

Image simulation and analysis for NEWSdm

PhD: **Artem Golovatiuk**

Supervisor: Giovanni De Lellis

Insights is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2017, under Grant Agreement n. 765710

Co-supervisor: Andrey Ustyuzhanin

Dark Matter search with nuclear emulsions **The NEWSdm experiment**

- Aim: detect the direction of nuclear recoils produced in WIMP interactions
- Expected track length: O(100 nm)
- **Target:** nuclear emulsions acting both as target and tracking detector
- **Background reduction:** neutron shied surrounding the target, purified gelatine, etc.
- Fixed pointing: target mounted on equatorial telescope constantly pointing to the Cygnus Constellation
- Location: Underground Gran Sasso Laboratory

Dark Matter search with nuclear emulsions **Track image analysis**

- Track is a sequence of close and aligned grains
- Resolve a track = distinguish it from a single grain
- Grains, closer than the mic. resolution = single spot
- Single grain (background) = round spot
- Important signal: ~100nm
- Plasmon resonance effect allows probing the internal structure of the cluster with polarized light
- Barycenter shift for different light polarizations can highlight tracks among background.

I.4 µm

Polarised light analysis

05.07.2021

WIMPs, HoloPy, ADDA and ML for NEWSdm

PTEP, 2019(6), 063H02

Presentation plan

- WIMP simulation with Carbon beam
 - Expected WIMP rate
 - Track length distributions for different WIMP masses
 - Carbon combinations to mimic expected WIMPs
- Optical images for nanometric tracks
 - Discrete dipole approximation
 - 3d models of simulated objects
 - Physical cross-checks of the simulated images
- Machine Learning analysis of the optical images
 - Pre-processing images
 - Producing optimal neural network
 - Comparing the results

WIMPs, HoloPy, ADDA and ML for NEWSdm

Recoil rate My derivation vs Lewin&Smith

• My derivation

•
$$\frac{dR_n}{dE \ d\cos\theta} = \frac{\rho_o \sigma_p A^2}{2\mu_p^2 m_W N_{esc} \sqrt{\pi} v_0} \left(\exp\left[-\frac{\left(v_n - v_E \cos\theta\right)^2}{v_0^2} \right] - \exp\left[-\frac{v_B - v_B \cos\theta}{v_0^2} \right] \right)$$

•
$$v_n = \sqrt{\frac{m_n E}{2\mu_n^2}}; \quad \mu_i = \frac{m_i m_W}{m_i + m_W}; \quad N_{esc} = \exp\left[\frac{v_{esc}}{v_0} \right] - \frac{2}{\sqrt{\pi}} \frac{v_{esc}}{v_0} \exp\left[-\frac{v_{esc}^2}{v_0^2} \right]$$

• After integrating out $\cos \theta$:

•
$$\frac{dR}{dE} = \frac{\rho_o \sigma_p A^2}{\sqrt{\pi v_0 \mu_p^2 m_W N_{esc}}} \left(\frac{\sqrt{\pi} v_0}{4 v_E} \left[\operatorname{erf}\left(\frac{v_n + v_E}{v_0} \right) - \operatorname{erf}\left(\frac{v_n - v_E}{v_0} \right) \right] - \exp\left[-\frac{v_{esc}^2}{v_0^2} \right] \right)$$

• Formulas are exactly the same.

WIMP simulation

Lewin&Smith

$$\frac{d^2 R(v_E,\infty)}{dE_R d(\cos\psi)} = \frac{1}{2} \frac{R_0}{E_0 r} e^{-(v_E \cos\psi - v_{min})^2/v_0^2}.$$
(3.16)

$$\frac{dR(v_E,\infty)}{dE_R} = \frac{R_0}{E_0 r} \frac{\pi^{1/2}}{4} \frac{v_0}{v_E} \left[\operatorname{erf}\left(\frac{v_{min} + v_E}{v_0}\right) - \operatorname{erf}\left(\frac{v_{min} - v_E}{v_0}\right) \right]; \quad (3.12)$$

$$\frac{dR(v_E, v_{\rm esc})}{dE_R} = \frac{k_0}{k_1} \left[\frac{dR(v_E, \infty)}{dE_R} - \frac{R_0}{E_0 r} e^{-v_{\rm esc}^2/v_0^2} \right].$$
(3.13)

$$v_{min} = (2E_{min}/M_D)^{1/2} = (E_R/E_0r)^{1/2}v_0.$$

$$R_{0} = \frac{2}{\pi^{1/2}} \frac{N_{0}}{A} \frac{\rho_{D}}{M_{D}} \sigma_{0} v_{0} \qquad E_{0} = \frac{1}{2} M_{D} v_{0}^{2} \qquad r = 4 M_{D} M_{T} / (M_{D} + M_{T})^{2}$$
This A contains also m_{p} inside $\sigma_{0} = \sigma_{p} \frac{\mu_{n}^{2}}{\mu_{p}^{2}} A^{2}$

