BESIII Spectroscopy

Yuping Guo [guoyp@fudan.edu.cn]

Second Strong2020 onlline Workshop 14-15 September 2021 · University of York

Outline

- Introduction to BESIII experiment
- Selected highlights of BESIII results related to spectroscopy
 - Charmonium spectroscopy
 - Charmonium states
 - Charmonium-like states
 - Light meson spectroscopy
- Prospects and summary

BEPCII and BESII

BEPCII: τ -charm factory Beam Energy: 1-2.3 (2.45) GeV Lumi: 1×10^{33} cm⁻²s⁻¹ (achieved 2016) BEPCII upgrade & BESIII construction: 2004-2008 BESIII physics run: 2009-now

Y. P. GUO/Fudan University

Data Samples

4

Hadrons and Exotic Hadrons

Charmonium Spectroscopy

$1^{3}D_{2}$ **States -** $\psi_{2}(3823)$

- Evidence of $\psi_2(3823)$ from Belle experiment in $B \to (\psi_2(3823) \to \gamma \chi_{c1})K$
 - $772 \times 10^6 B\bar{B}$ events, 3.8σ
 - $M = (3823.1 \pm 1.8 \pm 0.7) \text{ MeV}, \Gamma_{\text{tot}} < 24 \text{ MeV}$ Phys.Rev.Lett. 111, 032001(2013)
- Observed by BESIII experiment in $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823), \psi_2(3823) \rightarrow \gamma \chi_{c1}$
 - Scan data sample at $\sqrt{s} = 4.23, 4.26, 4.36, 4.42, 4.60$ GeV, 6.2σ
 - $M = (3821.7 \pm 1.3 \pm 0.7) \text{ MeV}, \Gamma_{\text{tot}} < 16 \text{ MeV}$ Phys.Rev.Lett. 115, 011803(2015)
- Decays of $\psi_2(3823)$ to $\gamma \chi_{c2}$, $\pi^+ \pi^- J/\psi$, ggg, γgg have been predicted by various theoretical work
 - $\Gamma_{\psi_2(3823) \to \gamma \chi_{c1}} \sim 200 350 \text{ keV}, \Gamma_{\psi_2(3823) \to \gamma \chi_{c2}} \sim 40 90 \text{ keV}$

$$\Gamma_{\psi_2(3823)\to\gamma\chi_{c2}}/\Gamma_{\psi_2(3823)\to\gamma\chi_{c1}}\sim 0.19-0$$

• $\Gamma_{\psi_2(3823) \to \pi \pi J/\psi} \sim 45 - 200 \text{ keV}$

$$\Gamma_{\psi_2(3823) \to \pi^+\pi^- J/\psi}/\Gamma_{\psi_2(3823) \to \gamma \chi_{c1}} \sim 0.12 - 0.39$$

0.32 Phys.Rev.D 55, 4001(1997) Phys.Rev.Lett. 89, 162002(2002) Phys.Rev.D 67, 014027(2003) Phys.Rev.D 69, 054008(2004) Phys.Rev.D 72, 054026(2005) Phys.Rev.D 79, 094004(2009) Phys.Rev.D 94, 034005(2016) Front.Phys. 11, 111402 (2016) arXiv:1510.08269

New Decay Modes of $\psi_2(3823)$

- 9 fb⁻¹ scan data sample between \sqrt{s} =4.3 and 4.7 GeV
 - $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$, study of the decays of $\psi_2(3823) \rightarrow \gamma \chi_{c0,1,2}, \pi \pi J/\psi, \eta J/\psi, \pi^0 J/\psi$

Phys.Rev.D 103, L091102(2021)

< 0.06

< 0.11

< 0.14

< 0.03

< 0.24

New Decay Modes of $\psi_2(3823)$

- 9 fb⁻¹ scan data sample between \sqrt{s} =4.3 and 4.7 GeV
 - Search for $e^+e^- \rightarrow \pi^0 \pi^0 \psi_2(3823)$ with $\psi_2(3823) \rightarrow \gamma \chi_{c1}$

X(3872)

