

Light quark baryons - Recent results from photoproduction experiments

U. Thoma, Bonn

Contents:

- Introduction
- Experimental data, polarisation observables
- Results
- Summary

- Aim: Good understanding of the spectrum and the properties of baryon resonances = the bound states of strong QCD
- Relevant degrees of freedom ? / Effective forces between them ?

or e.g. mesonbaryon

Excited baryons from Lattice QCD:

Exhibits the broad features expected from SU(6) \otimes O(3)-symmetry

- → Counting of levels consistent with non-rel. quark model ⇔ "missing resonances"
- \rightarrow no parity doubling

Of course there are also approximations made by lattice QCD (e.g. m_{π} =396 MeV)

\Rightarrow Good understanding of the spectrum and properties of baryon resonances

Experimentally: Broad and strongly overlapping resonances

Important:

- \rightarrow Investigation of different final states
- ightarrow Investigation of different production processes: $\pi N, \gamma N, \gamma^* N, \Psi, \Psi'$ -decays, ...
- → Measurement of polarization observables (unambiguous PWA)

Recently: a lot of progress from photoproduction experiments:

CLAS (JLab),

CBELSA/TAPS (ELSA),

CBALL (MAMI),

LEPS (Spring-8), ...

[⇔] polarized beam, polarized target

\Rightarrow Good understanding of the spectrum and properties of baryon resonances

Experimentally: Broad and strongly overlapping resonances

Important:

- \rightarrow Investigation of different final states
- → Investigation of different production processes: πN , γN , $\gamma^* N$, Ψ , Ψ' -decays, ...
- → Measurement of polarization observables (unambiguous PWA)

Recently: a lot of progress from photoproduction experiments:

CLAS (JLab),

CBELSA/TAPS (ELSA),

CBALL (MAMI),

LEPS (Spring-8), ...

[⇔] polarized beam, polarized target

circ. pol. photons, long. pol. target, CBELSA/TAPS high energy bins, blue: CLAS

\Rightarrow data approaches the high mass region

— new BnGa-fit : Determination of precise $p\eta$ -branching ratios for resonances

J.Müller et al. (CBELSA/TAPS), PLB 803, 135323 (2020)

Determination of $p\eta$ -branching ratios for various resonances, e.g. :

11

	$N(1535)1/2^-$	$N(1650)1/2^-$	$N(1710)1/2^+$	$N(1720)3/2^+$
BnGa	0.42±0.04	0.32±0.04	0.27±0.09	0.03±0.02
PDG	0.42±0.10	0.05 - 0.15	0.10 - 0.30	0.021±0.014

⇔ Additional constraints from new (polarization) data fix PWA-solutions much better than before

Large and heavily discussed difference in the $p\eta$ -branching ratio of N(1535)1/2⁻ and N(1650)1/2⁻ now significantly reduced

Next step:

Comparison of PWA-results of different groups including the new data \Leftrightarrow convergence towards consistent results ?

J.Müller et al. (CBELSA/TAPS), PLB 803, 135323 (2020)

Multi-channel Bonn-Gatchina PWA:

- ⇒ Confirmation known resonances, better determination of their properties
- ⇒ New resonances observed

	RPP 2010	our analyses	RPP (2018/20)
N(1710)1/2+	***	****	****
N(1860)5/2+		*	**
N(1875)3/2-		***	***
N(1880)1/2+		***	***
N(1895)1/2-		****	****
N(1900)3/2+	**	****	*** <mark>*</mark>
N(1990)7/2+	**	**	**
N(2000)5/2+	**	**	**
N(2060)5/2-		***	***
N(2120)3/2-		***	***
∆(1900)1/2 ⁻	*	***	***
$\Delta(1920)3/2^+$	***	***	***
∆ (1940)3/2 ⁻	*	**	**
∆ (2200)7/2 [−]	*	***	***

from 2000-2010 <u>not one</u> new baryon resonance was considered by the PDG

↔ Results from photoproduction do now enter the PDG and determine the properties of baryon resonances!

(before: almost entirely πN -scattering and some π -photoproduction)

Photoproduction provides access to the "inelastic channels"

⇒ better determination of resonance properties

BnGa-PWA: A. V. Anisovich et al., EPJA 48 (2012) 15, PRL 119 (2017) 062004, PLB 772 (2017) 247, J. Müller et al., PLB 803 (2020) 135323 ...

