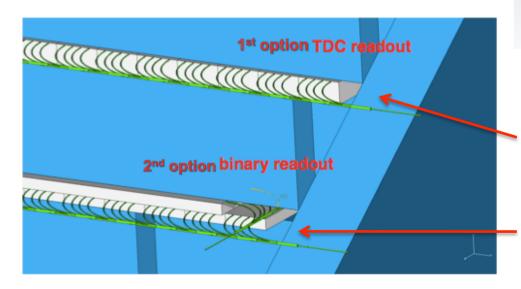
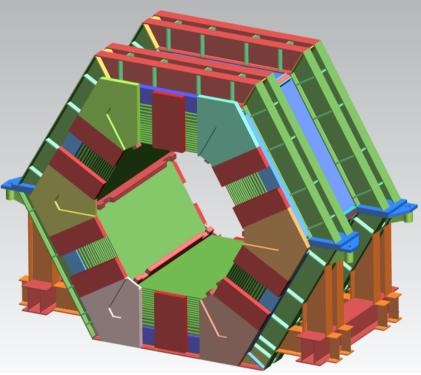
#### Stato IFR e richieste 2010-2011


Roberto Calabrese Università e INFN – Ferrara 9 luglio 2010


#### **Instrumented Flux Return**

The muon an KL detector will be built in the magnet flux return reusing the Babar iron structure with some modification. Modeling and FEA calculation in progress.

Iron will be added to improve the muon ID. 8-9 active layers will be used.

Keep longitudinal segmentation in front of the stack to retain KL capability





Two readout option will be used:

- 1. read one coordinate with the bar position and the other with the arrival time of the signal (barrel)
- 2. "double coordinate layout": orthogonal scintillator bars (endcap)

#### Prototype preparation

A full scale prototype is in construction to test the R&D results and to validate/tune the simulations.

It has a segmentation that allow testing different iron configurations.

It will be tested on a muon/pion beam at Fermilab next December, with energies varying from 0.5 GeV to 5 GeV.

| A C |  |
|-----|--|
|     |  |
|     |  |
|     |  |
|     |  |

| Jul 19 - Aug 16 | No Beam: SHUTDOWN    |                               |           |     |           |  |
|-----------------|----------------------|-------------------------------|-----------|-----|-----------|--|
| Sep 15 - Sep 29 | <u> 7992</u>         | SLHC sensor tests             | Yun       | 1-B | Primary   |  |
| Sep 30 - Oct 6  | Facility Development |                               |           |     |           |  |
| Oct 7 - Nov 2   | <u> 7978</u>         | CALICE                        | Repond    | 2-D | Primary   |  |
| Nov 3 - Nov 9   | <u>T1004</u>         | Dual Readout Calorimetry      | Para      | 2-B | Primary   |  |
| Nov 10 - Nov 23 | <u>T992</u>          | SLHC sensor tests             | Yun       | 1-B | Primary   |  |
| Nov 10 - Nov 16 | <b>T979</b>          | Fast Timing Counters for PSEC | Albrow    | 2-B | Secondary |  |
| Dec 1 - Dec 7   |                      | SuperB prototype              | Posocco   | ?   | Primary   |  |
| Dec 0 - Dec 23  | 1334                 | MIMCAC                        | паказніна | 2   | rimary    |  |
| 2011            |                      |                               |           |     |           |  |
| Jan 5 - Feb 1   | <u> 7978</u>         | CALICE                        | Repond    | 2-D | Primary   |  |

The iron structure is ready, the scintillator assembly started and will be completed by September.

Photodetectors delivery time drives the schedule.

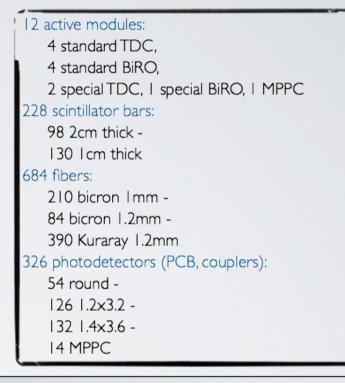
### Prototype in a nutshell

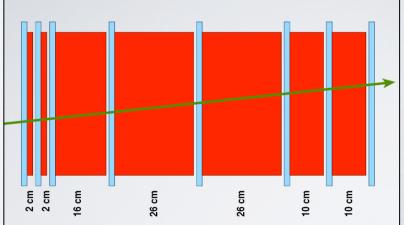
#### Scope of the prototype:

- confirm on large scale the R&D results
- validate/tune simulation optimization

- spot any mechanical/electronics/simulation/ technology issue

The iron has a segmentation that allow testing different absorber configurations.


