Experimental Aspects of Hyperon-Nucleon interactions

Sept 14-16 2021

Outline

- Why study interactions between hyperons and nucleons?
- What has been done before?
- Thomas Jefferson Laboratory and CLAS
- Current status
- Future studies

Why Hyperon-Nucleon Interaction?

- The understanding of both nucleon-nucleon (NN) and hyperon-nucleon (YN) potential is necessary in order to have a comprehensive picture of the strong interaction
 - Understand composition of neutron stars
 - Understand hypernuclear structure and hyperon matter
 - Extend NN to a more unified picture of the baryon-baryon interaction

MSP M_G=2.14 +/- 0.1 M_s Nat Astron (2019) doi:10.1038/s41550-019-0880-2

- Hyperons are expected to appear in the core of NS at ρ ~ 2 3 ρ_0
- Hyperons soften the EoS → Reduction on maximum NS mass
- Observation of NS with $M_G>2M_s$ is incompatible with such soft EoS \rightarrow Hyperon Puzzle

Artist rendition of NS merger

The Hyperon Puzzle

YN interaction is poorly constrained: Difficulties associated with performing highprecision scattering experiments with hyperon beams

• Large uncertainties in the scattering lengths

$$a(^{1}S_{0}) = -0.7 - -2.6 \text{ fm}$$

 $a({}^{3}S_{1}) = -1.7 - -2.15 \text{ fm}$

Hyperon Puzzle: Possible solutions

• YY and YN forces

D. Lonardoni, Phys. Rev. Lett. 114, 092301 (2015)
J. Haidenbauer et al., Eur. Phys. J. A 53, 121 (2017)
I. Vidana, Proc. R. Soc. A 474, 20180145 (2018)

• YNN and YYN three body forces

Experimental data are needed to place constraints on the interaction

2.20 What is available?

Best way to obtain information is through $YN \rightarrow YN$

Plots from PDG 2018

STRONG

Total of <1300 observed $\Lambda p \rightarrow \Lambda p$

Λ source	Detector	p_{Λ}	$N_{\Lambda p \to \Lambda p}$
$\pi^- p \to \Lambda K^0$	$LH_2 BC$	0.5-1.0	4
$\pi^- p \rightarrow \Lambda K^0$	$LH_2 BC$	0.4 - 1.0	14
$K^-N \to \Lambda \pi$	Propane BC	0.3-1.5	26
$K^-N \to \Lambda \pi$	Freon BC	0.5 - 1.2	86
$K^-A \to \Lambda X$	Heavy Liquid BC	0.15-0.4	11
$K^- p \to \Lambda X$	$LH_2 BC$	0.12-0.4	75
$nA \to \Lambda X$	Propane BC	0.9–4.7	12
$K^- p \to \Lambda X$	$LH_2 BC$	1.0 - 5.0	68
$K^- p \to \Lambda X$	$LH_2 BC$	0.1-0.3	378
$K^- p \to \Lambda X$	$LH_2 BC$	0.1-0.3	224
K^- Pt $\rightarrow \Lambda X$	$LH_2 BC$	0.3-1.5	175
p Pt $\rightarrow \Lambda X$	$LH_2 BC$	1.0 - 17.0	109
$pCu \rightarrow \Lambda X$	LH ₂ BC	0.5 - 24.0	71

Difficulties performing high-precision scattering experiments with short-lived beams

YN interaction – Complementary approaches

$$\begin{split} K^- + {}^A Z &\to {}^A_\Lambda Z + \pi^- \\ \pi^+ + {}^A Z &\to {}^A_\Lambda Z + K^+ \\ e^- + {}^A Z &\to e^- + {}^A_\Lambda (Z-1) + K^+ \end{split}$$

Hypernuclear studies have uncertainties associated with medium modification as well as many-body effects

Secondary hyperon beams in exclusive photoproduction

- Two-step process where Hyperon rescatters with secondary nucleon
- Kaon identification allows tagging of hyperon beam
- 4π detector allows full reconstruction of the event
- Hydrogen and deuterium targets