- First observation in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ process
- Mass: (3871.65 ± 0.06) MeV PDG2020, Dominant by LHCb result: JHEP 2008 123 very close to $D\bar{D}$ * mass threshold [(3871.69 ± 0.01) MeV]
- Width: (1.19 ± 0.21) MeV [BW Width] Phys.Rev.D 102, 092005 (2020)
- JPC = 1⁺⁺ *Phys.Rev.Lett.* 110, 222001 (2013)
- Production: *B* decays, B_s decays, Λ_b decays, $p\bar{p}$ collision, pp collision, PbPb collision, e^+e^- radiative transition, $\gamma\gamma^*$ process
- Decay: $D^0 \bar{D}^{*0}$, $\pi^+ \pi^- J/\psi$, $\pi^+ \pi^- \pi^0 J/\psi$, $\pi^0 \chi_{cJ}$, $\gamma J/\psi$, $\gamma \psi (2S)[?]$

Phys.Rev.Lett. 91, 262001 (2003)

X(3872) Decays

• $e^+e^- \rightarrow \gamma X(3872)$ cross section peaks around 4.2 GeV, studied from 11.6 fb⁻¹ data between \sqrt{s} =4.0 and 4.6 GeV

Y States

- First states Y(4260), discovered in ISR process at BaBar
 - Not observed in inclusive hadron cross section
 - Not observed in open charm pair cross section
 - Confirmed by CLEO and Belle experiment
- Y(4360) and Y(4660) discovered in similar process

40

30

20

10

4.5

4.6

4.7

4.8

4.9

 $M(\Lambda_c^+ \Lambda_c^-)$

5

5.1 5.2

5.4

5.3

GeV/c²

Y. P. GUO/Fudan University

Y(4260) -> Y(4230)

STRONG2020/University of York

New Information about Y(4660)

- Precision of BESIII measurement much higher than B-factories
- Parameterization of the cross section line-shape is a challenge task
- Data sample from \sqrt{s} = 4.7 GeV to 4.95 GeV taken in 20-21-run-period

$D_s^*D_{sJ}$ Cross Section Around 4.6

- Enhancement just above 4.6 GeV observed at Belle experiment in
 - $e^+e^- \rightarrow D_s^{\pm}D_{s1}(2536)^{\mp}$ process, evidence seen in $e^+e^- \rightarrow D_s^{\pm}D_{s2}^{*}(2573)^{\mp}$ process Phys.Rev.D 100, 111103 (2019) Phys.Rev.D 101, 091101 (2020)
- $e^+e^- \rightarrow D_s^{*\pm}D_{s0}^{*\mp}(2317), D_s^{*\pm}D_{s1}(2460)^{\mp}, D_s^{*\pm}D_{s1}(2536)^{\mp}$ studied at BESIII
 - Clear $D_s^*D_{sJ}$ signal in data, no significant resonance structures in cross section line-shape

Z_c States

State	$M \; ({\rm MeV}/c^2)$	$\Gamma \ ({\rm MeV})$	J^{PC}	Process	Experiment
$Z_c(3900)^{(\pm,0)}$	3888.4 ± 2.5	28.3 ± 2.5	1+-	$e^+e^- \to \pi^{(+,0)}(\pi^{(-,0)}J/\psi)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)} (D\bar{D}^*)^{(-,0)}$	BESIII
				$H_b \to X \pi^+ (\pi^- J/\psi)$	D0
				$e^+e^- \to \pi^+(\eta_c \rho^-)$	BESIII
$Z_c(4020)^{(\pm,0)}$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \to \pi^{(+,0)}(\pi^-h_c)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)}(D^*\bar{D}^*)^{(-,0)}$	BESIII
$Z(4050)^{\pm}$	4051^{+24}_{-40}	82^{+50}_{-28}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4055)^{\pm}$ 3.5	$\sigma 4054 \pm 3.2$	45 ± 13	??-	$e^+e^- \to \pi^+(\pi^-\psi(2S))$	Belle
$Z(4100)^{\pm}$ 3.4	$\sigma 4096 \pm 28$	152^{+80}_{-70}	$?^{??}$	$B^0 \to K^+(\pi^-\eta_c)$	LHCb
$Z(4200)^{\pm}$	4196^{+35}_{-32}	370^{+100}_{-150}	1^{+-}	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle, LHCb
$Z(4250)^{\pm}$	4248_{-50}^{+190}	177^{+320}_{-70}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4430)^{\pm}$	4478^{+15}_{-18}	181 ± 31	1^{+-}	$B^0 \to K^+(\pi^-\psi(2S))$	Belle, LHCb
first/2008				$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle
$R_{c0}(4240)$	4239^{+50}_{-21}	220^{+120}_{-90}	$0^{}$	$B^0 \to K^+ \pi^- \psi(2S)$	LHCb
$Z_{cs}(3985)^{\pm}$	$3982.5^{+2.8}_{-3.4}$	$12.8^{+6.1}_{-5.3}$?	$e^+e^- \to K^+(D^s D^{*0} + D^{*-}_s D^0)$	BESIII
$Z_{cs}(4000)^{\pm}$	4003^{+7}_{-15}	131 ± 30	1^{+}	$B^+ \to \phi(J/\psi K^+)$	LHCb
$Z_{cs}(4220)^{\pm}$	$4216_{-38}^{+\bar{4}\bar{9}}$	233^{+110}_{-90}	1^{+}	$B^+ \to \phi(J/\psi K^+)$	LHCb

