

An EFT for the LHCb pentaquarks

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany

ITEP, Moscow, Russia

International Workshop on Hadron Spectroscopy
Strong 2020

14 September 2021

in collaboration with

M. Du, F.-K. Guo, C. Hanhart, U.-G. Meißner, J.A. Oller and Q. Wang

PRL 14, 072001 (2020) and arXiv: 2102.07159 JHEP in print (2021)

P_c 's from $\Lambda_b \rightarrow K J/\psi p$

LHCb, PRL 122 222001 (2019)

LHCb Run-1 2015:

one broad P_c(4380) and one narrow P_c(4450) state

LHCb, PRL 115 072001 (2015), PRL 117 082002 (2016)

 P_c 's decay strongly into $J/\psi p \rightarrow quark content <math>c\bar{c} uud$

LHCb Run-2 2019:

order of magnitude larger statistics

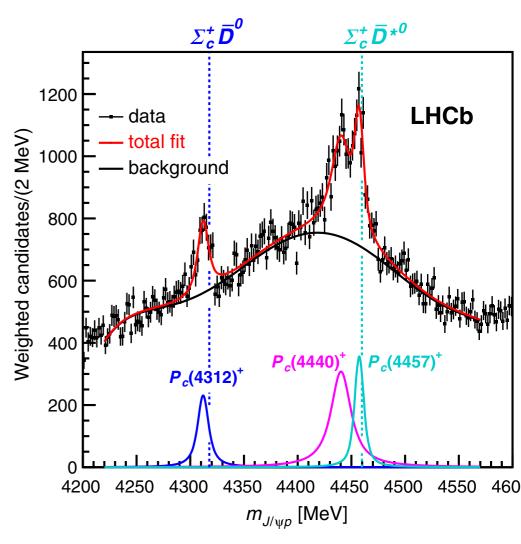
- New Pc(4312) state
- Pc(4450) split into two states
- Significance of the broad state dropped

S	26		LHCb	10 ²
	24	[]	LHOD	·
GeV ²]	22		$m_{Kp} > 1.9{ m GeV}$	
$m_{J/\psi p}^2 [{ m GeV}^2]$	20			P _c (4457)+ P _c (4440)+
	18	<u>-</u> -		P _c (4312) ⁺
	16	$-80\% \text{ of } \Lambda^*$	4 4.5 5 5.5 6 6. m_{Kp}^2 [GeV ²]	5

Candidates/(2 MeV)	500	$P_c(4312)^+$
	0	
Candidates/(2 MeV)	200	
S	0	
Me		$\cos \theta_{Pc}$ -weighted
es/(2	1000	
Weighted candidates/(2 MeV)	500	
ight	0	
We	4 2	00 4300 4400 4500 <i>m</i> _{J/ψρ} [GeV]

State	M [MeV]	Γ [MeV]	(95% C.L.)	R [%]
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	(<27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(<49)	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	(<20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Pentaquarks as hadronic molecules


Disclaimer: I will not talk about Pc's as compact states, hadrocharmonia, triangle mechanisms...

Brambilla et al Phys.Rept. 873 (2020) 1

— All P_c's reside near S-wave hadronic thresholds:

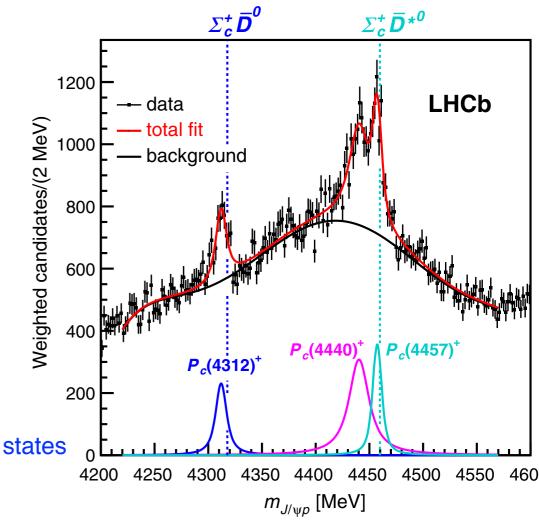
 $P_c(4312)$ — near $\Sigma_c D$, Pc(4440) and Pc(4457) — near $\Sigma_c D^*$

⇒ Hint for a molecular scenario

LHCb, PRL 122 222001 (2019)

Pentaquarks as hadronic molecules

Disclaimer: I will not talk about Pc's as compact states, hadrocharmonia, triangle mechanisms...


Brambilla et al Phys. Rept. 873 (2020) 1

- All P_c's reside near S-wave hadronic thresholds:

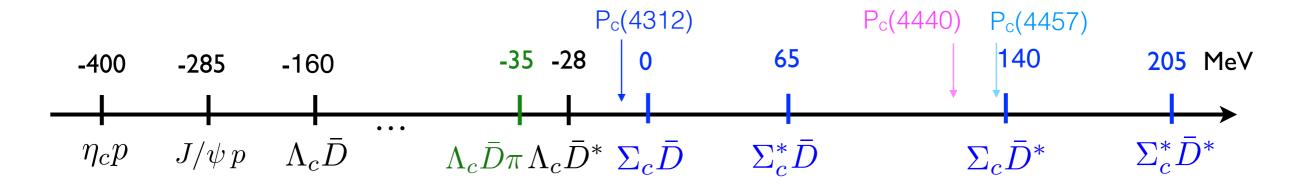
$$P_c(4312)$$
 — near $\Sigma_c D$, $Pc(4440)$ and $Pc(4457)$ — near $\Sigma_c D^*$

→ Hint for a molecular scenario

- -chiral symmetry: one- and multi-pion exchanges
- —heavy-quark spin symmetry (HQSS): there must be seven $\Sigma_c^{(*)}\bar{D}^{(*)}$ states

LHCb, PRL 122 222001 (2019)

$$\mathcal{L}_{\mathrm{LO}} = -C_{a} \, S_{ab}^{\dagger} \cdot S_{ba} \langle \bar{H}_{c}^{\dagger} \bar{H}_{c} \rangle - C_{b} \, i \epsilon_{jik} S_{ab}^{j\dagger} S_{ba}^{k} \langle \bar{H}_{c}^{\dagger} \sigma^{i} \bar{H}_{c} \rangle$$