- different amount of material
- 8 and 9 active layers


#### additional test:

- different SiPM geometry
- different fiber size

#### baseline configuration:

- 8 active layers (4 BiRO + 4 TDC)





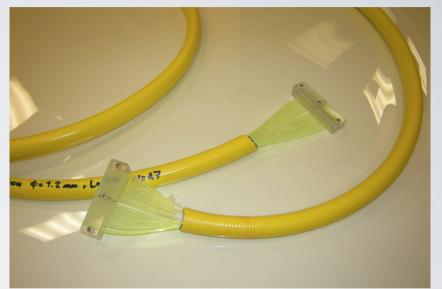
4

### Overall advancements

| AN                        | July 2010      |                    |
|---------------------------|----------------|--------------------|
| Mechanical structure      | arrived        | arrived            |
| WLS Fibers                | arrived        | arrived            |
| Scintillators: I cm thick | arrived        | arrived            |
| 2 cm thick                | in production  | arrived            |
| PCB                       | arrived        | arrived            |
| SiPM                      | expected end o | of July (critical) |
| Mechanical small parts    | in preparation | arrived            |
| Assembly studies          | started        | established        |
| QC procedures             | critical       | established        |

### The scintillators

- All the scintillators have been delivered to Ferrara
- The scintillators for BiRO have been cut to have the same length: either 50cm or 60cm depending on the view (vertical bars must allow the fiber to bend therefore they will be shorter).
- The scintillators for BiRO have 2 holes: an additional groove has been done with a diamond tool.
- Also 2-cm scintillators for Time readout ready for the assembling.



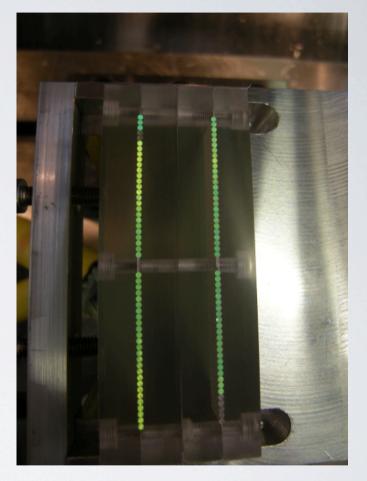

## Fiber cutting and handling



All the fibers have been cut and stored in plastic tubes to keep them protected from light and from mechanical stresses during the polishing.

Fibers are grouped into a plexiglass connector for the polishing.

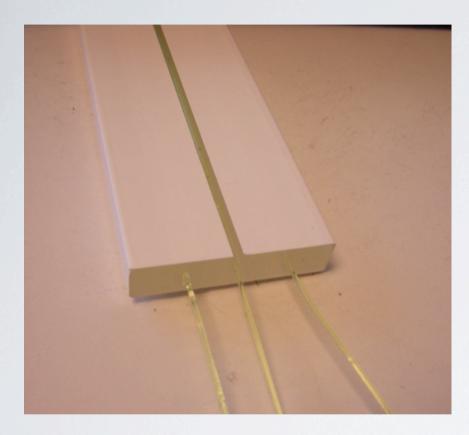





## Fiber polishing

Results on diamond mill polishing have been shown at the previous meeting: about 25% more light wrt the polishing machine used during the R&D.



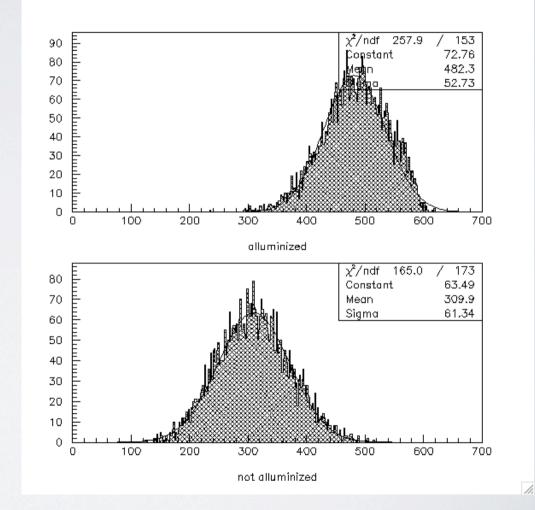

Polishing completed: all the fibers for BiRO and TDC readout + spares have been machined. Good quality from a visual check.