- Produced in e^+e^- annihilation or *b*-flavor hadron decays
- Typically in h+charmonium final states
- Intrinsic nature unclear, exotic states? kinematic effects?

Spin-parity and Argand plot; Production mechanism; More decay modes; Partner states;...

Z_c States

 $Z_c(4020)/Z_c(4025)$

Seen in both charged and neutral modes

Observation of $Z_{cs}(3985)$

•
$$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

Phys.Rev.Lett. 126, 102001 (2021)

- 3.7 fb⁻¹ data at 4628, 4640, 4660, 4680, and 4700
- Partial reconstruction of the process, tag K and D_s^-
- D_s^- reconstructed with $K^+K^-\pi^-$ [$\phi\pi$ or K^*K] and $K_s^0K^-$

- Both decay modes can survive the selection
- Combinatorial background described by wrong sign (WS) events
- Absolute contribution in signal region determined from a fit to $RM(K^+D_s^-)$

Observation of $Z_{cs}(3985)$

- An enhancement around 3.98 GeV
- Cannot be described by $D_s^{(*)-}D_s^{**+}$ and $D^{(*)0}\bar{D}^{**0}$ or interference between two of them
- Assume J^P= 1⁺
- Simultaneous fit to five data samples
- Signal component:

$$|\frac{\sqrt{q \cdot p_j}}{M^2 - m_0^2 + im_0(f\Gamma_1(M) + (1 - f)\Gamma_2(M))}|^2$$

- f = 0.5 represents the fraction of the two decay modes
- Pole position: $m = 3982.5^{+1.8}_{-2.6} \pm 2.1 \text{ MeV}/c^2$ $\Gamma = 12.8^{+5.3}_{-4.4} \pm 3.0 \text{ MeV}$
- Significance: 5.3σ
- At least four quarks (cc̄sū̄)

PRD89, 072015 (2014)

Structures Around $M(p\bar{p})$

$X(p\bar{p}) \text{ in } J/\psi \rightarrow \gamma p\bar{p}$

- First observed at BESII, confirmed at BESIII with higher significance using PWA (FSI considered)
 - Mass: $(1832^{+19+18}_{-5} \pm 19)$ MeV
 - Width: < 76 MeV
 - J^{PC}: 0⁻⁺

X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- First observed at BESII, confirmed at BESIII experiment with higher significance
 - Mass: $(1836.5 \pm 3.0^{+5.6}_{-2.1})$ MeV
 - Width: $(190 \pm 9^{+38}_{-36})$ MeV
 - J^{PC}: $|\cos\theta_{\gamma}|$ agrees with expectation of O⁻⁺
- Also observed in $J/\psi \rightarrow \gamma K_S K_S \eta$, JP=0-

