NR & ER Discrimination

Atul Prajapati

Configuration used for the simulation and reconstruction

- Noise Run : 3944
- Detector : LIME
- Detector dimension : 33 cm x 33 cm x 50 cm
- Camera : Orca Fusion
- Pixel width: 0.152 mm
- Algorithm : Chan Vese
- Diffusion length : 25 cm
- Gas Mixture: He:CF4
- Pressure: 1 atm

Observables

Observables for recoil identification in gas TPCs arXiv:2012.13649v1

• Standard Deviation of Charge Distribution (SDCD):

$$SDCD = \sqrt{\frac{\sum_{i=1}^{N} (\mathbf{r_i} - \overline{\mathbf{r}})^2}{N}}.$$

- Charge Uniformity (ChargeUnif):
 - For each point within the charge distribution, find the average distance to all other points.
 - ChargeUnif is standard deviation of values computed in step 1.
- Maximum Density (MaxDen):
 - MaxDen is the value of most intense pixel.
- Cylindrical Thickness (CylThick):
 - For each charge , calculate the squared distance from the principal axis.
 - CylThick is the sum of all squared distances.

Source: Majd Ghrear presentation in Physics and Analysis meeting

Observables

- Length Along Principal Axis (LAPA):
 - \circ Project all the points in the charge distribution on to the principal axis.
 - LAPA is the difference between maximum and minimum projected value.
- eta:
 - MaxDen divided by length (found by skeletonization)
- Light Density:
 - Ratio of sc_integral over sc_nhits
- Skeleton length (thin_track):
 - Length in mm found by skeletonization
- Slimness:
 - Ratio of sc_length over sc_width

GEM-based TPC with CCD Imaging for Directional Dark Matter Detection arXiv:1510.02170v3

RED : NR
BLU

BLUE : ER

• RED : NR BLUE : ER

RED : NR BLUE : ER

BLUE : ER

RED : NR BLUE : EF

RED : NR BLUE : ER

LUE : ER

3 keV ER and 6 keV NR

Figure 1: Quenching factor for NR

Figure 2: 3 keV ER and 3 KeV NR can not be discriminated.

Figure 3: 3 keV ER and 6 keV NR can be discriminated, 6 keV NR is quenched and the observed energy would be around 3.5 keV. So there is a good discrimination at 3 keV ER and 3.5 keV NR (Observed energy).

Discrimination in 3D based on Energy

+ 3keV_er

+ 3keV_er • 6keV_er × 10keV_er O 30keV_er

30keV_nr
3keV_nr
6keV_nr
10keV_nr
30keV_nr

Neural network to predict length

- All the variable computed earlier was fed to the network as input.
- Target of the network was 2D tracklength computed from MC simulation