#### Additional QC:

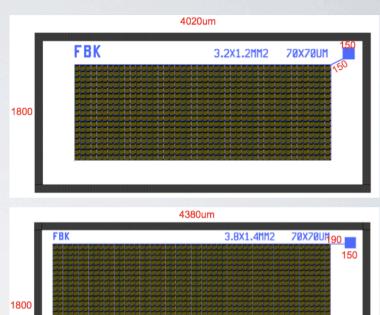
- 3 test fibers (L=50cm) every polishing (50 fibers)
- Analysis ongoing, preliminary results show very good uniformity

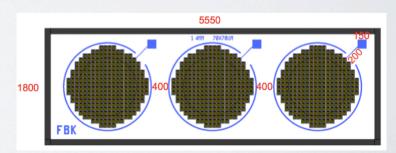
## Fiber gluing



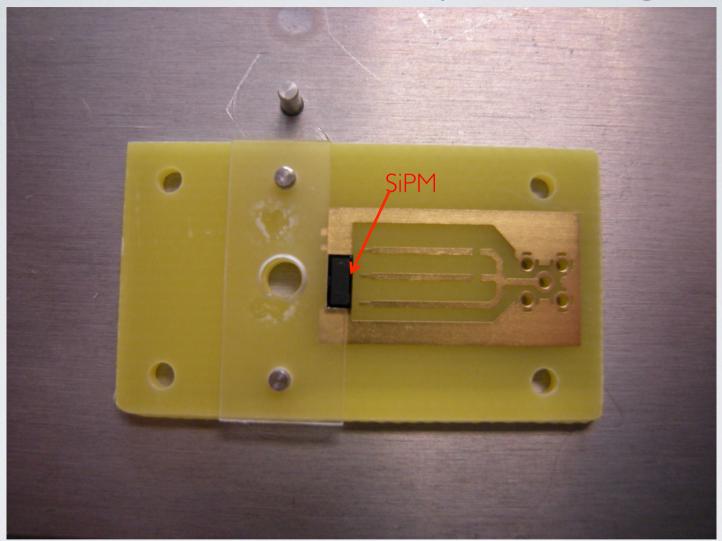

- The gluing of the fibers in the scintillator holes is perhaps the most complicated part of the module assembling.
- We are using a very fluid epoxy to be able to fill all the 60 cm of scintillator. Drawback: long curing time.
- After several tests the filling procedure has been established, Rx scan shows good results

# Rx scan of 2 cm thick scintillator


### Fiber aluminization


- To recover some light on the BiRO modules (read by one end) we tried to aluminize the not-read end.
- This should help to improve the signal on the far end where the direct and the reflected signal arrive at the same time.
- Aluminization done on 2 fibers, tests ongoing.
- First results on a ~30cm fibers are very encouraging: about 60% more light
- Plan to aluminize all the fibers of one pizza box



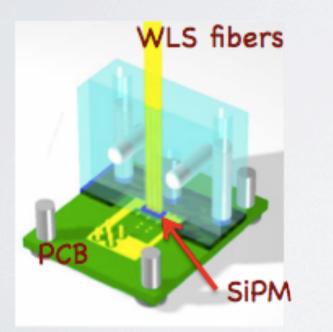

## The SiPM

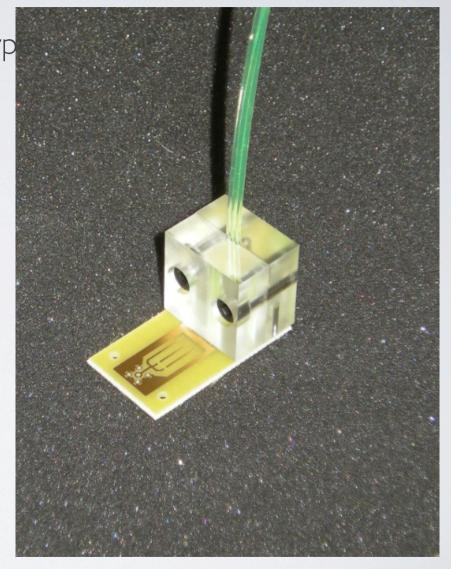
- 3 types of SiPM ordered:
  - for 1mm fibers: active area1.2x3.2mm<sup>2</sup>
  - for 1.2mm fibers: active area 1.4×3.8mm<sup>2</sup>
  - for 1.2mm fibers: round 1.4mm radius
- SiPM produced in Trento at FBK-IRST
- Test of devices ongoing, will take few days
- Expected to be shipped to Perugia ≈ July 20-th
- Then:
  - bonding (in Perugia)
  - QC and characterization (in Ferrara)
  - installation in the pizza box





