysis model

Detailed study of kaon spectrum

• Diffraction of K^- beam on p target into $K_S^0 \pi^-$, $K^- \pi^- \pi^+$, ...

Summary and Outlook

COMPASS has acquired high-precision data sets on pion diffraction

- Performed most detailed and comprehensive PWA of $\pi^-\pi^-\pi^+$ and $\eta^{(\prime)}\pi$ so far
- Studied 11 resonances of a_I and π_I families \implies PDG 2019
- Confirmation of disputed $\pi_1(1600) \rightarrow \rho(770)\pi$

Ongoing search for exotic mesons

• Analyze additional final states, e.g.

•
$$\pi^{-}\pi^{0}\omega(782)$$

•
$$\pi^-\pi^-\pi^+\eta$$

• $\pi^-\pi^{\pm}\overline{K}{}^0_S K^{\pm}$

• ...

• Tight collaboration with theorists to improve analysis model

Detailed study of kaon spectrum

• Diffraction of K^- beam on p target into $K_S^0 \pi^-$, $K^- \pi^- \pi^+$, ...

Summary and Outlook

COMPASS has acquired high-precision data sets on pion diffraction

- Performed most detailed and comprehensive PWA of $\pi^-\pi^-\pi^+$ and $\eta^{(\prime)}\pi$ so far
- Studied 11 resonances of a_I and π_I families \implies PDG 2019
- Confirmation of disputed $\pi_1(1600) \rightarrow \rho(770)\pi$

Ongoing search for exotic mesons

• Analyze additional final states, e.g.

•
$$\pi^{-}\pi^{0}\omega(782)$$

•
$$\pi^-\pi^-\pi^+\eta$$

• $\pi^-\pi^{\pm}\widetilde{K}^0_{S}K^{\pm}$

- ...
- Tight collaboration with theorists to improve analysis model

Detailed study of kaon spectrum

• Diffraction of K^- beam on p target into $K_S^0 \pi^-$, $K^- \pi^- \pi^+$, ...

Deck model in high-spin waves

Model for the Non-Resonant Component

[arXiv:2108.01744]

High-Spin Waves

- Deck intensity normalized to intensity of non-resonant component in resonance-model fit for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
 - Similar shape of mass spectra for full *t*' range

Model for the Non-Resonant Component

High-Spin Waves

- Deck intensity normalized to intensity of non-resonant component in resonance-model fit for $t' \lesssim 0.5 \, (\text{GeV}/c)^2$
 - Similar shape of mass spectra for full *t*' range

Rodas et al. [JPAC], PRL 122 (2019) 042002

• Partial-wave amplitudes from COMPASS

• Analytical and unitary model based on S-matrix principles

Rodas et al. [JPAC], PRL 122 (2019) 042002

• Partial-wave amplitudes from COMPASS

- PLB 740 (2015) 303
- Analytical and unitary model based on S-matrix principles

Resonance Pole Parameters

Rodas et al. [JPAC], PRL 122 (2019) 042002

- Only single 1^{-+} -wave pole required to describe peaks at 1.4 and 1.6 GeV/ c^2
 - $m_0 = (1564 \pm 24_{\text{stat.}} \pm 86_{\text{sys.}}) \text{ MeV}/c^2$
 - $\Gamma_0 = (492 \pm 54_{\text{stat.}} \pm 102_{\text{sys.}}) \,\text{MeV}/c^2$
 - Consistent with $\pi_1(1600)$
 - First measurement of pole parameters of $\pi_1(1600)$
- Raises doubts about existence of $\pi_1(1400)$

Resonance Pole Parameters

Rodas et al. [JPAC], PRL 122 (2019) 042002

- Only single 1⁻⁺-wave pole required to describe peaks at 1.4 and 1.6 GeV/c²
 - $m_0 = (1564 \pm 24_{\text{stat.}} \pm 86_{\text{sys.}}) \text{ MeV}/c^2$
 - $\Gamma_0 = (492 \pm 54_{\text{ stat.}} \pm 102_{\text{ sys.}}) \,\text{MeV}/c^2$
 - Consistent with $\pi_1(1600)$
 - First measurement of pole parameters of π₁(1600)
- Raises doubts about existence of $\pi_1(1400)$

Resonance Pole Parameters

Rodas et al. [JPAC], PRL 122 (2019) 042002

- Only single 1⁻⁺-wave pole required to describe peaks at 1.4 and 1.6 GeV/c²
 - $m_0 = (1564 \pm 24_{\text{stat.}} \pm 86_{\text{sys.}}) \text{ MeV}/c^2$
 - $\Gamma_0 = (492 \pm 54_{\text{ stat.}} \pm 102_{\text{ sys.}}) \,\text{MeV}/c^2$
 - Consistent with $\pi_1(1600)$
 - First measurement of pole parameters of π₁(1600)
- Raises doubts about existence of $\pi_1(1400)$

The $\pi_1(1600)$: Three Sides of the Same Coin

The $\pi_1(1600)$: Three Sides of the Same Coin