Recoil rate

•
$$R_0 = \frac{361}{M_w M_N} \left(\frac{\sigma_0}{10^{-36} \text{cm}^2} \right) \left(\frac{\rho_0}{0.3 \text{GeV} c^{-2} \text{cm}^{-3}} \right) \left(\frac{v_0}{220 \text{km s}^{-1}} \right) \text{kg}^{-1} \text{d}^{-1}$$

• $E_0 r = \left(\frac{M_w}{100 \text{GeV} c^{-2}} \right) \left(\frac{v_0}{220 \text{km s}^{-1}} \right)^2 \frac{4M_w M_N}{(M_w + M_N)^2} \times 26.9 \text{keV}$

	R _o /(kg d) M _w , GeV			E _o r, keV M _w , GeV									
target								$R_0 [\rm kg^{-1} \ d^{-1}]$			$E_0 r [\mathrm{keV}]$		
	10	100	1000	10	100	1000	target	<i>M</i> 10	$l_{\delta} [\text{GeV c}^{-2}]$ 100	= 1000	$\begin{vmatrix} M_{\delta} \\ 10 \end{vmatrix}$	[GeV 6 100	с ^{—2} 1
H (A=1)	3.88E-05	3.88E-06	3.88E-07	0.84	0.98	1.0	H $(A = 1)$ Si $(A = 28)$	$3.9 imes 10^{-6}$ $7.8 imes 10^{-2}$	$3.9{ imes}10^{-5}$ $5.5{ imes}10^{-2}$	3.9×10^{-7} 8.1×10^{-3}	0.8	1.0 17.6	
Si (A=28)	7.81E-02	5.45E-02	8.1E-03	2.16	17.65	26.66	Ge(A = 73)	3.0×10^{-1}	5.4×10^{-1}	1.3×10^{-1}	1.2	25.9	1
Ge (A=73)	2.96E-01	5.44E-01	1.32E-01	1.2	25.92	64.15	1 (A = 127)	5.8×10^{-1}	1.7×10°	6.4×10 ⁺	0.8	26.7	
I (A=127)	5.76E-01	1.7E+00	6.36E-01	0.77	26.71	101.78	https://www.sla	c.stanford.ed	u/exp/cdms/	<u>ScienceResult</u>	<u>s/The</u>	eses/gol	wa

15.10.2020

Numerical cross-checks (Golwala, derived from Lewin&Smith)

WIMP simulation

Recoil rate Form-factor and simplified formula

$$\frac{-v_E \cos \theta^2}{v_0^2} - \exp\left(-\frac{v_{esc}^2}{v_0^2}\right) \times F^2(qr_n)$$

$$egin{aligned} &3\,rac{j_1(qr_n)}{qr_n}\,e^{-(qs)^2/2}\ &3\,rac{\sin(qr_n)-qr_n\cos(qr_n)}{(qr_n)^3}\,e^{-(qs)^2/2} \end{aligned}$$

$$= c^{2} + \frac{7}{3}\pi^{2}a^{2} - 5s^{2}$$
$$= 1.23A^{1/3} - 0.60 \,\mathrm{fm}$$
$$= 0.52 \,\mathrm{fm}$$

 $s = 0.9 \,\mathrm{fm}$

WIMP simulation

Recoil rate Cross-check with Golwala

My simulation

 $\sigma_p = 10^{-42} cm^2; v_{esc} = 650 km/s$ Golwala's thesis

https://www.slac.stanford.edu/exp/cdms/ScienceResults/Theses/golwala.pdf

WIMP simulation

WIMP simulation with Carbon beams Expected WIMP rate

05.07.2021

Our simulation

WIMPs, HoloPy, ADDA and ML for NEWSdm

WIMP simulation in emulsion

WIMP simulation in emulsion **Directionality paper**

WIMPs, HoloPy, ADDA and ML for NEWSdm

05.07.2021

https://arxiv.org/abs/2102.03125

WIMP simulation with Carbon beams Carbon tracks

linear combinations of distributions to fit per-bin distribution corresponding to WIMP

WIMPs, HoloPy, ADDA and ML for NEWSdm

Realistic image simulation **Discrete dipoles and numerical approach**

- Why simulate?
 - Scanning large datasets is slow.
 - Optical microscope adds instrumental noise. $oldsymbol{O}$
 - Large Dark Matter samples are not available :) ۲
- How?
 - Generate a 3D model of the object to be simulated (filaments, ۲ nano-particles)
 - Use discrete dipole approximation to obtain optical images $oldsymbol{O}$ (ADDA, HoloPy)
 - Tune the parameters and check the simulation by comparison with real samples.

