

Attività di Gruppo III e preventivi 2022

Luciano L. Pappalardo Consiglio di Sezione INFN Ferrara, 06/07/2021

Esperimenti:

- JEDI (R.N. & R.L.: Paolo Lenisa)
- JLab12 (R.N. & R.L.: Marco Contalbrigo)
- EIC-Net (R.L.: Marco Contalbrigo)

Esperimenti:

- JEDI (R.N. & R.L.: Paolo Lenisa)
- JLab12 (R.N. & R.L.: Marco Contalbrigo)
- EIC-Net (R.L.: Marco Contalbrigo)

Fisica:

- > Misure di simmetrie fondamentali (P, T, CP) mediante ricerca di EDM in Storage Rings
- Studio della struttura interna degli adroni mediante misure di DIS
- Studio sperimentale dell'interazione forte nel regime non perturbativo
- Ricerca di DM: Assioni con Storage Ring e Dark Photon in Beam-dump experiments

Esperimenti:

- JEDI (R.N. & R.L.: Paolo Lenisa)
- JLab12 (R.N. & R.L.: Marco Contalbrigo)
- EIC-Net (R.L.: Marco Contalbrigo)

Fisica:

- > Misure di simmetrie fondamentali (P, T, CP) mediante ricerca di EDM in Storage Rings
- Studio della struttura interna degli adroni mediante misure di DIS
- Studio sperimentale dell'interazione forte nel regime non perturbativo
- Ricerca di DM: Assioni con Storage Ring e Dark Photon in Beam-dump experiments

Tecnologie

- > Tecnologie di polarizzazione (ABS, polarimetria, celle di accumulazion, etc)
- Sviluppo di rivelatori (tracciatori, RICH, SiPM, etc)
- Magneti superconduttori

Esperimenti:

- JEDI (R.N. & R.L.: Paolo Lenisa)
- JLab12 (R.N. & R.L.: Marco Contalbrigo)
- EIC-Net (R.L.: Marco Contalbrigo)

Fisica:

- > Misure di simmetrie fondamentali (P, T, CP) mediante ricerca di EDM in Storage Rings
- Studio della struttura interna degli adroni mediante misure di DIS
- Studio sperimentale dell'interazione forte nel regime non perturbativo
- Ricerca di DM: Assioni con Storage Ring e Dark Photon in Beam-dump experiments

Tecnologie

- > Tecnologie di polarizzazione (ABS, polarimetria, celle di accumulazion, etc)
- Sviluppo di rivelatori (tracciatori, RICH, SiPM, etc)
- Magneti superconduttori

Principali Laboratori di riferimento

- FZ, Juelich, GE
- Jlab, USA
- BNL, USA

JEDI (R.N. & R.L.: Paolo Lenisa)

- EDM
- Test of fundamental symmetries (P, T, CP)

EDM of fundamental particles

- Permanent separation of + and electric charge in a fundamental particle (including hadrons)
- It's a fundamental property of particles (like magnetic moment, mass, charge)

EDM of fundamental particles

- Permanent separation of + and electric charge in a fundamental particle (including hadrons)
- It's a fundamental property of particles (like magnetic moment, mass, charge)

s: spin

μ: magnetic dipole moment d: electric dipole moment

 $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} - d \frac{\vec{s}}{s} \cdot \vec{E}$ • T: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d \frac{\vec{s}}{s} \cdot \vec{E}$ • P: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d \frac{\vec{s}}{s} \cdot \vec{E}$

- Permanent EDMs violate P and T symmetries. Assuming CPT also CP must be violated
- A non-zero EDM could provide new sources of CP violations (beyond SM)
- Relevant for matter-antimatter asymmetry in the Universe

EDM upper limits

EDM upper limits

Objective: EDMs of charged hadrons: p, d, ³He
 Note: current limit on p-EDM: 2.0 × 10⁻²⁵e ⋅ cm (ind. from d^{↓199Hg}_p)
 Final react to bring the limit on p to 10⁻²⁹ c...cm

• Final goal: to bring the limit on p to 10⁻²⁹ e · cm

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

Procedure

- Inject particles in storage ring
- **2** Align spin along momentum (\rightarrow freeze horiz. spin-precession)
- Search for time development of vertical polarization

Interaction of Axions with ordinary matter (axion-gluon coupling $\frac{a}{f_0}G_{\mu\nu}\tilde{G}^{\mu\nu}$) can produce a measurable oscillating EDM!