## PCBs and SiPM positioning

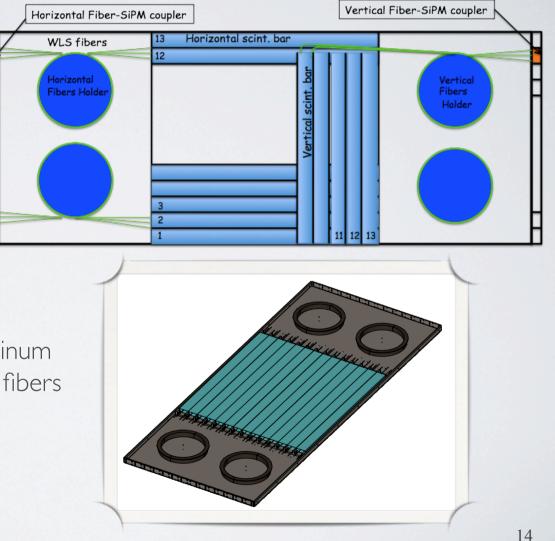




Gluing of all SiPM positioners on all the PCBs done, they will be shipped to Perugia in the next days

## Fibers SiPM coupler

SiPM-fiber couplers arrived: 3 typ
4020\* for Imm fibers and I.2x3.2mm<sup>2</sup> SiPM
4380\* for I.2mm fibers and I.4x3.8mm<sup>2</sup> SiPM

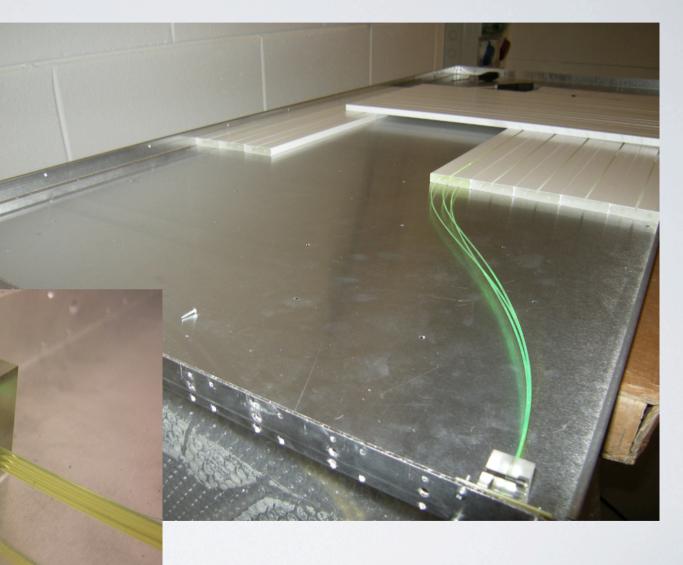
5550\* for 1.2mm fibers and round 1.4mm SiPM






\* The number identify the longer external dimension (in microns) of the SIPM

## Putting everything together: the Pizza box


 Scintillator planes will be assembled in a lighttightened box (a.k.a. Pizza Box) to avoid dealing with single fiber/module light isolation and to give mechanical rigidity to the active layers



• The boxes are made of aluminum and will contains scintillators, fibers and the photodetectors.