Structures Around $M(p\bar{p})$ 1.3 B J/ψ events

- $J/\psi \to \gamma \pi^+ \pi^- \eta'$
 - Model I: Flatte line-shape with strong coupling to $p\bar{p}$ and narrow BW at 1920 MeV
 - Model II: Two-coherent BWs, X(1835)+X(1870) (7σ)
- $J/\psi \to \gamma \gamma \phi$

Phys.Rev.D 97, 051101(R) (2018)

- $\eta(1475)$ and X(1835) consider coherently
- X(1835): $J^{PC}=O^{+}$, sizeable $s\bar{s}$ component

• $J/\psi \to \omega \pi^+ \pi^- \eta'$

Phys.Rev.D 99, 071101 (2019)

- No obvious X(1835) signal
- $B[J/\psi \rightarrow \omega X(1835) \rightarrow \omega \pi^+ \pi^- \eta'] < 6.2 \times 10^{-5}$

Summary and Outlook

- Unique data samples at BESIII provide good opportunity for spectroscopy study
 - 10B J/ψ events, 2.7B $\psi(2S)$ events for light hadron spectroscopy study through radiative and hadronic transition processes
 - X(18xx) around $p\bar{p}$ threshold
 - Glueballs: 0++ in 1.5-1.7 GeV; 2++ in 2.3-2.4 GeV; 0-+ in 2.3-2.6 GeV
 - φ(2170)/Y(2175)
 - Scan data sample between 4.0 to 4.95 GeV
 - Study of excited charmonium states: decay modes of $\psi_2(3823)$
 - Charmonium-like states: decay modes of X(3872); high precision measurement of cross section for study of Y states; decay modes of Z_c states and observation of new Z_{cs} states
- More results will full data set are ongoing, more exciting results are expected

BESIII Collaboration

Political Map of the World, November 2011

$Z_c(4020) \rightarrow \gamma X(3872)$

- Connection between Z_c states and X states in molecule picture
- Branching fraction of $Z_c(4020)^0 \rightarrow \gamma X(3872)$ and $Z_c(4020)^{\pm} \rightarrow \pi^{\pm} X(3872)$ of several per mille level

PRD99, 054028 (2019)

No signal for

$$e^+e^- \rightarrow \pi^0 Z_c(4020)^0 [\rightarrow \gamma X(3872)]$$

 $\frac{\mathscr{B}[Z_c(4020)^0 \rightarrow \gamma X(3872)] \cdot \mathscr{B}[X(3872) \rightarrow \pi^+\pi^- J/\psi]}{\mathscr{B}[Z_c(4020)^0 \rightarrow (D^*\bar{D}^*)^0]} < 0.24\%$
at 4230

Do not contradict with theoretical prediction!

 $Z_c \rightarrow \pi \eta_c$ and $\eta \eta_c$

- $e^+e^- \to \eta_c \eta \pi^+ \pi^-$ PRD103, 032004 (2021)
 - 4.1 fb^{-1} data between 4.23 and 4.60 GeV
 - No signal for $\eta_c \eta \pi^+ \pi^-$ [also apply for Z_c search]

- $\sigma^{\rm up}$ < 6.2, 10.8, 27.6, 22.6, 23.7 pb at 90 % C.L.

• $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, $\eta_c \pi^0 \gamma$ in search of Z_c close to $m(D\bar{D})$

• $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ observed at 4230,

used to study $Z_c \rightarrow \eta_c \pi^{\pm,0}$

 $Z_c \rightarrow \pi \eta_c$ and $\eta \eta_c$

•
$$e^+e^- \to Z_c[\to \eta_c \pi^{\pm,0}]\pi\pi$$
 in search of Z_c close to $m(D\bar{D})$

 $Z_c \rightarrow \pi^{\pm} \chi_{cI}$

- $Z_c(4050)$ and $Z_c(4250)$ in $\pi^{\pm}\chi_{c1}$ from B decays
- $Z_c(3900)$ and $Z_c(4020)$ from e^+e^- annihilation at BESIII

• No obvious signal of $e^+e^- \rightarrow \pi^+\pi^-\chi_{cJ}$

PRD103, 052010 (2021)

Xai

• Upper limit of cross section also apply for $Z_c \rightarrow \pi^{\pm} \chi_{cJ}$