05.07.2021

WIMPs, HoloPy, ADDA and ML for NEWSdm

ub

HoloPy **DDA for holography in Python**

- *Open-source: <u>https://github.com/manoharan-lab/holopy</u>*
- Has a user-friendly pythonic syntax
- Uses ADDA for scattering calculations: https://github.com/adda-team/adda
- Created for simulating Holograms in biophysics $oldsymbol{O}$
- Can output raw fields
- Implements functions for propagation of the fields
- Supports superposition of scatterers
- Has a microscopic lens implementation
- Can pass a set of wavelength

05.07.2021

Fig. 2. We capture holograms of freely swimming E. coli in a time series. Two frames are shown in the left column, where the asymmetry in the fringes is noticeably different between the frames. The best-fit holograms are shown in the middle, and three-dimensional renderings from the best-fit holograms are shown on the right.

DOI: 10.1364/OE.24.023719

WIMPs, HoloPy, ADDA and ML for NEWSdm

Plasmon effect for spheres

Silver vs dielectric

Dielectric

Ps, HoloPy, ADDA and ML

16

Plasmon effect for ellipsoid **Polarisation along major vs minor axis**

WIMPs, HoloPy, ADDA and ML for NEWSdm

Unpolarised incident light **Combination of X and Y polarisations**

• Unpolarised light is a decoherent combination of $|| \& \perp \text{light.}$

•
$$|E|_{un}^2 = \frac{1}{2}(|E|_{||}^2 + |E|_{\perp}^2)$$

• Averaging the Stokes vectors will have the similar result. Unpolarised incident light would have all but first components equal zero. However, scattered light is not truly unpolarised anymore.

05.07.2021

Stokes vector

- $I = E_{||}E_{||}^* + E_{\perp}E_{\perp}^*$
- $Q = E_{||}E_{||}^* E_{\perp}E_{\perp}^*$
- $U = E_{||}E_{\perp}^* + E_{\perp}E_{||}^*$

•
$$V = i \left(E_{\parallel} E_{\perp}^* - E_{\perp} \right)$$

To get intensity of linearly polarised light:

•
$$I_{\xi} = \frac{1}{2} \left(I + Q \cos 2\xi + U \sin 2\xi \right)$$

WIMPs, HoloPy, ADDA and ML for NEWSdm

Polarised scattered light **Unpolarised incident light**

Two silver ellipsoids

Two simulations for unpolarised light any number of output polarisations

$$I_{\xi} = \frac{1}{2} \left(I + Q \cos 2\xi + U \sin 2\xi \right)$$

05.07.2021

WIMPs, HoloPy, ADDA and ML for NEWSdm

Simulating the filament **Polarisation rotation**

Event view #17

Simulating multi-filament **Polarisation rotation**

Event view #3

WIMPs, HoloPy, ADDA and ML for NEWSdm

Simulating reflected light **Multi-filament**

Scattered light

05.07.2021

Reflected light

Image analysis Machine Learning approach

- Two main goals: signal-background classification and directional analysis.
- High background rejection is required, since expected WIMP signal is very rare.
- Signal-like events are represented by *Carbon* tracks, main background source is expected to be "*fog*" (thermal fluctuations).

- Machine Learning is capable of detecting complex features directly in pixel images, while barycentre shift analysis and/or elliptical fit use limited subset of image features.
- ML can overfit to instrumental noise instead of physical features of the tracks, so additional checks have to be done to limit the noise impact.

Microscopic images **Polarised light examples**

05.07.2021

Carbon 100keV

WIMPs, HoloPy, ADDA and ML for NEWSdm

pixel size ~30nm

Fog

Before passing the data to ML

Sample rotations

- Microscope induced features can interfere with track direction in Carbon samples.
- 0°, 45°, 90° rotations and test (0°) scans of independent areas.
- No sample rotations for isotropic background events.

05.07.2021

Image preprocessing

• Mean optical background depends on the emulsion sample (amount of reflected background light) and colour -> subtract and scale!

- Optical noise is distributed around o
- Signal to noise ratio is improved
- Pixel values (~0,1) —> better training
- Periodic boundary conditions -> add a copy of o° polarisation as the last 180°.
- Random rotations for every event -> directionality not used by ML

Polarised images analysis **3D Convolutional Neural Networks**

- Convolutional approach is designed for working with images. It is capable of discovering complex features of the images and gaining high performance.
- Stacking together images for different light polarisation to obtain a 3D image.
- Empty polarisation images are filled with zeros.
- Network "scans" not only plain image, but also the "polarisation" axis.
- Allows Network to learn correlations between features of different polarisation images.