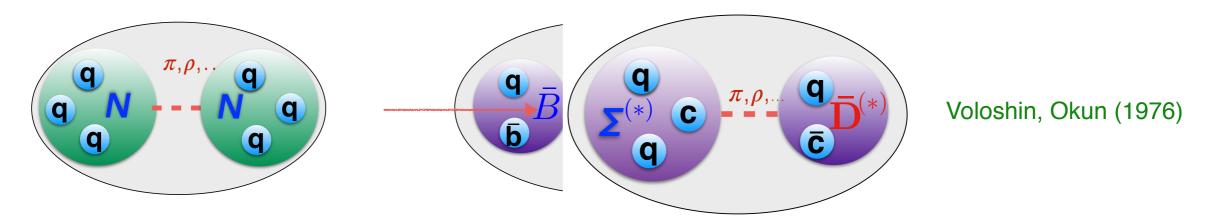

$$\mathsf{central} \qquad \mathsf{spin-spin}$$

 \implies First predictions for spin partners using masses of $P_c(4312)$, Pc(4440) and Pc(4457) as input and neglecting coupled-channels

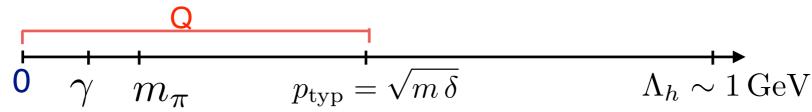
This Talk is about

our works: PRL 14, 072001 (2020) and arXiv: 2102.07159 (2021)

A coupled-channel analysis of the LHCb spectra using an EFT approach


- Fixing LECs from data and not from Breit-Wigner masses, as done before

 extracting poles and residues
- ➡ Parameter-free testable predictions for HQSS partners and line shapes in


$$\Lambda_b \to K\Sigma^{(*)}\bar{D}^{(*)}$$
 and $\Lambda_b \to K\eta_c p$ first data by LHCb for $\Lambda_b \to K\eta_c p$: PRD 102, 112012 (2020) and for $\Lambda_b \to K\Lambda_c D$: Piucchi phd thesis (2019)

★ The role of one-pion exchange

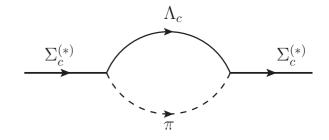
Chiral EFT approach at low energies

- ullet Elastic coupled-channel $\Sigma_c^{(*)}ar{D}^{(*)}$ potential to a given order in Q/ Λ_h
- typical soft scale Q is quite large because of coupled-channels

M. Du et al. arXiv: 2102.07159 (2021)

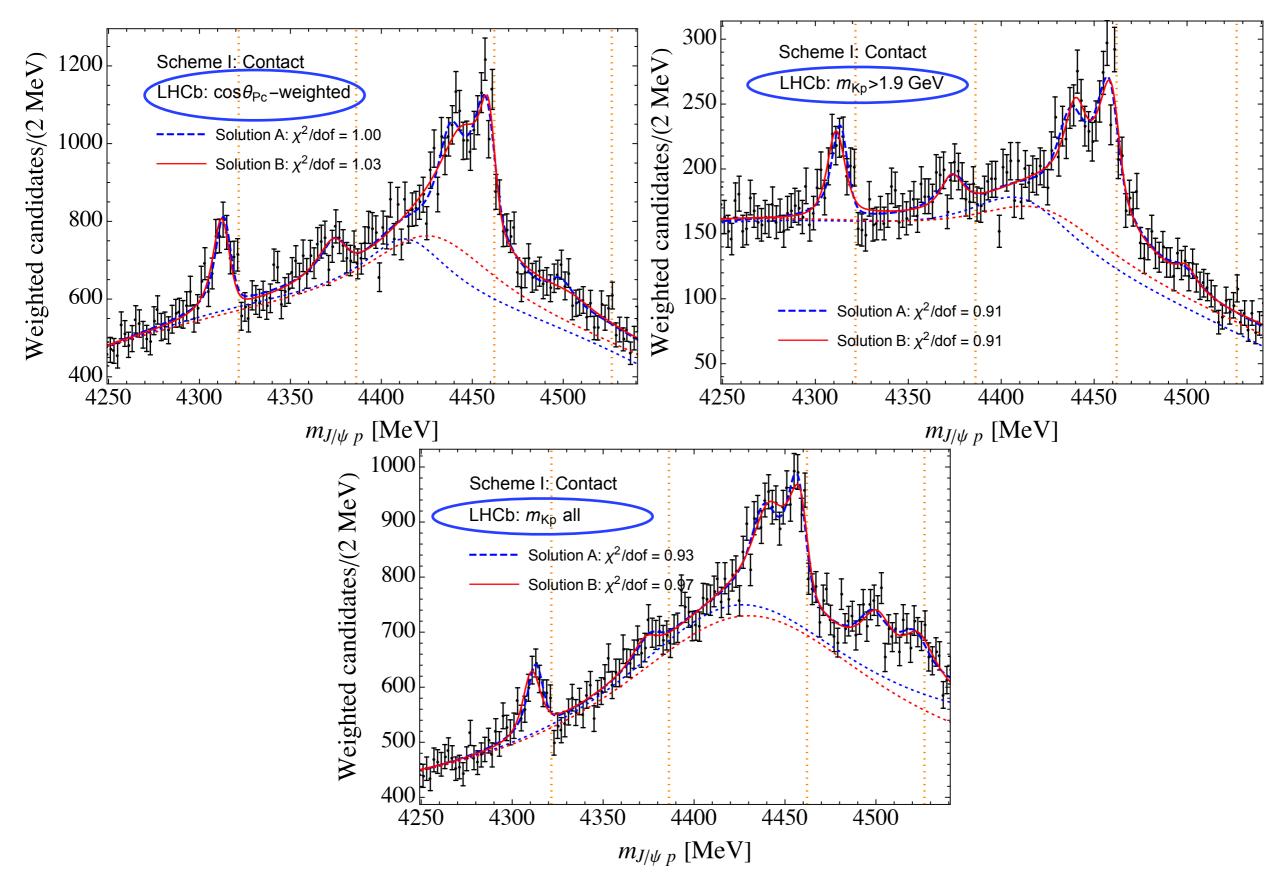
Formalism: production and inelastic channels