Interaction of Axions with ordinary matter (axion-gluon coupling $\frac{a}{f_0}G_{\mu\nu}\tilde{G}^{\mu\nu}$) can produce a measurable oscillating EDM!

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from unwanted magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: $E \sim 10 \text{ MV/m}$
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

EDM search at COSY

The JEDI Collab. aims at the measurement of EDM of charged particles (p,d, ${}^{3}He$) at the **COSY Storage Ring** (FZ Juelich)

- No direct measurement for charged hadron EDMs
- Output: Potentially higher sensitivity (compared to neutrons):
 - longer lifetime;
 - more stored protons/deuterons
 - can apply larger electric fields in storage rings
- o complementary to neutron EDM:

EDM search at COSY

The JEDI Collab. aims at the measurement of EDM of charged particles (p,d, ${}^{3}He$) at the **COSY Storage Ring** (FZ Juelich)

- No direct measurement for charged hadron EDMs
- Output: Potentially higher sensitivity (compared to neutrons):
 - longer lifetime;
 - more stored protons/deuterons
 - can apply larger electric fields in storage rings
- o complementary to neutron EDM:

Expected statistical sensitivity in 1 year of DT:

•
$$\sigma_{stat} = \frac{\hbar}{\sqrt{Nf_{\tau}PAE}} \Rightarrow \sigma_{stat} = 10^{-29} e \cdot cm$$

• Experimentalist's goal: provide σ_{syst} to the same level.

EDM search at COSY

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

Previously used as spin-physics machine for hadron physics:

- Ideal starting point for srEDM related R&D
- Dedicated and unique experimental effort worldwide

EDM search at COSY: Procedure

- 1. Inject and accelerate vertically pol. deuterons up to $p \approx 1 \ GeV$
- 2. Flip spin into horizontal plane using solenoidal magnetic fields
- 3. Exploit **spin-asymmetry** measurements in elastic deuteron-carbon scattering to determine the spin precession (polarimeter)

EDM search at COSY: Procedure

- 1. Inject and accelerate vertically pol. deuterons up to $p \approx 1 \ GeV$
- 2. Flip spin into horizontal plane using solenoidal magnetic fields
- 3. Exploit **spin-asymmetry** measurements in elastic deuteron-carbon scattering to determine the spin precession (polarimeter)

EDM search at COSY: Spin-Coherence Time

vectors are all out of phase and in the horizontal plane

- Critical requirement: long Spin-Coherence Time (τ_{SCT}): spin of all particles preceding with the same frequency
- Large value of SCT of crucial importance since: $\sigma_{Stat} \propto \frac{1}{\tau_{SCT}}$

EDM search at COSY: Spin-Coherence Time

After some time, the spin vectors are all out of phase and in the horizontal plane

- Critical requirement: long Spin-Coherence Time (τ_{SCT}): spin of all particles preceding with the same frequency
- Large value of SCT of crucial importance since: $\sigma_{Stat} \propto \frac{1}{\tau_{SCT}}$

Major achievement

- $\tau_{SCT} = (782 \pm 117)s$
- Previously: $\tau_{SCT}(VEPP) \approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions}$)

EDM search at COSY: spin tune

Il major achievement [Phys. Rev. Lett. 115 (2015) 094801]

- Interpolated spin tune in 100 s:
- $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$
- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3 × 10⁻⁸ per year (g-2 experiment)
- $\bullet \rightarrow$ new tool to study systematic effects in storage rings

EDM search at COSY: first results

First precursor run (Nov. 18)

- 31 points measured
- 2 weeks of measurement
- Parametric resonance strength based on initial slope
- Precession axis RF WF determined from the minimum of the surface: $\phi_0^{wf} = -3.80 \pm 0.05 \text{ mrad}$ $\chi_0^{sol} = -5.51 \pm 0.05 \text{ mrad}$
- Spin tracking to provide orientation of precession axis without EDM

Compatible with $d_D < 10^{-19} \text{ e} \cdot \text{cm}$

EDM search at COSY: second run

Improvements

- Alignment campaigns of COSY magnet system
- Beam-based alignment
- New tool for fast tune and chromaticity measurement
- Slow control system
- COSY signals and distribution improved
- Rogowski coils at the Wien filter place
- New JEDI polarimeter
- 8 high-speed RF switchers to gate the WF power for one of the bunches

Second precursor (Mar.-Apr. 2021)

- 3.5 weeks of data taking
- 9 Maps
- Two methods successfully used:
 - Initial polarization build up
 - Pilot bunch

