

Progress in diffractive and annihilation production and exotic baryon Annalisa D'Angelo

University of Rome Tor Vergata & INFN Rome Tor Vergata Rome – Italy

Reporting the activity of: INFN-CT, INFN-FE, INFN-GE, INFN-TO, INFN-RM2, Univ. de Barcelona, Univ. of Bern, Univ. of York. **By:** Angela Badalà, Alessandra Filippi, Isabella Garzia, Bernd Krusche, Lucilla Lanza, Vincent Mathieu, Nickolas Zachariou

Outline:

- Physics case: pentaquarks, hybrid baryons and the role of the glue
- Hybrid baryons signature
- πN KY and $\pi \pi$ photo-and electro-production at CLAS
- $\Lambda(1520)$ SDME measurements at GlueX/ Ω production at ALICE
- Pentaquark production at BESIII
- Outlook & conclusions

Critical QCD Question Addressed

QCD allows much richer hadron spectrum than conventional qq
 mesons and qqq
 baryons.

Exotic hadrons

glueballsGG, GGGmultiquark states $q \ \overline{q} \ \overline{q}$, $q \ q \ q \ \overline{q}$ hybrids $q \ \overline{q} \ \overline{q}$, $q \ q \ q \ \overline{q}$ molecular hadrons $[D\overline{D}^*]$, $[\overline{D}^* \Sigma_c]$

Derek B. Leinweber – University of Adelaide

• The light N* spectrum: what is the role of glue?

Search for new baryon states

• The heavy baryon sector: hidden charm pentaquarks

Investigate the properties of pentaquark-like resonances

Strong QCD is born ~ 1µsec after the Big Bang

N* Program – photo- & electro-production of mesons

The N* program is one of the key physics foundations of CLAS@JLab, A2@MAMI and CB@ELSA

Detectors have been designed to measure cross sections and spin observables over a broad kinematic range for exclusive reaction channels:

πN, ωN, φN, ηN, η'N, ππN, KY, K*Y, KY*

- N* parameters do not depend on how they decay
- Different final states have different hadronic decay parameters and different backgrounds
- Agreement offers model-independent support for findings
- The program goal is to probe the *spectrum* of N* states and their *structure*
 - Probe the underlying degrees of freedom of the nucleon through studies of photoproduction and the Q² evolution of the electro-production am<u>plitudes</u>.

N* degrees of freedom??

Establishing the N* and Δ Spectrum

Experimental requirements:

- Precision measurements of photo-induced processes in wide kinematics, e.g. $\gamma p \rightarrow \pi N$, ηp , KY, ..., $\gamma n \rightarrow \pi N$, $K^0 Y^0$, ...
- More complex reactions, e.g. γp → ωp, pφ, ππp, ηπN, K*Y, ... may be sensitive to high mass states through direct transition to ground state or through cascade decays

STRONG2020, September 16 2021 - Annalisa D'Angelo

DSE,

LFQM

QCD

N*, Δ*

LQCD

Polarization Observables: Complete Experiment

The holy grail of baryon resonance analysis

- Process described by 4 complex, parity conserving amplitudes
- 8 well-chosen measurements are needed to determine amplitude.
- Up to 16 observables measured directly
- 3 inferred from double polarization observables
- 13 inferred from triple polarization observables

More N* from polarized K⁺ Λ photoproduction?

Evidence for New N* in KY

State N(mass)J ^P	PDG pre 2010	PDG 2020	ΚΛ	ΚΣ	Nγ	Νπ	
N(1710)1/2+	* * *	****	**	*	****	****	
N(1880)1/2+		***	**	*	**	*	
N(2100)1/2+	*	***	*		**	***	
N(1895)1/2 ⁻		****	**	**	****	*	
N(1900)3/2+	**	****	**	**	****	**	Naming scheme has
N(1875)3/2 ⁻		***	*	*	**	**	changed:
N(2120)3/2 ⁻		***	**	*	***	**	L _{21 2J} (E) → J ^P (E)
N(2060)5/2 ⁻		***	*	*	***	**	
∆ (1600)3/2 ⁺	***	****			****	***	
∆ (1900)1/2 ⁻	**	***		**	***	***	-
∆ (2200)7/2 ⁻	*	***		**	**	***	

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Measure more polarization observables, study these states in electroproduction and extend to higher masses

$\pi^+\pi^-$ p CLAS data - Newly Discovered N'(1720)3/2⁺

- Evidence of a new N'(1720)3/2⁺ resonance from the combined analysis of CLAS photo- and electroproduction of the π⁺π⁻p channel
- > First result on Q² evolution of new resonance electrocoupling

$\pi^+\pi^-$ photoproduction – polarized p/n target

$\pi^+\pi^-$ photoproduction – polarized p/n target

Search for Neutron States: $\vec{\gamma n} \rightarrow K^+ \Sigma^-$

Single Polarization observable $\Sigma: \gamma \overrightarrow{n} \rightarrow k^+ \Sigma^-$