### Pizza box prototype

Fibers coupled to the SiPM on the side of the Pizza Box



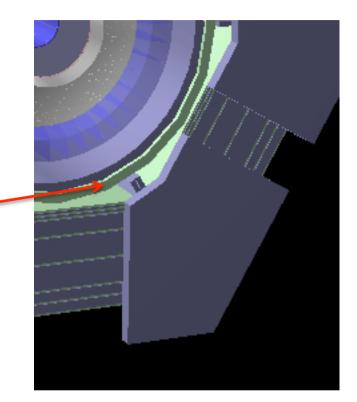
#### Critical items

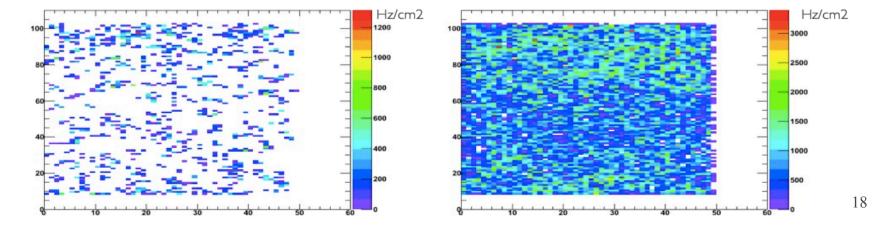
- SiPM production. Expected in June  $\rightarrow$  still to be delivered
- SiPM characterization: preliminary characterization of 7 test devices shows good results, about ½ hour for each batch (4 devices), i.e. 2-3 weeks of full time work → 1 month to be conservative.
- Glueing not trivial (start next week,  $\approx 1$  month)

## Prototype schedule

| Task                                                         | Effort | Mar 2010 | Apr 2010 | May 2010        | Jun 2010           | Jul 2010 | Aug 2010 | Sep 2010         | Oct 2010 | Nov 2010         | Dec |
|--------------------------------------------------------------|--------|----------|----------|-----------------|--------------------|----------|----------|------------------|----------|------------------|-----|
| <ul> <li>1) Modules Preparation and Assembly</li> </ul>      | 48w 3d |          |          | Modules Prepara | ation and Assembly |          |          |                  |          |                  |     |
| <ul> <li>1.1) Setup Clean room and test area</li> </ul>      | 4w 4d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.2) Machine BiRO scintillators</li> </ul>          | 1w 1d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.3) Fiber Cut</li> </ul>                           | 4w 2d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.4) Fiber Polishing</li> </ul>                     | 4w     |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.5) Pizza Box prototyping and delivery</li> </ul>  | 7w 2d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.6) Test on assembly procedure</li> </ul>          | 12w    |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.7) Time readout scintillators delivery</li> </ul> | 3w     |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.8) Machine Time readout scintillators</li> </ul>  | 2w     |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.9) Additional machinery for gluing</li> </ul>     | 2w 1d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.10) BiRO modules gluing and assembling</li> </ul> | 3w 3d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>1.11) TDC modules gluing and assembling</li> </ul>  | 4w     |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>2) SIPM</li> </ul>                                  | 20w 1d |          |          |                 |                    | SiPM     |          |                  |          |                  |     |
| <ul> <li>2.1) QC infrastructure preparation</li> </ul>       | 10w 2d |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>2.2) SiPM delivery and bonding</li> </ul>           | 4w     |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>2.3) SiPM QC and characterization</li> </ul>        | 5w 4d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>3) Modules finalization</li> </ul>                  | 7w     |          |          |                 |                    |          | Modu     | les finalization |          |                  |     |
| <ul> <li>3.1) SiPM installation in the Pizza Box</li> </ul>  | 3w 4d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>3.2) QC test on modules</li> </ul>                  | 2w 1d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>3.3) Light insulation</li> </ul>                    | 1w     |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>4) MODULES COMPLETED</li> </ul>                     |        |          |          |                 |                    |          | MODULES  | COMPLETED        |          |                  |     |
| <ul> <li>5) Electronics, DAQ and Online</li> </ul>           | 68w    |          |          | Electroni       | cs, DAQ and Online |          |          |                  |          |                  |     |
| <ul> <li>5.1) Electronics Design Construction</li> </ul>     | 19w 1d |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>5.2) Electronics test and integration</li> </ul>    | 15w 2d |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>5.3) DAQ system</li> </ul>                          | 24w 2d |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>5.4) Online monitoring</li> </ul>                   | 9w     |          |          |                 |                    |          |          |                  |          |                  |     |
| 6) Offline                                                   | 13w    |          |          |                 |                    |          |          | 6                | ffline   |                  |     |
| <ul> <li>6.1) Offline Reconstruction Code</li> </ul>         | 10w    |          |          |                 |                    |          |          |                  |          | -                |     |
| <ul> <li>6.2) Analysis tools</li> </ul>                      | 3w     |          |          |                 |                    |          |          |                  |          | *                |     |
| 7) Overall integration and cosmic test                       | 4w 2d  |          |          |                 |                    |          |          |                  |          |                  |     |
| • 8) PROTOTYPE COMPLETED                                     |        |          |          |                 |                    |          |          | PROTOTYPE CO     | MPLETED  |                  |     |
| <ul> <li>9) Shipping of the iron structure</li> </ul>        | 6w 3d  |          |          |                 |                    |          |          |                  |          |                  |     |
| <ul> <li>10) Shipping of modules and electronics</li> </ul>  | 2w 1d  |          |          |                 |                    |          |          |                  | <u> </u> |                  |     |
| <ul> <li>11) FNAL installation and beam test</li> </ul>      | 2w 3d  |          |          |                 |                    |          |          |                  |          |                  |     |
| 12) PROJECT COMPLETED                                        |        |          |          |                 |                    |          |          |                  |          | PROJECT COMPLETE | D 📥 |