— Weak production
$$\Lambda_b^0 o K \Sigma^{(*)} D^{(*)}$$


$$U_{\rm el} = \frac{\Lambda_b}{\bar{D}^{(*)}} + \frac{\sum_c^{(*)}}{\bar{D}^{(*)}} \frac{\sum_c^{(*)}}{\bar{D}^{(*)}}$$

$$T_{\alpha\beta} = V_{\alpha\beta}^{\text{eff}} - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}} G_{\gamma} T_{\gamma\beta}$$

Green function:

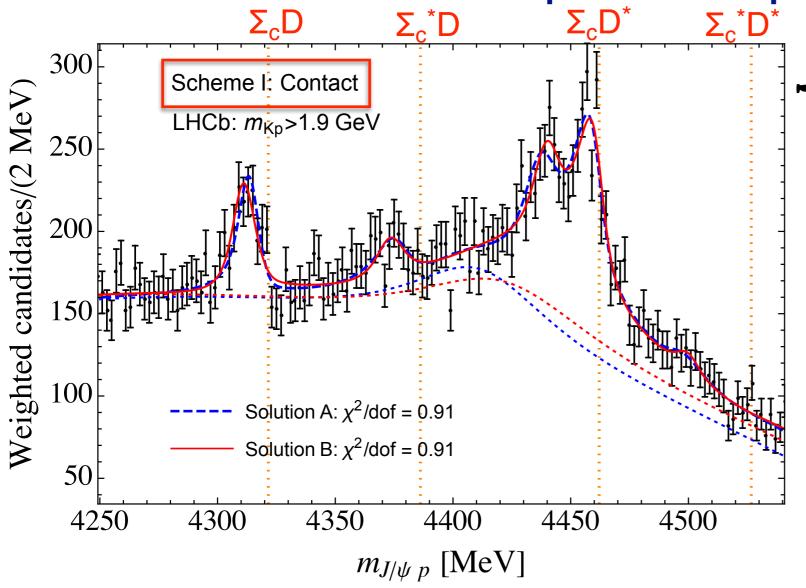

- Dynamical widths of $\Sigma_c^{(*)}$

$$G_{\beta}(E, \mathbf{q}) = \frac{m_{\Sigma_{c}^{(*)}} m_{D^{(*)}}}{E_{\Sigma_{c}^{(*)}}(\mathbf{q}) E_{D^{(*)}}(\mathbf{q})} \xrightarrow{1} \frac{1}{E_{\Sigma_{c}^{(*)}}(\mathbf{q}) + E_{D^{(*)}}(\mathbf{q}) - E - \frac{\tilde{\Sigma}_{R}(s)}{2E_{\Sigma_{c}^{(*)}}(\mathbf{q})}}$$

generates $\bar{D}\Lambda_c\pi$ cut

"Contact" Fits to three sets of LHCb data

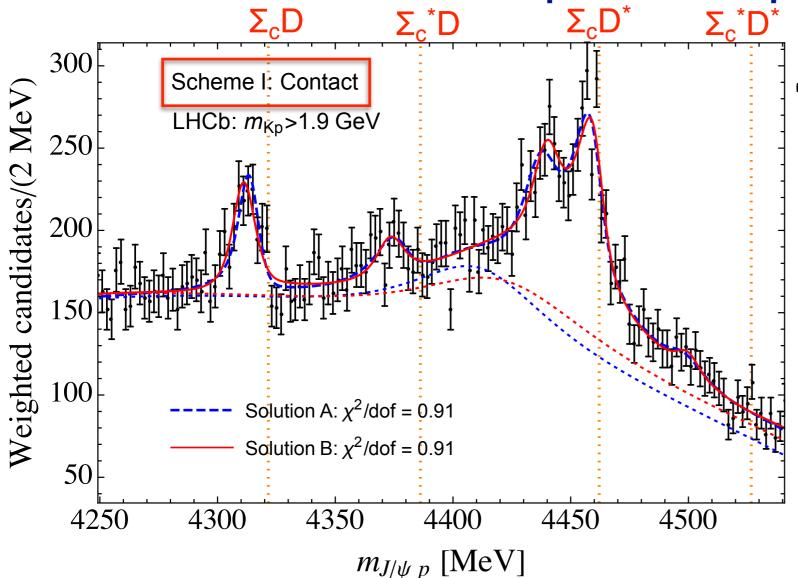
⇒ Consistent values for the Pc's poles from all fits


Du et al. PRL 124, 072001 (2020) and arXiv:2102.07159

Poles and quantum numbers:

			solution A		solution B
	thr. ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_c(4312)$	$\Sigma_c \bar{D} \ (4321.6)$	$\frac{1}{2}$	4314(1) - 4(1)i	$\frac{1}{2}$	4312(2) - 4(2)i
$P_c(4380)$	$\Sigma_c^* \bar{D} \ (4386.2)$	$\frac{3}{2}$	4377(1) - 7(1)i	$\frac{3}{2}$	4375(2) - 6(1)i
$P_c(4440)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{1}{2}^-$	4440(1) - 9(2)i	$\frac{3}{2}^{-}$	4441(3) - 5(2)i
$P_c(4457)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{3}{2}$	4458(2) - 3(1)i	$\frac{1}{2}^-$	4462(4) - 5(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{1}{2}$	4498(2) - 9(3)i	$\frac{1}{2}$	4526(3) - 9(2)i
P_c	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{3}{2}$	4510(2) - 14(3)i	$\frac{3}{2}$	4521(2) - 12(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{5}{2}$	4525(2) - 9(3)i	$\frac{5}{2}$	4501(3) - 6(4)i