Final results by end of 2021

Ferrara contributions:

1. Development of a new high-efficiency beam polarimeter

Ferrara contributions:

2. LYSO scint. + SiPM readout system for the polarimeter (installed)

(S. Basile, L. Barion, N. Canale, R. Malaguti, P. Lenisa)

Plans for the future

Stage 1 precursor experiment at COSY (FZ Jülich)

• magnetic storage ring

now

Stage 2

prototype ring

- electrostatic storage ring
- simultaneous 🖒 and 🔿 beams

5 years

dedicated storage ring

- magic momentum
- (701 MeV/c)

Perspectives

Perspectives

- Collaboration activity oriented in perspective of next steps of the research
 Prototype EDM ring for the search of the proton-EDM (→ next slides)
- Beam-time (COSY operation guaranteed till 2024:
 - Study of the proton-spin coherence time
 - Axion search
- Developments
 - Prototype ring design and beam & spin-tracking simulations
 - Low-energy (35 MeV) sampling polarimeter
 - Electrostatic deflectors

Perspectives and Responsibilities

Perspectives

- Collaboration activity oriented in perspective of next steps of the research
 Prototype EDM ring for the search of the proton-EDM (→ next slides)
- Beam-time (COSY operation guaranteed till 2024:
 - Study of the proton-spin coherence time
 - Axion search
- Developments
 - Prototype ring design and beam & spin-tracking simulations
 - Low-energy (35 MeV) sampling polarimeter
 - Electrostatic deflectors

INFN responsibilities in JEDI Collaboration

- Co-Spokesperson: P.L.
- Data analysis: S. Dymov, A. Saleev, V. Shmakova
- Polarimeter: N. Canale, L. Barion, V. Carassiti, A. Pesce, R. Shankar, P.L.
- Spin-tracking simulations: R. Shankar

JLab12 (R.N. & R.L.: Marco Contalbrigo)

- Nucleon structure and spin physics
- Transverse momentum phenomena (TMDs) & 3D imaging
- GPDs & EM Form Factors of the nucleon

Jlab12 Italia (R.N. & R.L. M. Contalbrigo)

Hall A – Spettrometri ad alta risoluzione e un nuovo rivelatore multipurpose a grande accettanza

short range correlations, fattori di forma e nuovi esperimenti : SOLID, MOELLER, SBS

Hall C – Super High Momentum Spectrometer (SHMS)

Determinazione precisa delle proprietà dei q di valenza nei nucleoni e nei nuclei

Hall B – Rivelatore a grande accettanza CLAS12 for misure a grande luminosità (10³⁵cm⁻²s⁻¹)

Comprensione della struttura del nucleone via GPDs and TMDs e spettroscopia adronica

Hall D – Rivelatore GLUEx per esperimenti di fotoproduzione

Le origini del confinamento attraverso lo studio dei mesoni ibridi

CLAS12 Experiment in Hall-B

CLAS12 Experiment in Hall-B **12 GeV CEBAF** add Hall D (and beam line) **CLAS12** detector Beam current 90 µA Lumi up to $10^{35} cm^{-2} s^{-1}$ Beam polarization 85 % \succ Add 5 cryomodules High polarized electron beams \geq Upgrade magnets H and D polarized target \geq and power CHL-2 20 cryomodules Broad kinematic range supplies Very good PID \succ Add arc Region 3 20 cryomodules Region Add 5 cryomodules CTOF Enhance equipment in SVT existing halls Solenoid нтсс Torus EC LTCC

CLAS12 Experiment in Hall-B **12 GeV CEBAF** add Hall D (and beam line) **CLAS12** detector Beam current 90 uA Lumi up to $10^{35} \, cm^{-2} s^{-1}$ Beam polarization 85 % \geq Add 5 cryomodules High polarized electron beams Upgrade magnets H and D polarized target and power CHL-2 20 cryomodules supplies Broad kinematic range Very good PID \geq Add arc 20 cryomodules Region Add 5 cryomodules CTOF Enhance equipment in SVT existing halls Solenoid HTCC **Physics program**: Hadron spectroscopy Torus Nuclear effects in hadronization EC LTCC Nucleon structure (TMDs, GPDs)

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

CLAS12 Experiment in Hall-B

- TMDs depend on x and p_T
- Describe correlations between *p_T* and quark or nucleon spin
 (spin-orbit correlations)
- Provide a 3-dim picture of the nucleon in momentum space (nucleon tomography)

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

Entering the 12 GeV Era:

Unprecedented precision in the valence region

New observables in fragmentation
The RICH detector project

Physics Program	Particle Identification Requirement
Internal nucleon dynamics	Flavour tagging
Quark hadronisation in nuclear medium	Constraining models
Spectroscopy	Rare processes

RICH goal: $\pi/K/p$ separation of ~4 σ up to 8 GeV/c for a pion rejection factor ~ 1:500

The RICH detector project

Physics Program	Particle Identification Requirement
Internal nucleon dynamics	Flavour tagging
Quark hadronisation in nuclear medium	Constraining models
Spectroscopy	Rare processes

RICH goal: $\pi/K/p$ separation of ~4 σ up to 8 GeV/c for a pion rejection factor ~ 1:500

INSTITUTIONS			
INFN (Italy) Bari, Ferrara, Genova, L.Frascati, Roma/ISS			
Jefferson Lab (Newport News, USA)			
Argonne National Lab (Argonne, USA)			
Duquesne University (Pittsburgh, USA)			
George Washington University (USA)			
Glasgow University (Glasgow, UK)			
J. Gutenberg Universitat Mainz (Mainz, Germany)			
Kyungpook National University, (Daegu, Korea)			
University of Connecticut (Storrs, USA)			

UTFSM (Valparaiso, Chile)

The RICH detector construction

- First module assembled in January 2018 and in operation
- Second module in preparation for beginning 2022

The second RICH: Front-End electronics

Compact and modular electronics to readout single-photon sensors: multi-anode PMTs, SiPM Adopted by GlueX DIRC and EIC eRD14, under test for SOLID, possible applications under study

FPGA Board (JLab)

ASIC Board (Ferrara)

Developed (Roberto M.) for RICH1 & RICH2

Adapter board evolutions (R. Malaguti, L. Barion)

Also adopted by other experiments (Gluex, SOLID, EIC R&D...)

The RICH detector performance

- RICH readout based on single-photon time tagging (design resolution < 1 ns)
- ΔT = diff. in time between time estimated by CLAS and measured by the RICH (~ 0 for all channels after calibration)
- RICH reconstruction based on ray-tracing to measure the Cherenkov angle of each photon (1.5 mrad resolution on the mean)
- Resolution depends on the precise calibration of optical parameters and alignment of components

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

The RICH detector event reconstruction

The RICH detector event reconstruction

The RICH detector

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 204, 1 June 2020, 103791

The CLAS12 Ring Imaging Cherenkov detector

<u>M. Contalbrigo</u> ^a ^A [⊠], V. Kubarovsky ^f, M. Mirazita ^b, P. Rossi ^{f, b}, G. Angelini ^{b, j}, H. Avakian ^f, K. Bailey ^g, I. Balossino ^a, L. Barion ^a, F. Benmokhtar ^h, P. Bonneau ^f, W. Briscoe ^j, W. Brooks ^k, E. Cisbani ^c, C. Cuevas ^f, P. Degtiarenko ^f, C. Dickover ^f, K. Hafidi ^g, K. Joo ⁱ, A. Kim ⁱ, T. Lemon ^f, V. Lucherini ^b, R. Malaguti ^a, R. Montgomery ^b, A. Movsisyan ^a, P. Musico ^d, T. O'Connor ^g, D. Orecchini ^b, L.L. Pappalardo ^a, C. Pecar ^h, R. Perrino ^e, B. Raydo ^f, S. Tomassini ^b, <u>M. Turisini ^{a, b}</u>, A. Yegneswaran ^f

The second RICH

Goal:

Installation beginning of 2022, in time for experiments with polarized targets (may 2022)

Ferrara:

- Coordination
- F/E electronics
- Test-stands for optical components (aerogel/mirrors)

The Transverse target

Internal Target

To maintain transverse spin polarization within the CLAS12 solenoid and preserve wide acceptance for the finalstate particles, new magnetic solutions are required.

The Transverse target

Internal Target

To maintain transverse spin polarization within the CLAS12 solenoid and preserve wide acceptance for the finalstate particles, new magnetic solutions are required.