#### **Background studies**


Neutron background is the main concern for the SiPM damage.


The present rate is too high for SiPM life.

A polyethylene shield has been inserted between the solenoid magnet and the barrel to study possible reduction.

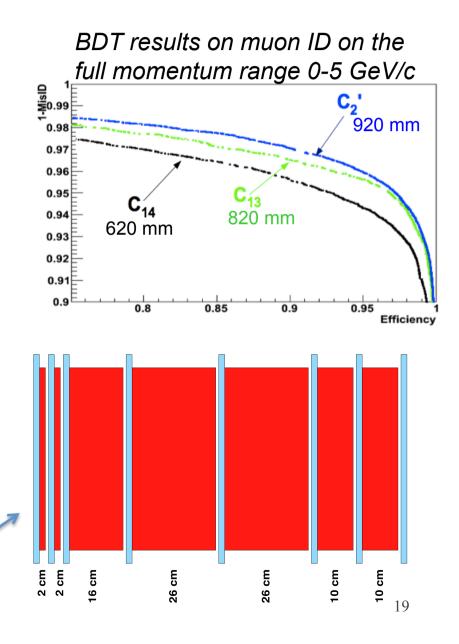
Preliminary results show a reduction of one order of magnitude with 10cm of shielding.

Promising, but need more study and more reduction





#### **Detector optimization**


Already generated large sample of muon and pions with the FullSim BDT optimization already performed

#### Next Step:

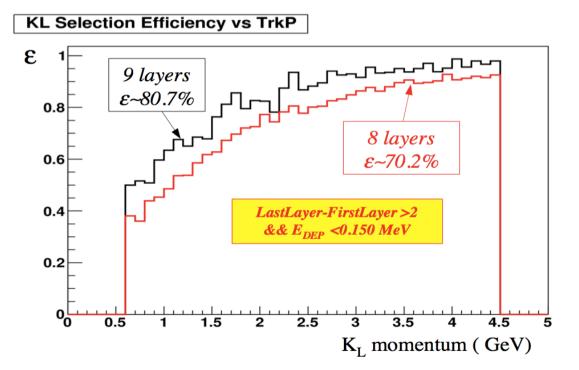
#### **Produce PID Tables, one for each configuration** Make available these tables in FastSim

Study the impact of various IFR Configurations on physics channels: - channels that require high efficiency - channels that require high pion rejection

Baseline 8 layers configuration  $(C_2' - 920 \text{ mm of iron})$ 



#### First look at $K_L$ identification


-Simulated 110k of single  $K_L$  using baseline configuration

and 10k using a 9 layers configurations;

-Momentum: range from 0.6 GeV/c to 4.5 GeV/c

-Distinguish  $K_L$  interacting in the EMC from  $K_L$ 

interacting in the IFR volume -Use the energy deposited in the EMC to distinguish these  $K_L$  categories



Performed a Very Loose  $K_L$  selector to compare configuration with 8 and 9 active layers  $\rightarrow$  Configuration with 9 layer gives better  $K_L$  efficiency -Need to simulate background samples to have meaningful results, but it's a good start

#### **Technical choices for the TDR**

- SiPM damage and remediation
  - Reduction of neutron flux
  - Location of SiPM
- Electronics readout
  - TDC readout: meet the required specs
- 8 layers vs 9 layers
  - Comparison of performances/costs
- Decision to add 10 cm iron (external) to the flux return