Du et al. PRL 124, 072001 (2020) and arXiv:2102.07159



Poles and quantum numbers:

			solution A		solution B
	thr. ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_c(4312)$	$\Sigma_c \bar{D} \ (4321.6)$	$\frac{1}{2}^-$	4314(1) - 4(1)i	$\frac{1}{2}$	4312(2) - 4(2)i
$P_c(4380)$	$\Sigma_c^* \bar{D} \ (4386.2)$	$\frac{3}{2}^{-}$	4377(1) - 7(1)i	$\frac{3}{2}$	4375(2) - 6(1)i
$P_c(4440)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{1}{2}^-$	4440(1) - 9(2)i	$\frac{3}{2}$	4441(3) - 5(2)i
$P_c(4457)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{3}{2}^-$	4458(2) - 3(1)i	$\frac{1}{2}$	4462(4) - 5(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{1}{2}$	4498(2) - 9(3)i	$\frac{1}{2}$	4526(3) - 9(2)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{3}{2}^{-}$	4510(2) - 14(3)i	$\frac{3}{2}$	4521(2) - 12(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{5}{2}$	4525(2) - 9(3)i	$\frac{5}{2}$	4501(3) - 6(4)i

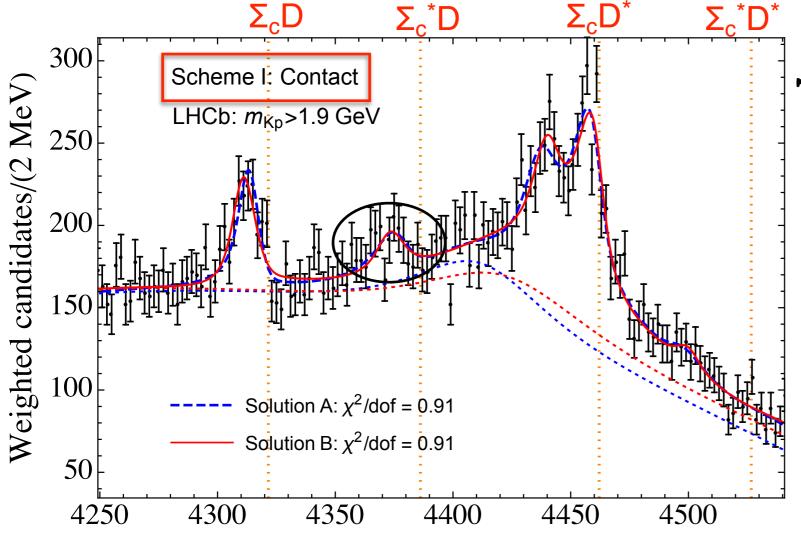
 P_c (4312), P_c (4440), P_c (4457) are well understood as $Σ_cD$, $Σ_cD^*$ and $Σ_cD^*$ quasi-bound states, respectively

Du et al. PRL 124, 072001 (2020) and arXiv:2102.07159

Poles and quantum numbers:

			solution A		solution B
	thr. ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_c(4312)$	$\Sigma_c \bar{D} \ (4321.6)$	$\frac{1}{2}$	4314(1) - 4(1)i	$\frac{1}{2}$	4312(2) - 4(2)i
$P_c(4380)$	$\Sigma_c^* \bar{D} \ (4386.2)$	$\frac{3}{2}$	4377(1) - 7(1)i	$\frac{3}{2}$	4375(2) - 6(1)i
$P_c(4440)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{1}{2}^-$	4440(1) - 9(2)i	$\frac{3}{2}$	4441(3) - 5(2)i
$P_c(4457)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{3}{2}^-$	4458(2) - 3(1)i	$\frac{1}{2}^-$	4462(4) - 5(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{1}{2}$	4498(2) - 9(3)i	$\frac{1}{2}$	4526(3) - 9(2)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{3}{2}$	4510(2) - 14(3)i	$\frac{3}{2}$	4521(2) - 12(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{5}{2}$	4525(2) - 9(3)i	$\frac{5}{2}$	4501(3) - 6(4)i

 P_c (4312), P_c (4440), P_c (4457) are well understood as $Σ_cD$, $Σ_cD^*$ and $Σ_cD^*$ quasi-bound states, respectively


► Two fits with equal χ^2 yield:

 $P_c(4440)$ $P_c(4457)$

Fit A: 1/2- 3/2-

Fit B: 3/2- 1/2-

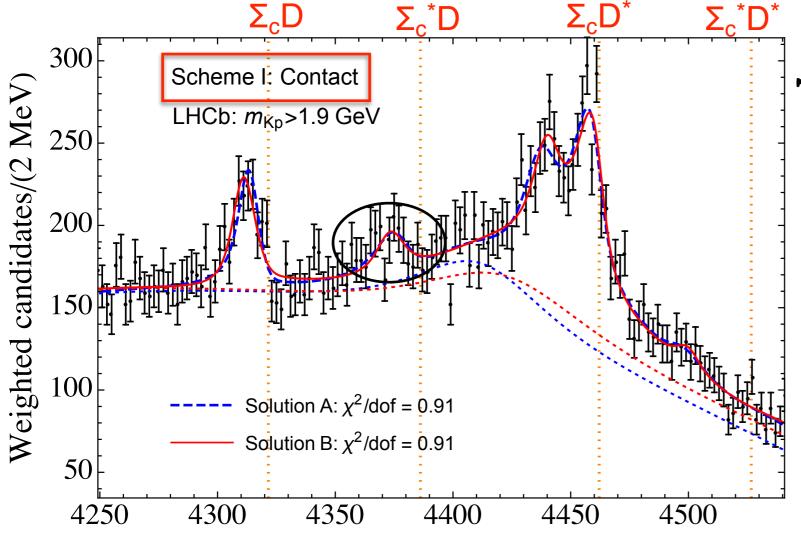
Du et al. PRL 124, 072001 (2020) and arXiv:2102.07159

Arr P_c(4312), P_c(4440), P_c(4457) are well understood as Σ_cD, Σ_cD* and Σ_cD* quasi-bound states, respectively

► Two fits with equal χ^2 yield:

 $P_c(4440)$ $P_c(4457)$

Fit A: 1/2- 3/2-


Fit B: 3/2- 1/2-

 $m_{J/\psi p} \ [{
m MeV}]$ Poles and quantum numbers:

				solution A		solution B
		thr. ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
	$P_c(4312)$	$\Sigma_c \bar{D} \ (4321.6)$	$\frac{1}{2}$	4314(1) - 4(1)i	$\frac{1}{2}^{-}$	4312(2) - 4(2)i
Г	$P_c(4380)$	$\Sigma_c^* \bar{D} \ (4386.2)$	$\frac{3}{2}$	4377(1) - 7(1)i	$\frac{3}{2}^{-}$	4375(2) - 6(1)i
Γ	$P_c(4440)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{1}{2}^-$	4440(1) - 9(2)i	$\frac{3}{2}^-$	4441(3) - 5(2)i
L	$P_c(4457)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{3}{2}^-$	4458(2) - 3(1)i	$\frac{1}{2}^{-}$	4462(4) - 5(3)i
	$\overline{P_c}$	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{1}{2}$	4498(2) - 9(3)i	$\frac{1}{2}^{-}$	4526(3) - 9(2)i
	P_c	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{3}{2}$	4510(2) - 14(3)i	$\frac{3}{2}^{-}$	4521(2) - 12(3)i
	P_c	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{5}{2}$	4525(2) - 9(3)i	$\frac{5}{2}$	4501(3) - 6(4)i

A narrow Pc(4380) state predicted as a Σ_c *D 3/2-molecule is seen in data

Du et al. PRL 124, 072001 (2020) and arXiv:2102.07159

Arr P_c(4312), P_c(4440), P_c(4457) are well understood as Σ_cD, Σ_cD* and Σ_cD* quasi-bound states, respectively

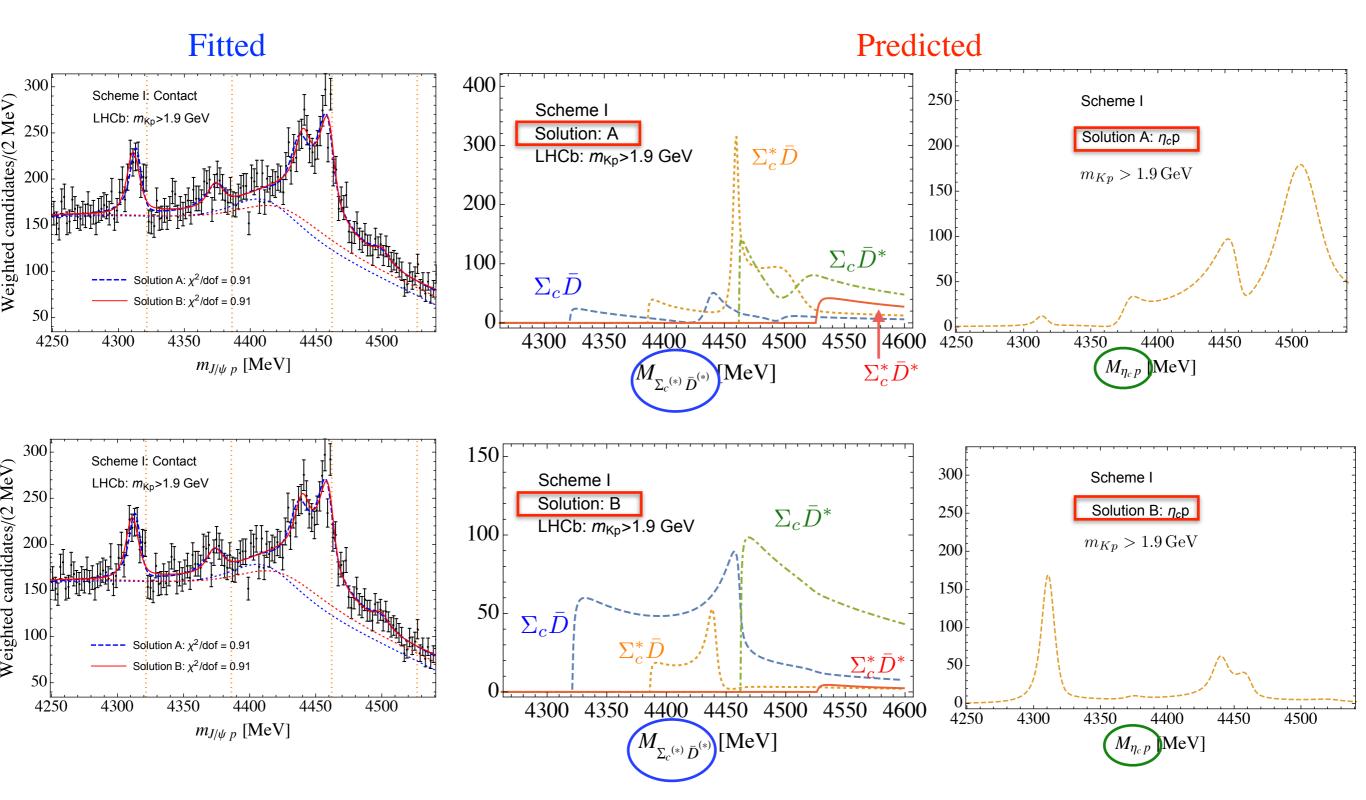
► Two fits with equal χ^2 yield:

 $P_c(4440)$ $P_c(4457)$

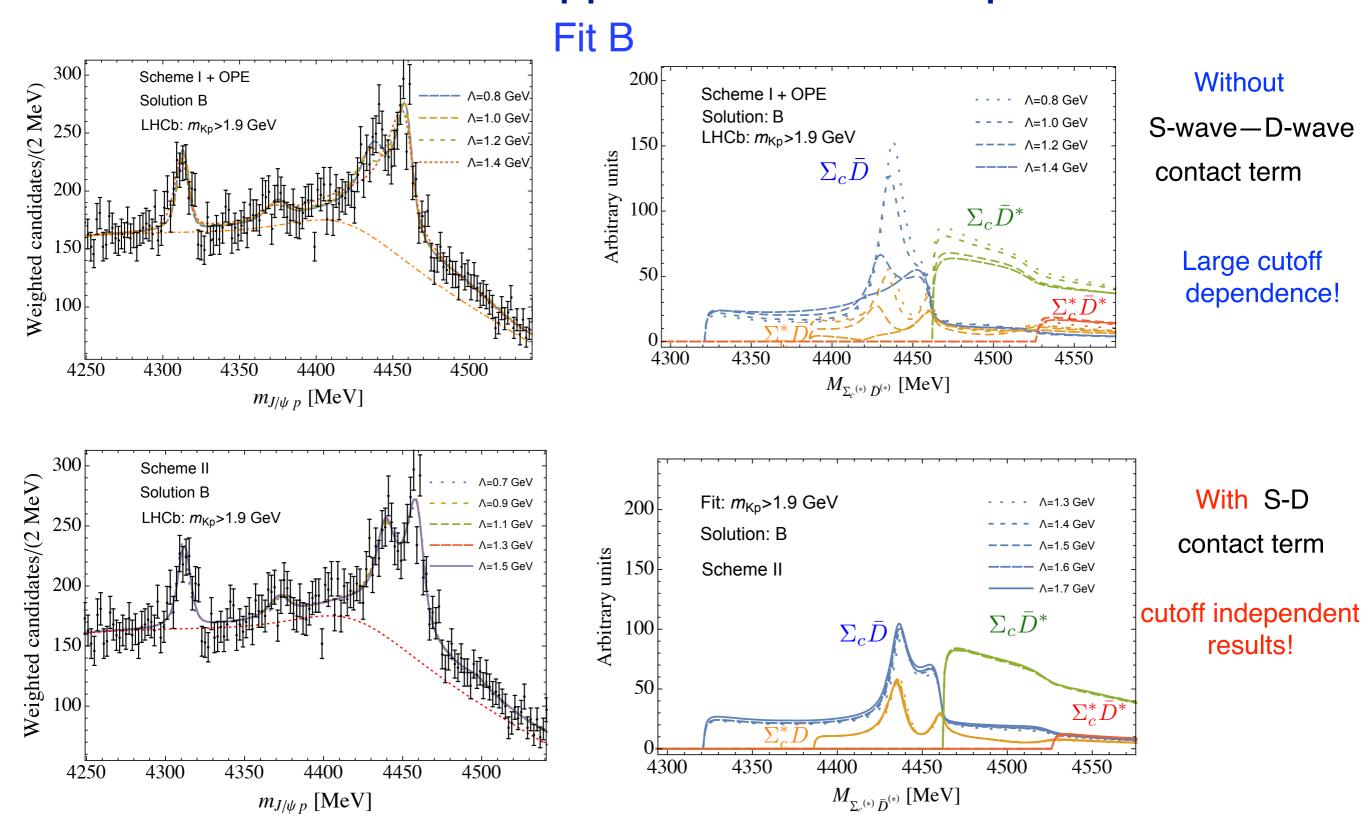
Fit A: 1/2- 3/2-

Fit B: 3/2- 1/2-

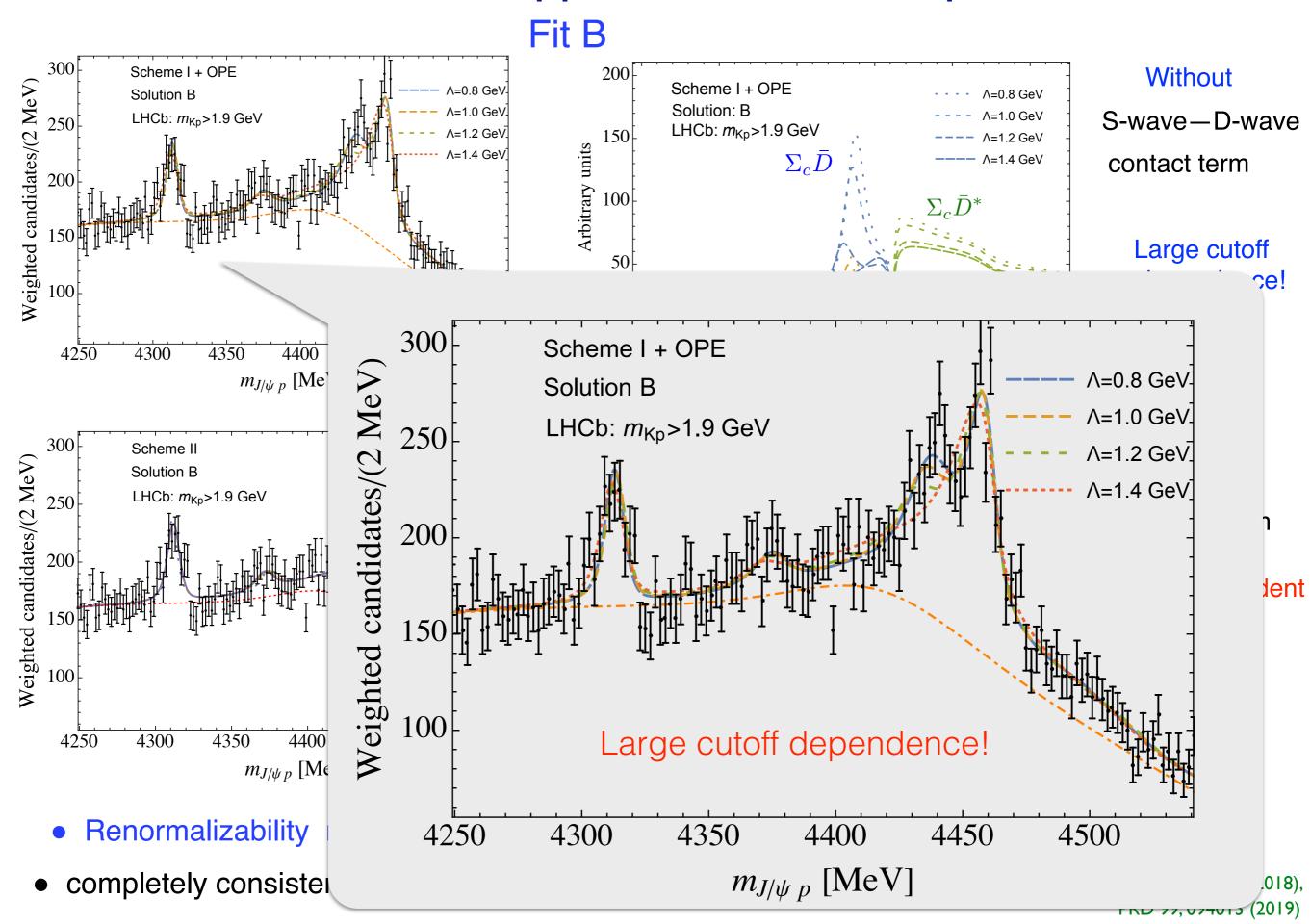
 $m_{J/\psi p} \ [{
m MeV}]$ Poles and quantum numbers:

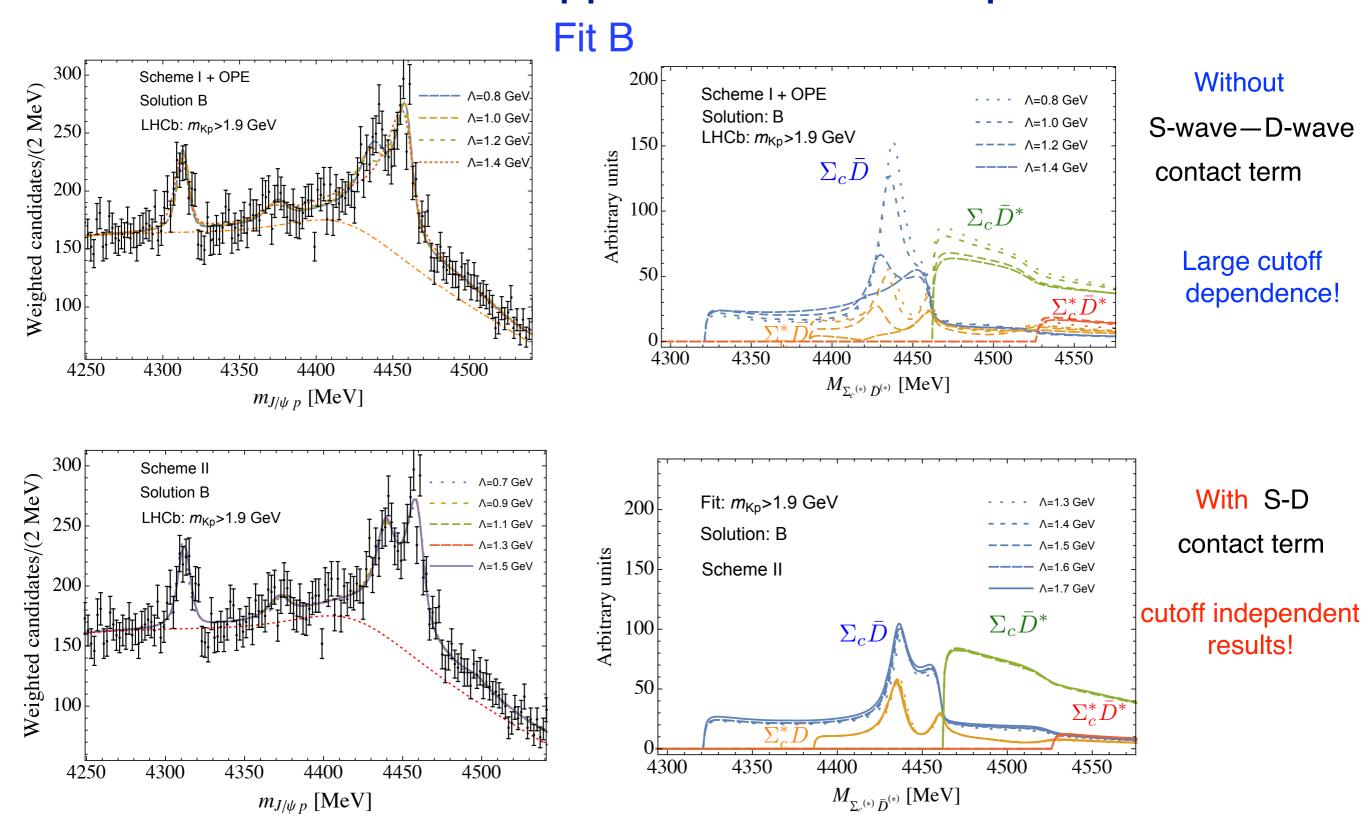

			solution A		solution B
	thr. ([MeV])	J^P	Pole [MeV]	J^P	Pole [MeV]
$P_c(4312)$	$\Sigma_c \bar{D} \ (4321.6)$	$\frac{1}{2}$	4314(1) - 4(1)i	$\frac{1}{2}$	4312(2) - 4(2)i
$P_c(4380)$	$\Sigma_c^* \bar{D} \ (4386.2)$	$\frac{3}{2}$	4377(1) - 7(1)i	$\frac{3}{2}$	4375(2) - 6(1)i
$P_c(4440)$	$\Sigma_c \bar{D}^* \ (4462.1)$	$\frac{1}{2}^-$	4440(1) - 9(2)i	$\frac{3}{2}$	4441(3) - 5(2)i
$P_c(4457)$	$\Sigma_c \bar{D}^*$ (4462.1)	$\frac{3}{2}$	4458(2) - 3(1)i	$\frac{1}{2}^-$	4462(4) - 5(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{1}{2}$	4498(2) - 9(3)i	$\frac{1}{2}$	4526(3) - 9(2)i
P_c	$\Sigma_c^* \bar{D}^* \ (4526.7)$	$\frac{3}{2}$	4510(2) - 14(3)i	$\frac{3}{2}$	4521(2) - 12(3)i
$\overline{P_c}$	$\Sigma_c^* \bar{D}^* (4526.7)$	$\frac{5}{2}$	4525(2) - 9(3)i	$\frac{5}{2}$	4501(3) - 6(4)i

