

Spectroscopy of Exotic XYZ States at GSI

Klaus Götzen

GSI Darmstadt

2nd STRONG 2020 Online Workshop University of York Sep. 15, 2021

Why hunt for XYZ States?

- BESIII 2013: Discovery of manifestly exotic Z_c(3900)[±]!
 - Decay to J/ψ requires $c\bar{c}$ content
 - Charge requires $u\bar{d}$ content

Minimal quark content: $c\bar{c}u\bar{d}$

- Need complete multiplets to understand inner structure
 - Identify more states
 - Establish additional decay channels

The Charmonium Spectrum

 Charmonium predictions fitted well until 2003

3

XYZ - Status

- Charmonium predictions
 fitted well until 2003
- Since 2003: >20 new charmonium-like states not fitting well the predictions
- Extremly narrow X(3872)
- Seven charged states: Z(3900)⁺, ..., Z(4430)⁺
- Supernumerary 1⁻⁻ states like Y(4260)
 Possible strange partner: Y(2175)

Hadronspectroscopy at GSI

Involved in 3 Experiments for "XYZ-Hunting"

- PANDA @ FAIR: Experimental antiproton-pillar of FAIR
 - Precise energy scan of X(3872) line shape

[Eur. Phys. J. A 55 (2019) 3, 42, arXiv:1812.05132]

- **BESIII** @ **IHEP**: Beijing **BEPC** (e⁺e⁻ collider)
 - Search for Y(4260) decays and connected Z states

[Phys. Rev. D 103, 032006 (2021), arXiv:2010.14415]

- GlueX @ JLab: High energy photo production
 - Search for strange partner state Y(2175)

Hadronspectroscopy at GSI

Involved in 3 Experiments for "XYZ-Hunting"

- PANDA @ FAIR: Experimental antiproton-pillar of FAIR
 - Precise energy scan of X(3872) line shape

[Eur. Phys. J. A 55 (2019) 3, 42, arXiv:1812.05132]

- **BESIII** @ **IHEP**: Beijing **BEPC** (e⁺e⁻ collider)
 - Search for Y(4260) decays and connected Z states

[Phys. Rev. D 103, 032006 (2021), arXiv:2010.14415]

GlueX @ JLab: High energy photo production
 Search for strange participation of the tool limited time!
 Will skip this due to limited time!

The Experiments: PANDA and BESIII

 $\mathcal{L} = 2 \cdot 10^{31} \text{ cm}^{-2}\text{s}^{-1} \dots 2 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ dp/p = 2 \cdot 10^{-5} \ldots 1 \cdot 10^{-4}

- Physics Programme
 - Hadron Spectroscopy
 - Hadron Structure
 - Hypernuclei and more
- Target and Forward Spectrometer
 - Tracking (Straws) and Vertexing (Pixel/Strip)
 - EM Calorimetry
 - Particle Ident. (dE/dx, DIRC, ToF, Muo)

 e^+e^- collisions @ $\sqrt{s} = 2.0 \dots 4.6 \text{ GeV}$ $\mathcal{L} = 1 \cdot 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ $dp/p = 5 \cdot 10^{-4}$

- Physics Programme
 - Hadron Spectroscopy
 - CP Physics
 - Tau Physics
- Symmetric Detector
 - Tracking (Drift Chamber)
 - EM Calorimetry
 - Particle Identification (dE/dx, ToF, Muo)

BESIII: Study Y and Z states

BESIII: Search for Y(4260) $\rightarrow \eta_c$ + recoil

- Large dataset of ~18 fb⁻¹ in XYZ energy region [4.0 4.6 GeV]
- Search for $Z^{\pm/0}$ decaying to charmonium ground state $\eta_c (0^{-+} c\bar{c})$
- Measure energy dependent production cross section

- Analysis strategy:
 - Investigate largest six data samples between $\sqrt{s} = 4.18 \dots 4.6 \text{ GeV}$
 - Reconstruct 16 different decay channels of η_c
 - Perform simultaneous fit (η_c/Z_c + recoil) to all spectra for each energy
 - Study possible intermediate states in energy dependent cross section

[Phys. Rev. D 103, 032006 (2021), arXiv:2010.14415]

Simultaneous fit of 16 decay channels

- Simultaneous fit example: $\eta_c \pi^+ \pi^- \pi^0 @ E_{cm} = 4.23 \text{ GeV}$ •
- Signal(s) barely visible

