

Review of recent progress in di-baryonic sector

Mikhail Bashkanov

Task 4.1

Six quark systems

By baryon number:

B=2, 6q, Dibaryon

B=0, 3q3 \overline{q} , Baryonium

By internal structure:

Genuine hexaquark

Baryon-baryon molecule

Dibaryons prehistoric studies

Ancient history

Deuteron – "trivial dibaryon"

proton

neutron

1931 Harold Urey, Nobel prize 1934

Deuteron phtodisintegration

J. Chadwick, M. Goldhaber Nature 134, 237, (**1934**) "Disintegration of the Diplon by γ -Rays"

The first search for the excited deuteron

Quark era

Six non-strange dibaryons

UNIVERSITY UNIVERSITY

F. J. Dyson, N.-H. Xuong, Phys. Rev. Lett. 13, 815 (1964).

Quark era

Loosely Bound/Unbound == Molecular

UNIVERSITY

UNIVERSITY

Hades: PRC 94, 025201 (2016)

pΞ

ALICE: Nature 588, 232–238 (2020)

UNIVERSITY *of Vork*

FIG. 1. Superimposed image and schematic drawing of the IBUKI event.

J-PARC: PRL **126**, 062501, 2021 $\Xi^{-14}N \rightarrow {}^{10}_{\Lambda}Be{}^{5}_{\Lambda}He$

"Demon" Deuteron SU(3) multiplet (27-plet)

NΔ multiplet (27-plet)

 $J^{p} = 2^{+}$

Binding energy ~10 MeV binding energy

$N\Omega$ from heavy ions

Fig. 4: Potentials for the $p-\Xi^-$ and $p-\Omega^-$ interactions.

2.5 MeV binding energy (Coulomb+strong)

ALICE: Nature 588, 232-238 (2020)

 $J^{p} = 1^{+}$

Wasa-at-Cosy: PRL **121**, 2018

Binding energy ~10 MeV binding energy

New methods

arXiv:2108.03134, see N. Zachariou talk for the details

New facilities

Deltaron

Deuteron

size
$$\sim \frac{1}{\sqrt{mE_B}}$$

 $\frac{Deltaron}{Deuteron} = \frac{\sqrt{m_N E_{Deuteron}}}{\sqrt{m_\Delta E_{d^*}}} \sim \frac{1}{7}$
 $R_{deuteron} \sim 2.2 \ fm \Rightarrow R_{\Delta\Delta} \sim 0.3 \ fm$

Nearly complete overlap

$d^*(2380)$ decay branches

$oldsymbol{d}^*$ decay channel	Branching ratio, %
pn	12(3)
$d\pi^0\pi^0$	14(1)
$d\pi^+\pi^-$	23(2)
$pn\pi^+\pi^-$	30(5)
$pn\pi^0\pi^0$	12(2)
$pp\pi^{0}\pi^{-}$	6(1)
$nn\pi^0\pi^+$	6(1)
$NN\pi$	0(10)
	$\sum \Gamma_i \sim \Gamma_{tot}$

Eur.Phys.J. A51 (2015) 7, 87

Argand plot

P. Adlarson et al. Phys. Rev. Lett. **112**, 202301, (2014)P. Adlarson et al. Phys. Rev. C **90**, 035204 , (2014)

25

d*(2380) *internal structure* EXPERIMENTAL VERIFICATION

Hexaquark Autopsy

27

T. Ishikawa et al. Phys.Lett. B772 (2017) 398

M. Bashkanov et al., PRL 124 (2020) 13

Argand type plots Re vs Im

 $C_x \& P_y$ at 90 degree

Observable	Structure function	Helicity amplitude combination
p_y	$R_T(y)$	$2\mathrm{Im}\sum_{i=1}^{3} \left[F_{i+}^{*} F_{(i+3)-} + F_{i-} F_{(i+3)+}^{*} \right]$
T	$R_T(\mathrm{Im}T_{11})$	$2\mathrm{Im}\sum_{i=1}^{2}\sum_{j=0}^{1} \left[F_{(i+3j)+} F_{(i+3j+1)+}^{*} + F_{(i+3j)-} F_{(i+3j+1)-}^{*} \right]$
Σ	R_{TT}	$2\operatorname{Re}\sum_{i=1}^{3}(-)^{i}\left[-F_{i+}F_{(4-i)-}^{*}+F_{(3+i)+}F_{(7-i)-}^{*}\right]$
T_1	$R_{TT}(y)$	$2\mathrm{Im}\sum_{i=1}^{3}(-)^{i}\left[-F_{i+}F_{(7-i)+}^{*}+F_{i-}F_{(7-i)-}^{*}\right]$
$C_{x'}$	$R_T(x')$	$2\operatorname{Re}\sum_{i=1}^{3} \left[F_{i+}^{*} F_{(i+3)-} + F_{i-} F_{(i+3)+}^{*} \right]$
$C_{z'}$	$R_T(z')$	$\sum_{i=1}^{6} \{ F_{i+} ^2 - F_{i-} ^2 \}$
$O_{x'}$	$R_{TT}(x')$	$2\mathrm{Im}\sum_{i=1}^{3}(-)^{i+1}\left[F_{i+}F^{*}_{(7-i)+}+F_{i-}F^{*}_{(7-i)-}\right]$
$O_{z'}$	$R_{TT}(z')$	$2 \text{Im} \sum_{i=1}^{3} (-)^{i+1} \left[F_{i+} F_{(4-i)-}^{*} + F_{(3+i)+} F_{(7-i)-}^{*} \right]$

d^* the full experiment

 $\vec{\gamma}\vec{d}\to d^*\to\vec{p}\vec{n}$

Observable	Beam	Target	Recoil	Status
$d\sigma/d\Omega$	unpol	unpol	unpol	Measured
Σ	lin	unpol	unpol	Measured
P_y	unpol	unpol	pol	Measured
C_{χ}	circ	unpol	pol	Prepared for publication
O_{χ}	Lin	unpol	pol	Preselected data
O_z	lin	unpol	pol	
T	unpol	T	unpol	Measured 2022
E	circ		unpol	To be analysed
F	circ	T	unpol	Measured 2022
G	lin		unpol	To be analysed
<i>T</i> ₁₁	lin	T	unpol	Measured 2022
T_{1-1}	lin	\perp	unpol	Measured 2022

see M. Mocanu poster

Hidden interior

UNIVERSITY

I. Vidaña, M. Bashkanov, D.P. Watts, A. Pastore Phys.Lett. B781 (2018) 112-116 Submitted to

Submitted to arXiv: 28.06.2017

Conclusion

- A lot of new data in dibaryon sector.
 - Heavy ions
 - Photon beams
 - J-PARC
- *d**(2380) multiplet
 - Internal structure
 - $d^*(2380)$ in nuclear medium
 - SU(3) members
 - e-m probes \rightarrow size and structure (A2, ELPH, BGO-OD, CLAS)
- New facilities (KLF)