A narrow Pc(4380) state predicted as a Σ_c*D 3/2-molecule is seen in data

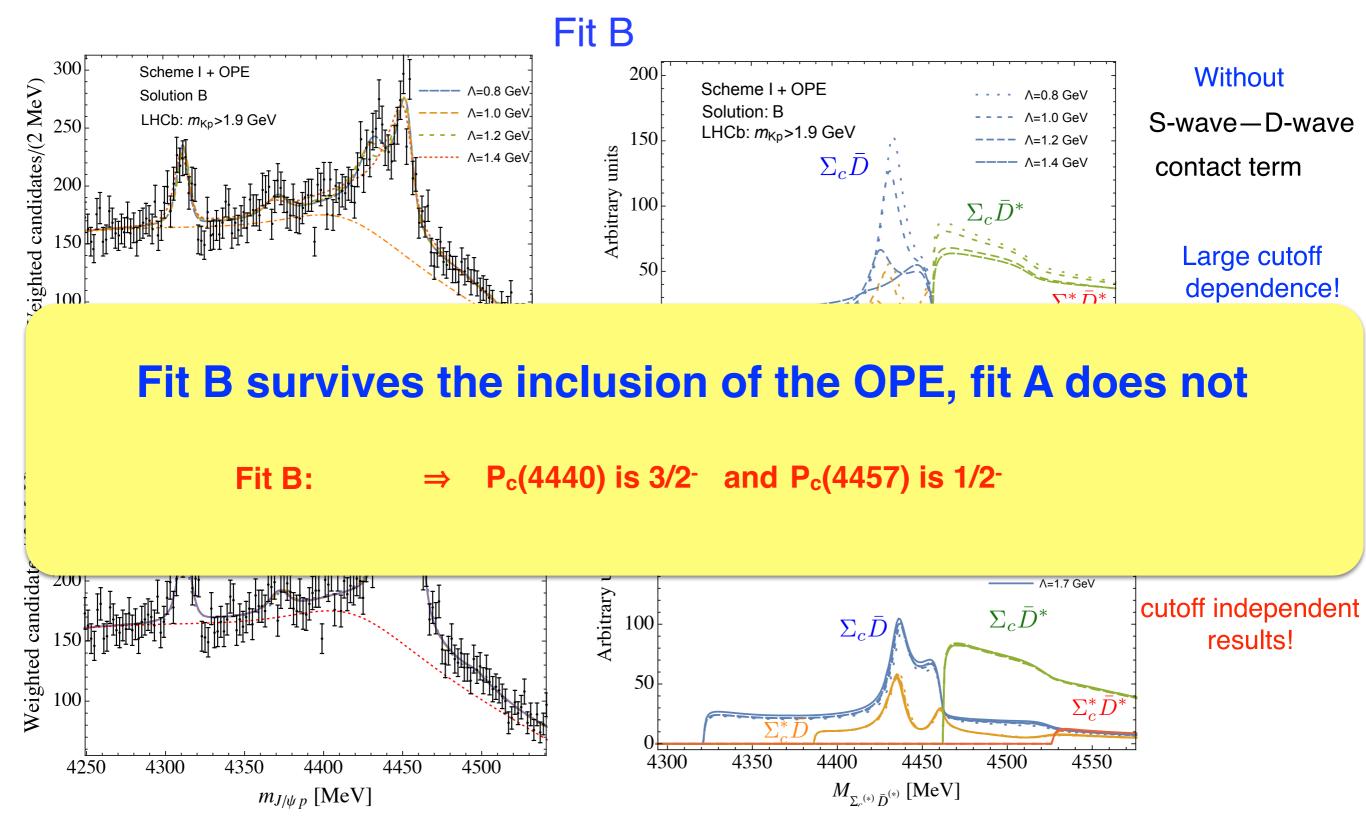

Σ_c*D* states are not seen yet, their production rate is suppressed

Predictions for $\Lambda_b \to K\Sigma^{(*)}D^{(*)}$ and $\Lambda_b \to K\eta_c p$


scheme I = contact



- Very different predictions for fits A and B
- ⇒ data in these channels will clearly distinguish between the two fits



- Renormalizability require S-wave-to-D-wave contact term to appear together with OPE
- completely consistent with similar analyses of Zb(10610)/Zb(10650)

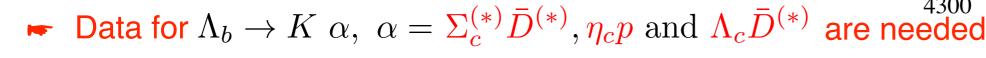
- Renormalizability require S-wave-to-D-wave contact term to appear together with OPE
- completely consistent with similar analyses of Zb(10610)/Zb(10650)

- Renormalizability require S-wave-to-D-wave contact term to appear together with OPE
- completely consistent with similar analyses of Zb(10610)/Zb(10650)

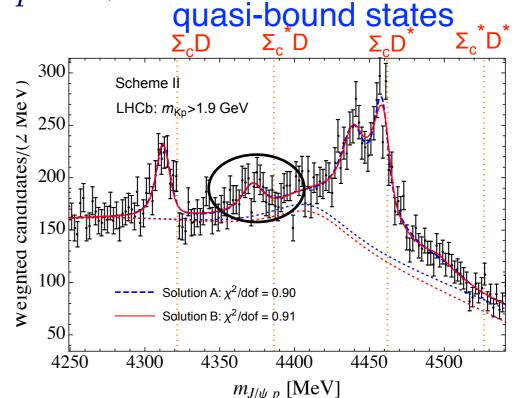
Summary and Outlook

- A coupled-channel analysis of $\Lambda_b o K \, P_c o K \, J/\Psi \, p \quad \Longrightarrow$
- A new $P_c(4380)$ as Σ_c^*D 3/2 is already in current data
- Testable predictions for spectra

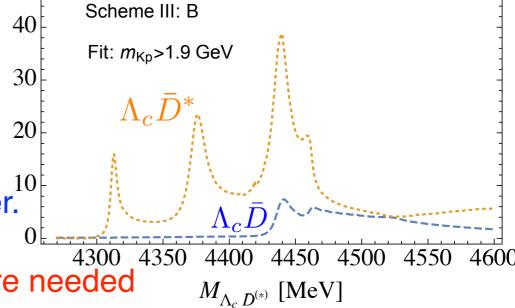
$$\Lambda_b \to K\Sigma^{(*)}\bar{D}^{(*)}$$
 and $\Lambda_b \to K\eta_c p$


 $P_c(4440) P_c(4457) \Sigma_c D^*$

Fit A: 1/2 3/2


Fit B: 3/2- 1/2-

from fits with pions



- Other data, e.g., $J/\Psi~p$ photoproduction: sensitivity to production process

 P_c states as $\Sigma_c^{(*)} \bar{D}^{(*)}$