Tracking solenoid

- design up to 5 T longitudinal
- 4K L-He cryostat
- length 1500 mm

Transverse Target:

- high polarization
- d 25 mm Length 25 mm
- transverse field up to 2T
- Ammonia (+ He)

Transverse target: bulk transverse magnet

A hollow bulk superconductor is able to provide a transverse holding field inside, while adjusting its internal currents to shield any outside field, without the need of a current supply!

coldhead

Transverse target: the Ferrara setup

Dipole field frozen for days inside a MgB₂ cylinder:

- After cooling down the MgB2 cylinder inside a dipole field of about 1T, the external field is zeroed and the dipole field at the center of the cylinder measured.
- With the decrease of the temperature below the transition point, an increasing fraction of the original field is trapped.
- At the minimum temperature of 12.8 K reachable by the setup, a field of about 940 mT is preserved for days, without any significant degradation

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

Transverse target: the new cryostat

New support (M. Cavallina)

New sensor holder:

3 points x 2 orientation center off axis downstream

New fast access for MgB₂ sample exchange

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

Transverse target: the new sensor holder

New support

New sensor holder: (M. Melchiorri)

3 points x 2 orientation center off axis downstream

New fast access for MgB₂ sample exchange

Transverse target: Beam Monitor for test at UITF

UITF beam halo monitor

Scintillator + SiPM units

BC408

E: 20x10x38 mm coupled to 6x6 mm SensL SiPm

dE: 20x10x5 mm coupled to 3x3 mm SensL SiPm

R. Malaguti

(sensori)

I. Neri (readout)

S. Squerzanti (supp. mecc.)

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

JLab12: CLAS12 High-Lumi

Substitute the first tracking layer: from wire-chamber to micro-pattern gas detector

From MWPC to μ -RWELL

Ferrara: Support to readout development (R. Malaguti., L. Barion)

Test-station in 2022

Il gruppo di Ferrara @ JLab

Responsabilita':

- M. C.: responsabile locale e nazionale di JLab12
- M.C.: membro CLAS Coordination Committee
- M. C. responsabile progetto RICH
- M. C. & L.P. Co-spokesperson di diverse proposte di esperimento (PAC34,37,38,39)

Contributi principali

- Data analysis
 - Coordination of deep-process group
 - Data processing
- RICH detector
 - Reconstruction algorithms
 - Second RICH module construction
- Magneti superconduttori
 - Configurazione magnetica per transverse target
 - Frozen field con magneti a bulk di superconduttore

EIC-NET (R.L.: Marco Contalbrigo)

• INFN Network for preliminary studies on the EIC project

EIC_NET

Electron Ion Collider:

CD0 Announced in January 2020 "Yellow Report" published (<u>2103.05419</u>) "Expression of Interest" survey done

"Call for Detectors" ongoing

Strong interest in Italian nuclear physics community (theory and experiment)

Increasing R&D effort

INFN Ferrara working on the PID (Italian Collab. + R&D Consortium eRD14).

EIC_NET: PID studies

Compact solution for few-GeV range

mRICH: An aerogel RICH with Fresnel lens focalization for compact and projective imaging

 π/K sepration up to ~ 10 GeV/c

superPhenix

EIC_NET: PID studies

Compact solution for few-GeV range

mRICH: An aerogel RICH with Fresnel lens focalization for compact and projective imaging

superPhenix

 π/K sepration up to ~ 10 GeV/c

Dual-radiator for extended momentum range

dRICH: A RICH with two radiators (gas + aerogel) for wide momentum coverage

Separation

 π /K up to ~ 50 GeV/c e/ π up to ~ 15 GeV/c

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

Fresnel lens 20 cm Vorter Vort

Test beam with external tracking expected at JLab in 2021 and 2022

Ferrara: support for readout & monitoring

Extended 3-60 GeV momentum range

Two test-beam apporved at CERN in 2021:

- Sep. SPS T4-H6: high-momentum > 20 GeV/c
- Oct. PS T10: low-momentum < 15 GeV/c in conjunction with ALICE PID

EIC_NET: The dual RICH Prototype

Mirror support and alignment system

Detector box

M. Cavallina (off. Meccancia)

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

EIC_NET: The SiPM program

Cherenkov imaging with commercial MPPC and MAROC readout

Next: Cherenkov imaging with irradiated SiPM and ALCOR (DarkSide) chip

EIC_NET: The SiPM program

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

EIC_NET: responsabilità

Responsabilita':

- M. C.: responsabile locale EIC_NET
- M.C.: activity leader eRD14
- M. C.: IAC POETIC (Physics Opportunities at EIC) Conference

Contributi principali:

- mRICH detector
 - Prototyping and data analysis
- dRICH detector
 - Prototyping and SiPM program
- Electronics
 - MAROC (reference) + ALCOR (INFN development)
 - VME and Ethernet DAQ in collaboration with Jlab