Polarised and Colour image analysis **Convolutional Neural Network**

Hyper-parameter optimisation **Bayesian search**

- Bayesian Search is an extension of the random search over the parameter space in more optimal way.
 - For each set of parameters the chosen performance metrics is estimated with Gaussian processes.
 - Every next "sample" of parameters is generated from the area that has more probability to improve the performance metrics.
 - Converges to find the optimal set of parameters. ۲
 - Cross-validation is used to have more confidence in the results.

Background reduction factor and efficiency for different $oldsymbol{O}$ thresholds on ML probability-like output on validation data

WIMPs, HoloPy, ADDA and ML for NEWSdm

05.07.2021

ML analysis results **ML comparing to cut-based**

https://arxiv.org/abs/2106.11995

Barshift threshold rejecting 95% of spherical nano particles

ML analysis results **ML comparing to cut-based**

	Bar	shift	NEW	Shape analysis	
	Validation	Test	Validation	Test	
			Signal efficiency		
C30keV	$25.3 \pm 1.5\%$	$25.5 \pm 1.7\%$	$29.3 \pm 3.9\%$	$16.2 \pm 3.1\%$	$1.7 \pm 0.1\%$
C60keV	$33.7 \pm 1.8\%$	$35.3 \pm 2.1\%$	$50.4 \pm 3.8\%$	$47.5 \pm 4.0\%$	$13.1 \pm 0.1\%$
C100keV	$38.0 \pm 1.8\%$	$38.2 \pm 1.2\%$	$36.5 \pm 3.4\%$	$37.4 \pm 3.3\%$	$29.7\pm0.7\%$
		Backg	round reduction factor		
Fog	0.32 ± 0.02	0.39 ± 0.02	$(2.4 \pm 0.74) \cdot 10^{-3}$	$(4.2 \pm 1.3) \cdot 10^{-4}$	0.01

- ۲ reproducibility on test data.
- ۲ not included in the article.

https://arxiv.org/abs/2106.11995

We fix ML threshold value to obtain similar to barshift signal efficiency on validation data and cross-check the

C30keV sample was scratched -> efficiency drop on test. C60keV had suspicious event brightness and density ->

ML analysis results **Colour vs Polarisation (TEST data)**

	Col		
	Signal effic		
C30keV	$7.4 \pm 2.2\%$	$0.5 \pm$	
C60keV	$32.1 \pm 3.7\%$	72.4 ±	
C100keV	$22.5\pm3.1\%$	82.8 ±	
	Background re	eduction fa	
Fog	$(1.5 \pm 0.6) \cdot 10^{-4}$	$(1.5 \pm 1.$	

- Threshold fixed to provide ~ 10^{-4} background reduction.
- Checked only on test, since validation set did not have enough background to probe strong reduction.

WIMP simulation

- WIMP rate and tracks distributions are updated with current DM parameters and form factor.
- Linear combination of Carbon samples can be used to mimic more precise WIMP distribution for specific mass.

Image simulation

• Current simulation with HoloPy and ADDA allows to reproduce most of physical behaviour we can test before comparing directly with real images: unpolarised/polarised light, reflected *light, microscope lens, plasmon effect.*

Next steps

- Produce updated exclusion curves.
- Calibrate image simulation on optical images with the exact 3d models from SEM.
- Estimate joint colour-polar ML background reduction potential. 05.07.2021

Summary and next steps Image analysis

- Subtracting optical background is important preprocessing step to make sure ML does not focus on unphysical features.
- Colour ML provides strong rejection and can be used before polarised scanning, since colour microscope is much faster.
- Both colour and polar ML can achieve $\sim 10^{-4}$ background reduction, while colour keeps more signal.

Publications

- Directionality: <u>https://arxiv.org/abs/2102.03125</u> (published in JCAP)
- *ML for background reduction: <u>https://arxiv.org/abs/2106.11995</u> (preparing for CPC)*
- NEWSdm Conceptual design report: background rejection and image simulation
- Muon secondment: <u>https://github.com/golovart/3DmuonProject</u>

WIMPs, HoloPy, ADDA and ML for NEWSdm

Bonus slides Muon secondment

Muon second ment Numerical solution in Python

True (unknown in red)

Predicted (darker and more transparent = lower anomaly) WIMPs, HoloPy, ADDA and ML for NEWSdm

05.07.2021

optimal threshold 0.4

Muon secondment 2D angular detector histograms

Before

After

05.07.2021

https://github.com/golovart/3DmuonProject

Detector 1 located at (5.33,16.00,-5)

Detector 1 located at (5.33,16.00,-5)

Muon secondment **Unity visualisation**

05.07.2021

WIMPs, HoloPy, ADDA and ML for NEWSdm

Muon secondment

05.07.2021

Realistic case

WIMPs, HoloPy, ADDA and ML for NEWSdm