 $p\bar{p}$

Signal in $\eta_c \pi^+ \pi^- \pi^0$ @ 4.23 GeV

- Sum of spectra @ $E_{cm} = 4.23 GeV$: Visible peak in $\eta_c \pi^+ \pi^- \pi^0$ reactions
- About 5σ statistical significance
- Cases with no signal observed \rightarrow Provide upper limit with CL₉₀

Energy Dependent Cross Section

- Significant cross section for $e^+e^- \to \eta_c \pi^+\pi^-\pi^0$
- Fit to distribution suggest intermediate Y(4260)
- Parameters consistent with PDG

Search for $Z_c \rightarrow \eta_c \pi^{\pm/0}$

- In dataset with largest η_c production: Find $Z_c(3900)$ partner with $J^P = 0^+$?
- Scan for various mass/width combinations
- See 2.8 σ enhancement but with Look-Elsewhere-Effect reduced to 2.0 σ
- No evidence for $Z_c{}^{\pm\!/\!0}\!\to\eta_c\pi^{\pm\!/\!0}$ decays at present statistics

PANDA: X(3872) Lineshape

PANDA: Energy Scan of X(3872)

- Nature of first observation X(3872) in 2003 still not fixed!
- Idea to a solution:
 - Different internal structure \rightarrow different production/decay dynamics
 - Line shape of resonance reveals nature!

PANDA: Energy Scan of X(3872)

- Nature of first observation X(3872) in 2003 still not fixed!
- Idea to a solution:
 - Different internal structure \rightarrow different production/decay dynamics
 - Line shape of resonance reveals nature!

PANDA: Energy Scan of X(3872)

- Nature of first observation X(3872) in 2003 still not fixed!
- Idea to a solution: ۲
 - Different internal structure \rightarrow different production/decay dynamics
 - Line shape of resonance reveals nature!
 - High resolution needed to resolve structures!

PANDA: Precise Line Shape Sensitivity Study

- Comprehensive simulation study carried out and published
 → Expected sensitivity for BW Width Γ & Flatté Parameter E_f @ PANDA
- Breit-Wigner: 3σ precision at down to $\Gamma = O(50 100)$ keV!
- Flatté: Precision in sub-MeV range!

Recent LHCb Measurement (2020)

[PRD 102 (2020) 9, 092005]

7.3 Comparison between Breit–Wigner and Flatté lineshapes

Figure 4 shows the comparison between the Breit–Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

Recent LHCb Measurement (2020)

[PRD 102 (2020) 9, 092005]

7.3 Comparison between Breit–Wigner and Flatté lineshapes

Figure 4 shows the comparison between the Breit–Wigner and the Flatté lineshapes. While in both cases the signal peaks at the same mass, the Flatté model results in a significantly narrower lineshape. However, after folding with the resolution function and adding the background, the observable distributions are indistinguishable.

Recent LHCb Measurement

[[]PRD 102 (2020) 9, 092005]

Due to precise beam resolution O(50 - 100 keV) @ PANDA

 \rightarrow Models are well distinguishable! \rightarrow Let us quantify how well!

Simulation Strategy

- 1. Generate spectra from chosen input line-shape (Breit-Wigner or Flatté)
- 2. Fit both models \rightarrow Fit probabilities $P_{\text{Breit-Wigner}}$ and $P_{\text{Flatté}}$
- 3. If $P_{input} > P_{other} \rightarrow identification correct$
- 4. Repeat many times \rightarrow number of correct / wrong ident. = $F_{correct}$ and F_{wrong}

Performance

- How much better than "indistinguishable" is this now?
- Idea: Consider odds = ratio of correct and wrong identifications

odds = $F_{correct} / F_{wrong}$

Performance

- How much better than "indistinguishable" is this now?
- Idea: Consider odds = ratio of correct and wrong identifications

Summary

- XYZ states great opportunity to further understand QCD bound states
- GSI group involved in PANDA, BESIII and GlueX
- **BESIII**: Published evidence for $e^+e^- \rightarrow Y(4230) \rightarrow \eta_c \pi^+\pi^-\pi^0 \rightarrow No$ (clear) evidence found for Z_c decay with given data \rightarrow Re-analyse with more data!
- PANDA: Published X(3872) lineshape scan simulation
 → Unprecedented precision expected!
- GlueX: Search for photo production of Y(2175) ongoing.