## Attività da ora a fine 2010

- Simulazioni
- Test neutroni
- Preparazione prototipo (assemblaggio, QC)
- Test beam sul fascio di Fnal

### Richieste 2010 (specifiche IFR)

#### ■ M.E. 19 KE FE + 19 KE PD :

-beam test del prototipo su un fascio di mu (4 persone FE + 4 persone PD per 10 giorni a FNAL) 14 KE FE + 14 KE PD -preparazione beam test 5KE FE + 5 KE PD

- Consumi 3 KE FE + 5 KE PD
  - FE: schede aggiuntive per leggere 9 layers nel prototipo
  - PD: extra costo per trafila
- Trasporti 8 KE PD

## Attività 2011

#### Simulazioni

- Test neutroni
- Analisi dati test beam, (eventuale) nuovo test beam
- Scrittura TDR
- Consolidamento gruppo IFR
- Inizio attività costruzione

## **IFR construction (2011-2015)**

- Design of electronics and mechanical parts
- Procurement of material (scint, fibers, SiPM, electronics, ..)
- Infrastructures for production and assembling (fiber polishing, grooving, aluminization, glueing)
- Module production

(assembling scintillator, fibers, SiPM bonding, light tightening,..+ electronics)

- QC system for all detector (in particular for SiPM and electronics)
- Installation

(module installation, routing fibers between layers, cabling, electronics, test, QC)

Commissioning

## **Other activities (IFR related)**

- Design, FEA calculation of flux return
- Disassembly, transportation and assembly of flux return
- Design and construction of installation tooling
- Manpower for hall crew (installation)

#### Costi 2011 relativi all'inizio attività di costruzione

- produzione SiPM dedicata (produzione fatta con la massima cautela senza problemi di tempo, con qualità eccellente) (25KE PD)
- prove di bonding automatizzato (adattamento macchina esistente) (5 KE PD)
- progettazione e produzione di prototipi di piccole parti per la costruzione dei moduli (PCB, accoppiatori fibre/SiPM,..) (10KE PD)
- test di assemblaggio di moduli di 4 metri: servono
  - fibre (15 KE FE)
  - nuova trafila x scintillatori 1cm (30KE PD)
  - materiale vario (5 KE FE)
- sviluppo ed acquisti per la costruzione di macchine per la costruzione dei moduli (10KE FE) (5KE Inv)
- sviluppo e attrezzatura per caratterizzazione SiPM e QC (moduli di elettronica, cavi, connettori, pc) (10KE FE) (5KE Inv)

## Elettronica: costi 2011

- SiPM front end ASIC: 25KE
- scheda TDC (ACAM + LAL\_Orsay): 22.5KE
- Crate VME-9U: 10KE (Inv)
- prototipo di SiPM bias generator rad-tolerant con interfaccia ECS: 20KE
- Totale 77.5KE FE

### Missioni 2011 (specifiche IFR)

- M.I. convener IFR 3 KE FE, contatti con IRST 3 KE PD
- M.E. 39 KE FE + 29 KE PD :
  - -convener IFR 10 KE FE
  - -IFR flux return dismounting 10 KE FE + 10 KE PD
  - -beam test a Fnal 14 KE FE + 14 KE PD
  - -preparazione beam test 5KE FE + 5 KE PD

#### **Riepilogo generale IFR richieste 2011**

|           | FE      | PD    |
|-----------|---------|-------|
| ■ M.I.    | 3 KE    | 3 KE  |
| ■ M.E.    | 39 KE   | 29 KE |
| Consumo   | 97.5 KE | 70 KE |
| ■ Inv.    | 20 KE   |       |
| Trasporti |         | 8 KE  |

Totale

159.5 KE 110 KE

#### Richieste 2011: FTE

Fisici FE Andreotti Baldini Calabrese Fella Luppi Manzali Negrini Santoro Tomassetti TOT 5.4 FTE

Tecnologi FE Carassiti Cotta Ramusino Donati Gianoli TOT 1.2 FTE Fisici PD Feltresi Gagliardi Morandin Posocco Rotondo Sartori Simi Stroili **TOT 4.5 FTE** Tecnologi PD Benettoni

Tecnologi PD Benettoni Corvo Dal Corso Longo Montecassiano TOT 3.2 FTE