LET THERE BE MORELIGHT

CYGNO Collaboration

New test at LNF

- In LEMON we are trying to study in more details luminescence phenomena induced by electrons below the last GEM as a part of more general studies about gain saturation and possible solutions;

- A conductive (7 Ω / \Box) glass ITO-coated is used to accelerate them;

- Thickness 0.7 mm;
- Transmittance at 550 nm: 89%;
- Reflection less than 4%;

New test at LNF

VGEM = 365 V No field below GEM#3

VGEM = 365 V 16.7 kV/cm field below GEM#3

We did the usual scan on Electric field below the GEM.

Results obtained are similar (within a 25%) with the ones obtained with the Mesh.

To check how the external electric field "influences" the field in the GEM, we applied a negative voltage to ITO. With a field of -15.8 kV/cm a decrease of 10% in light was observed (to be compared with an increase of about 7 for +15.8 kV/cm)

The exponential extrapolation to negative field data indicates a continuous increase up to about 8-10 kV/cm. Then another process arises;

Electric field in the holes GEM#3 can be evaluated as

Mesh

$$E_h = \frac{V_{GEM}}{50\mu m} + E_M$$

We studied the behavior of light and current as a function E_h ;

When increasing V_{GEM} light and current have the same behavior; Effect of the E_M seems completely different;

The light yield depends almost only on the sum of V_{GEM}

Same behavior for the current too: it depends almost only on the sum of V_{GEM}

The light yield depends almost only on the sum of V_{GEM} and on the Field below the third GEM;

Same behavior for the current too: it depends almost only on the sum of $V_{\rm GEM\,+}$ on the ITO voltage.

The ratio between light and charge seems to depend only on the ITO voltage

Different behavior when changing V_{GEM}

Because of the saturation, we expect that increasing the voltage on GEM1 with GEM2/GEM3 at high voltages (460V) provides lower gain increases w.r.t. GEM2/GEM3 at lower voltages (410V)

What happens if we turn On the ITO field in the configuration with low GEM2/GEM3 gain?

Light yield can be completely recovered

But the curves are not "parallel"!

Light yield can be completely recovered

What happens if we turn On the ITO field in the configuration with low GEM2/GEM3 gain?

Light yield can be completely recovered

But the curves are "parallel"!

Gain increases with the same behavior if ITO is On, with low GEM voltage or ITO is OFF with high GEM voltage;

And the increase is lower w.r.t. the case of low GEM voltage and ITO Off.

Probably the ITO process have same saturation behavior.

Slightly better behavior with even lower GEM voltage