

AIDAINNOVA

AIDAINNOVA (ADVANCEMENT AND INNOVATION FOR DETECTORS AT ACCELERATORS)

The AIDA-2020 proposal had been prepared in 2014

- following the European Strategy Update 2013
- clear emphasis on R&D for HL-LHC upgrades

AIDAinnova had to navigate in less well charted sea

• more diverse range of target applications

Regardless of ongoing strategy process and funding uncertainties, projects have natural timelines

- e.g.: LHC < Higgs Factory < Future hadron collider Emphasise common aspects and needs
- not exclusively, see later

nova

)GET

- 49% is "generic", beneficial for all future projects
- 51% can be associated with 1 to 3 projects
- Total budget 22.5 M€
 - academic partners match overhead-subtracted EC funds 2:1, commercial partners 1:1
- 10% of EC funds to non-academic partners
- Started on April 1st, 2021
 - 4-years project

WORK PACKAGES

CRYSTALS FOR FORWARD CALORIMETRY

Development of highly-compact, small-angle electromagnetic calorimeters for intensity-frontier experiments at fixed target

- Resistance to > 100 MHz sustained rates
- Time resolution σ_t < 100 ps, 2-pulse separation at ~ 1 ns
- Good radiation resistance (10¹⁴ n/cm²)

WP8 Calorimeters / PID 3.1 crystal detectors Task coord. M. Moulson - LNF

- An experiment to measure $K_L \rightarrow \pi^0 v v$ at the CERN SPS (in the NA62 area)
 - Good efficiency for detection of photons with $E_{\gamma} > 5$ GeV while operated in 500 MHz neutral hadron beam
 - Select Cerenkov radiator or ultrafast scintillator for use at high rates and radiation doses
 - Optimize design (e.g. choice of photodetector)
 - Evaluate performance gains from alignment of crystal axis to exploit effect of coherent interactions

- Collaborate with MuCol group to test CRYLIN prototype
- 1 week of test beam at CERN SPS in August 2021 in collaboration with the CSN5 STORM team

SHADOWS: SEARCH FOR HIDDEN AND DARK OBJECTS WITH THE SPS

- SHADOWS verra' discusso in CSN1 a Luglio in un talk dedicato (G. Lanfranchi)
- In attesa di aprire la sigla in CSN1 l'attivita' sara' sotto AIDAinnova: WP8.3.2:
 - Consumi: 36 kE (su 2-3 anni) per costruzione di un prototipo → 16 tiles con elettronica di FE
 - Missioni su Dotazioni 1: tasca speciale "shadows"
- Sezioni coinvolte:
 - LNF: G.Lanfranchi
 - BO A. Montanari
 - FE: W. Baldini (10%)
- Richieste Ferrara:
 - Servizio meccanico: **4-5 giorni persona** per la lavorazione delle tiles di scintillatore e di componenti meccaniche per l'assemblaggio
 - Missioni: 1.0. kE per riunioni organizzative + 0.5kE partecipazione a workshop annuale AIDAinnova
- R&D di potenziale interesse anche per il Muon Detector di LHCb Upgrade II.

Bologna-Ferrara-Frascati CO-DEVELOPMENT OF THE INDUSTRIAL MANUFACTURING PROCESS OF μ-RWELL (TASK 7.3.2)

- The goal of the project is the development of μ-RWELL detectors in strict collaboration with CERN and ELTOS SpA.
- The responsibilities in the manufacturing process of the detector are as follows:
 - Detector layouts design: INFN
 - Mechanical drawings: INFN
 - PCB with strip/pad readout: ELTOS SpA
 - Coupling DLC-kapton with PCB: ELTOS SpA
 - Amplification-stage etching: **CERN EP-DT-MPT Workshop**
- Crucial for the development of the technology is the tuning of the DLC coating on polyimide substrate:
 - The DLC sputtering technology currently at Be-Sputter Kobe (Japan) and USTC – Hefei (PRC)
 - A joint CERN INFN DLC (C.I.D) magnetron sputtering facility will be operative at CERN EP-DT-MPT Workshop from the 2022

Low-rate layout \rightarrow FCC_{ee}

Attività sinergica a RD_FCC

i n n o v a

Bologna-Ferrara-Torino

ASICS FOR MPGD (TASK 11.3.2)

- Two complementary designs:
 - larger channel counts, less critical for timing (u-Rwell)
 - smaller channel count, 100 ps.

	유명한 전망 전문한 전망		Тор р	ads		nanan Transf	
Pix0	Pix0	Pix0	Pix0	Pix0	Pix0	Pix0	Pix0
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7
Pix1	Pix1	Pix1	Pix1	Pix1	Pix1	Pix1	Pix1
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7
Pix2	Pix2	Pix2	Pix2	Pix2	Pix2	Pix2	Pix2
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7
Pix3	Pix3	Pix3	Pix3	Pix3	Pix3	Pix3	Pix3
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7
La			FE bi	asing			
			End of	columi	ן קריין קריין		
	ANXIAL	E B RAM	Bottom	pads	1. 张氏装成器		

men www.mic range > 5

✓ Charge measur

Timing branch

DEVELOPMENT OF MACHINE LEARNING ALGORITHMS FOR MICRO PATTERN GASEOUS DETECTORS (TASK 12.4)

Goal I: extend the simulation to uRWELL (in progress)

Goal II: develop general purpose Machine Learning tracking algorithms for MPGDs

Simulation and ML algorithms will be developed in the general FCC_ee IDEA framework Attività sinergica a RD_FCC

CREMLINPLUS (WP5): THE C+RWELL FOR THE SCT DETECTOR