Richieste ai Servizi per 2022

Servizio Meccanico		
JLAB12		
TTarget: traliccio di supporto per test con doppio campo magnetico disegno e realizzazione esterna		
RICH: assemblaggio ed installazione al JLab (inizio 2022) (in supporto a Frascati)		
High-L: supporto per stazione di test con μ -rwell		
EIC_NET		
dRICH: meccanica del prototipo, in supporto a CT		
SiPM: meccanica per il raffreddamento dei sensori		
EIC: contributo a disegno struttura meccanica rivelatore		
JEDI		
Step 2: progettazione elementi anello di accumulazione elettrostatico		
(LHCb)		
IHCspin: progettazione bersaglio polarizzato		

LECSPIII. progettazione persagno polarizzato

Richieste ai Servizi per 2022

Servizio Elettronico JLAB12 RICH2: assemblaggio e commissioning (supporto in trasferta al Jlab e test a FE). Ttarget: piccoli contributi alle misure con magneti superconduttori High-L: supporto per stazione di test con μ-rwell EIC_NET dRICH: supporto in preparazione ai test-beam e misure di laboratorio SiPM: schede di collegamento sensori – readout per irraggiamento SiPM

Anagrafica per 2022

Anagrafica e afferenze (Ric. + Tecnol.)

Name	JEDI	JLab12	EIC_NET	Name
N. Canale (dottorando)	100			L. Bario
G. Ciullo (staff)	70	20		M. Cav
M. Contalbrigo (staff)		75	20	M. Gar
S. Dymov (post-doc)	100			A. Mag
L. Del Bianco (staff)		100		R. Mala
A. Kononov (dottorando)	100			M. Me
P. Lenisa (staff)	75	20		S. Sque
A. Maragno (dottoranda)	100			TOTAL
L. Pappalardo (RTD-B)		30		
A. Pesce (post-doc)	100			
A. Seleev (assegnista)	100			
R. Shankar (dottorando)	100			
F. Spizzo (staff)		80	20	
S. Vallarino (dottorando)		100		
V. Carassiti	10			
TOTALE/100 (2022)	8.55	4.25	0.40	→ Totale
TOTALE/100 (2021)	6.85	5.00	0.50	\rightarrow Totale

Servizio meccanico ed elettronico

Name	JEDI	JLab12	EIC_NET
L. Barion		50	50
M. Cavallina	10	10	
M. Gambetti	10		
A. Magnani		10	
R. Malaguti		15	20
M. Melchiorri		10	
S. Squerzanti			10
TOTALE/100	0.20	0.95	0.80

FTE (Ric. + Tecnol) 2022: 13.20

FTE (Ric. + Tecnol) 2021: 12.35

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021

Richieste finanziarie per 2022

Richieste finanziarie (k€)

Name	JEDI	JLab12	EIC_NET	Dot.3
Missioni	60	45	6	8
Trasp.		5		
Inv.				15
Consumi	50	15	17	6
Apparati				
Altro				3
TOTALE	110	65	23	32

Back-up - JEDI

EDM search at COSY: polarimeter

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization
- Left/Right asymmetry \propto vertical polarization \rightarrow d

EDM search at COSY: proof of principle experiment

Goal: demonstrate that a Storage Ring can be used for a first EDM measurement

- First measurement ever of the deuteron EDM
- Exploit the motional E^* -field induced in the particle rest frame by the dipoles B-fields of the SR ($E^* = \vec{v} \times \vec{B}$)

Problem: spin precession caused by magnetic moment

- 50% of time spin || to momentum
- 50% of time spin anti-|| to momentum

In case of EDM, E^* tilts up (down) the spin when spin and momentum are || (anti-||)

 \rightarrow no net polarization build-up

→ no net (static) EDM effect is observable!

(not a problem for oscillating EDM \rightarrow build-up of out-of-plane spin precession!)

Solution: use a resonant Wien filter in the ring

- $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$
- $\vec{E} = (E_x, 0, 0)$
- $\vec{B} = (0, B_y, 0)$
- → net EDM effect can be observed!

EDM search at COSY: proof of principle experiment

Developed at FZJ in collaboration with RWTH-Aachen
 Installed in the PAX low-β section at COSY

Stage 2: prototye EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage and spin-coher. time in elec. machine
- CW-CCW operation
- Orbit control
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Stage 3: EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest electrostatic ever conceived)

L. L. Pappalardo - C.d.S. INFN Ferrara – 06/07/2021