Multi-channel Bonn-Gatchina PWA:

- \Rightarrow Confirmation known resonances, better determination of their properties
- \Rightarrow New resonances observed

	RPP 2010	our analyses	RPP (2018/20)
N(1710)1/2+	***	****	****
N(1860)5/2+		*	**
N(1875)3/2-		***	***
N(1880)1/2+		***	***
N(1895)1/2-		****	****
N(1900)3/2+	**	****	****
N(1990)7/2+	**	**	**
N(2000)5/2+	**	**	**
N(2060)5/2-		***	***
N(2120)3/2-		***	***
∆ (1900)1/2 [−]	*	***	***
Δ (1920)3/2+	***	***	***
∆ (1940)3/2 [−]	*	**	**
Δ (2200)7/2 $^-$	*	***	***

BnGa-PWA: A. V. Anisovich et al., EPJA 48 (2012) 15, PRL 119 (2017) 062004, PLB 772 (2017) 247, J. Müller et al., PLB 803 (2020) 135323 ...

N* pole masses:

Parity doublets not expected by:

- present lattice QCD calculations or constituent quark-models
- ⇔ Strong QCD not yet understood !

 Δ (1910)1/2⁺ Δ (1920)3/2⁺ Δ (1905)5/2⁺ Δ (1950)7/2⁺ Δ (1900)1/2⁻ Δ (1940)3/2⁻ Δ (1930)5/2⁻ ??? 7/2⁻

Search for the parity partner of the well known Δ (1950)7/2⁺ (4*) =

 $\Rightarrow J^{\mathbf{P}} = 7/2^{-} \text{-state found at a significantly}$ higher mass: m = 2200 MeV (7/2⁻(2200) - (1*)-resonance (PDG) confirmed)

⇔ No parity-partner found

 $\Rightarrow \text{Certain states have parity partners, others not} \\\Rightarrow \text{Not yet understood!}$

V. Anisovich et al. (BnGa-PWA), Phys.Lett. B766 (2017) 357

⇔ Observation of cascade decays:

- Event based maximum likelihood fit of unpolarised data,
- including single and double polarisation observables in the fit
- $\Delta(1910)1/2^+, \Delta(1920)3/2^+, \Delta(1905)5/2^+, \Delta(1950)7/2^+$

in average: negligible decay fraction into: $N(1520)3/2^{-}\pi, N(1535)1/2^{-}\pi, N(1680)5/2^{+}\pi \quad (L \neq 0\text{-resonances})$

• $N(1880)1/2^+$, $N(1900)3/2^+$, $N(2000)5/2^+$, $N(1990)7/2^+$

in average: 22% decays into: $N(1520)3/2^{-}\pi, N(1535)1/2^{-}\pi, N(1680)5/2^{+}\pi, N\sigma \quad (L \neq 0\text{-resonances})$

V. Sokhoyan et al. (CBELSA/TAPS-collaboration), EPJA 51 (2015) 95 A. Thiel et al. (CBELSA/TAPS-collaboration), PRL 114 (2015) 091803, T.Seifen et al., to be submitted ... Why ?

Multi-Meson-Photoproduction: $\gamma p
ightarrow p \pi^0 \pi^0$, $\gamma p
ightarrow p \pi^0 \eta$

An (maybe naive) interpretation using quarkmodel-wave-functions:

 Δ^* 's @1900 MeV:

N*'s @1900 MeV:

⇒ would explain the observation!

... and it seems to hold more general:

Summary

- Based on the new data, our knowledge of the spectrum and the properties of baryons is steadily increasing !
- ↔ Important contributions from photoproduction experiments (single and double polarisation experiments (many final states))
- ⇒ Observation of new resonances

╢

\Rightarrow Confirmation of known states, determination of their properties

e.g.: - puzzeling difference between $p\eta$ -BR of N(1535)1/2⁻ and N(1650)1/2⁻ now very much reduced - multi-meson-decays of baryon resonances

⇒ much more interesting data to come and to be analysed

 \Rightarrow Many interesting results on the spectrum and the properties of baryon resonances

- e.g. also electroproduction.: CLAS: up to Q 2 ~5 GeV 2 , W< 1.8 GeV CLAS 12: extend these
 - studies for 0.05<Q²<12 GeV²

D. Carman HADRON'2021 - KY-data

⇔ Quark models/first lattice calculations do not yet provide the expected systematics in the spectrum

Experiment: - no alternating pattern of positive and negative parity states

- parity doublets observed (not for all states (?))
- Baryons fall on Regge-trajectories, Why ?

Bound states of QCD are not yet understood!

U. Thoma, Bonn: - Light quark baryons - Recent results from photoproduction experiments