N. Zachariou et al arXiv:2106.13957v2 submitted to Phys. Lett. B (2021)

Double Polarization observable G: $\vec{\gamma} \cdot \vec{p} \rightarrow \pi^0 p$

Double Polarization observable G: $\vec{\gamma} \cdot \vec{p} \rightarrow \pi^+ n$

Electroexcitation of N*/Δ resonances

Total cross section at W < 2.1 GeV

Hybrid Baryons: Baryons with Explicit Gluonic Degrees of Freedom

- **Hybrid hadrons** with dominant gluonic contributions are predicted to exist by QCD. **Experimentally:**
- Hybrid mesons |qqg> states may have exotic quantum numbers J^{PC} not available to pure |qq> states
 GlueX, MesonEx, COMPASS, PANDA
- Hybrid baryons |qqqg> have the same quantum numbers J^P as |qqq> electroproduction with CLAS12 (Hall B).
- Theoretical predictions:
 - ♦ MIT bag model T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).
 - ♦ QCD Sum Rule L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).
 - ♦ Flux Tube model S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).

Hybrid Baryons in LQCD

- Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q² evolution.

Separating q³g from q³ states ?

CLAS results on electrocouplings clarified nature of the Roper. Will CLAS12 data be able to identify gluonic contributions ?

For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

CLAS12 K⁺ electroproduction data

1.6 GeV < W < 3 GeV

4 M total K Λ events already collected

CLAS12 KY electro-production Cross Section Measurements

STRONG2020, September 16 2021 - Annalisa D'Angelo

CLAS12 KY electro-production Cross Section Measurements

STRONG2020, September 16 2021 - Annalisa D'Angelo

GlueX & CLAS

Courtesy of L. Biondo

- Searching for ηπ⁻ channel in order to investigate exotic mesons production
- Seen at GlueX; ongoing partial wave analysis

GlueX & CLAS

- Searched for $\gamma + p \rightarrow \pi_0 + p$ reaction at **Gluex**
- Discrepancies in beam asymmetry were found between GlueX & SLAC results

Courtesy of L. Biondo

GlueX & CLAS

- Searched for $e + p \rightarrow e + \pi^0 + p$ reaction in CLAS, using RG-A Fall 2018 dataset.
- 2γ system invariant mass and proton missing mass are shown, respectively.

Reaction Identification:

Measurement of Spin Density Matrix Elements in Λ(1520) Photoproduction at 8.2 - 8.8 GeV

- GlueX has extracted the Lambda(1520) SDME
- Combinations of SDME may single out specific production mechanisms.

In particular the (experimentally extracted) SDME linear combinations corresponding to:

- natural parity meson exchange production dominate
- **unnatural parity meson exchange** production are compatible with a Kaon exchange

Courtesy of V. Mathieu

Search for hidden-strangeness pentaquark in Ac decay at BESIII

In 2014, BESIII has collected 567 pb⁻¹ close to $\Lambda_c \Lambda_c$ production threshold (4.6 GeV)

- The pentaquark is searched in the p ϕ invariant mass
- The result is limited by statistic
- No evidence of signal is found
- PLANS: BESIII has collected new data between 4.6 to 4.9 GeV in 2020/2021
- -> this analysis will be updated (the idea is to start to have a look from the beginning of the next year)

Ω (2012) production at LHC energies

 Ω (2012)[±] is the newly excited baryon recently observed by Belle collaboration

- The large colliding energies, the high luminosity reached ٠ at the Large Hadron Collider and the unique characteristic of tracking and Particle Identification of the **ALICE** detector should permit to identify $\Omega(2012)$ never seen at the LHC energies.
- INFN-Catania team is testing different machine learning ٠ techniques to improve $\Omega(2012)^{\pm}$ reconstruction efficiency and signal significance.
- The $\Omega(2012)^{\pm}$ resonance is reconstructed via its decay in K^0 s Ξ^\pm .

Courtesy of A. Badalà

J. Yelton et al., Phys. Rev. Lett., 121 (2018)052003

FIG. 2. The (a) $\Xi^0 K^-$ and (b) $\Xi^- K_s^0$ invariant mass distributions in data taken at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonance energies. The curves show a simultaneous fit to the two distributions with a common mass and width.

Summary

- We started a program to search for new states of baryonic matter: hybrid baryons.
- Complementing the international program to search for **hybrid mesons**.
- Identification of hybrid baryons will verify fundamental expectations of strong QCD on the role of glue.
- Data on polarization observables are being obtained at CLAS on π , $\pi\pi$, and KY photoproduction (and electroproduction) which provide important constraints to theoretical models to identify **new N* baryon resonances in the 2.1 2.3 GeV mass range**.
- New theoretical results have been obtained at by JPAC for the Λ (1520) **SDME** measurements at GlueX.
- New BESIII results in pentaquark production have been obtained.
- Search for the Ω (2012) observed at BELLE is foreseen at ALICE.