Cross sections measurements

Polarization observables

- **Λp** Σ⁻p
- Ad

Λn

Σ⁻p

Λp

Cross section approach benchmarked using pp scattering

Experimental Facility: CLAS @ Jefferson Lab

6-GeV era: 1995-2012

- C.W. electron beam: 2-ns wide bunch period, 0.2-ps bunch length
- Polarized Source: Pe ~ 86%
- Beam energies up to $E_0 = 6 \text{ GeV}$
- Beam Current up to 200 μA

Cross section determination:

- p_{\lambda} >0.7 GeV/c
- cos(θ) between -0.6 and 0.9
- Expected 4000 events

Brandon Tsumeo - USC

class

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \Sigma \cos 2\phi + \alpha \cos \theta_x (-P_{lin} O_x \sin 2\phi - P_{circ} C_x) - \alpha \cos \theta_y (-P_y + P_{lin} T \cos 2\phi) - \alpha \cos \theta_z (P_{lin} O_z \sin 2\phi + P_{circ} C_z) \}$$

Beam Polarisation Linearly polarized Circularly polarized

 $\begin{array}{l} \Lambda \text{ Recoil Polarisation} \\ \text{Self-analysing power} \\ \alpha = 0.75 \end{array}$

- Existing YN models allow the calculation of single and double polarization observables
- Two YN potentials (NSC97F and NSC89) give the correct hypetrition binding energy
- NSC97F and NSC89 lead to very different predictions of polarisation observables at some kinematics

Determination of scattering lengths Phys. Rev. C **95**, 034001

STRONG

FSI Results

n

.-K⁺

 $p \\ n$

Work with theorist to interpret data and better tune free parameters of YN potentials

Summary and conclusion

- FSI provides access to study YN with unprecedented statistics
- Polarisation observables are key in
 - Identifying YN dominating kinematic regimes
 - Separation between FSI mechanism and reduction in the model dependence interpretation
- Cross section measurements

$$\begin{array}{ll} \Lambda p \to \Lambda p & \Sigma^{-} p \to \Sigma^{-} p \\ \Lambda d \to \Lambda d & \Lambda d \to \Lambda pn & \Lambda d \to \Sigma^{-} pp \end{array}$$

Polarisation measurements

$$egin{array}{cccc} \Lambda n
ightarrow \Lambda n & \Lambda p
ightarrow \Lambda p & \Sigma^- p
ightarrow \Sigma^- p \ \Lambda d
ightarrow \Lambda d \end{array}$$

Thank you

Exclusivity of the Reaction

Suppression of Quasi-free

Reaction Reconstruction

Polarisation observables Σ-p

Results extrapolated to zero missing-momentum agree with QF study (submitted to PLB)

Large dilutions at higher missing momenta due to FSI

Relative dilutions can be attributed to the various FSI contributions

Preliminary Results

From 1250 events from BC to 10⁵ from FSI

Preliminary Results

- Adequate statistics for extracting observables 2-fold and 3-fold differential
- Goal is to better tune the free parameters of *YN* potentials
- Work with theorists to interpret the data

Interpretation studies $\gamma d \rightarrow K^+ \Lambda n$

• Single polarization observable ightarrow Smallest statistical uncertainty

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left[1 - P_{lin}\Sigma\cos 2\phi + \ldots\right]$$

- For the K⁺An final state the azimuthal angle φ is not uniquely defined
 - ϕ_{K} , ϕ_{Λ} , ϕ_{n} , $\phi_{\Lambda n}$, ϕ_{Kn} , $\phi_{\Lambda K}$

Beam-spin asymmetry can be used as a probe to disentangle FSI

Interpretation studies

Generated Samples

- Polarised differential cross section
- Unpolarised differential cross section

Phase space

Interpretation studies

Different reaction mechanisms cause unique combinations of $\Sigma_K(p_x),\,\Sigma_\Lambda(p_x),$ and $\Sigma_n(p_x)$

- $\frac{\Sigma_{det}}{\Sigma_{QF}} = F\left(\frac{N_{FSI}}{N_T}\right)$ determined from generated data
- Kinematic footprint of each mechanism into lookup tables
- Extract $\frac{\Sigma_{det}}{\Sigma_{QF}}(p_x)$ from data and determine $\left(\frac{N_{FSI}}{N_T}\right)$ from comparison with lookup tables

ML techniques that provides us with kinematic dependence of FSI-to-total ratios of each mechanism

Polarisation observable provides us with means to study YN reducing model dependent constraints