

TZK Status

Fanny Dufour, Geneva University, for the T2K collaboration.

Outline

The T2K experiment

Current status of the beam

Current status of ND280

Current status SK

The collaboration

U. Aachen

~500 members, 61 Institutes, 12 countries

Canada TRIUMF U. Alberta	Italy INFN, U. Roma INFN, U. Napoli	Poland A. Soltan, Warsaw H.Niewodniczanski, Cracow	Spain IFIC, Valencia U. A. Barcelona	STFC/RAL STFC/Daresbury
U. B. Columbia U. Regina U. Toronto U. Victoria York U.	INFN, U. Padova INFN, U. Bari Japan ICRR Kamioka	T. U. Warsaw U. Silesia, Katowice U. Warsaw U. Wroclaw	Switzerland U. Bern U. Geneva ETH Zurich	USA Boston U. B.N.L. Colorado S. U. Duke U.
France CEA Saclay IPN Lyon	ICRR RCCN KEK Kobe U. Kyoto U.	Russia INR S. Korea	United Kingdom Imperial C. London Queen Mary U. L.	Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado
LLR E. Poly. LPNHE Paris Germany	Miyagi U. Edu. Osaka City U. U. Tokyo	N. U. Chonnam U. Dongshin U. Sejong N. U. Seoul U. Sungkyunkwan	Lancaster U. Liverpool U. Oxford U. Sheffield U. Warwick U.	U. Pittsburgh U. Rochester U. Washington

Off-axis principle

Detector is 2.5° off-axis

- → Narrow beam
- → Most of the flux is at the optimal energy for measuring oscillation
- → Reduced background from non quasi-elastic and neutral current background

Physics goals (1): Neutrino oscillations

Appearance measurement: $\nu_{\mu} \rightarrow \nu_{e}$

$$P(\nu_{\mu} \to \nu_{e}) \approx \left(\sin^{2}(2\theta_{23})\sin^{2}(2\theta_{13})\right)\sin^{2}(\frac{\Delta m_{23}^{2}L}{4E})$$

Disappearance measurement: $\nu_{\mu} \rightarrow \nu_{\mu}$

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1.0 - (\sin^2(2\theta_{23})) \sin^2(\frac{\Delta m_{23}^2 L}{4E})$$

Sensitivity to θ_{13}

90% C.L.:
750 kW X (5 * 10⁷ sec)
→ 8.3 x 10²¹ POT
with 22.5 kton fiducial volume

Physics goals (2): Cross-section measurements

Recent measurements from MiniBoone do not agree with previous measurements from NOMAD.

Measurements of cross-section in the low energy region will be beneficial to the entire neutrino community.

The off-axis near detector will be able to do such measurements

T. Katori Nuinto9, Elba10

Overall analysis strategy

$$N(E_{\nu}^{rec}) = \Phi_{SK}^{exp}(E_{\nu}^{true}) \times \sigma(E_{\nu}^{true}) \times P_{osc}(E_{\nu}^{true}) \times \epsilon_{SK}(E_{\nu}^{true}) \times f(E_{\nu}^{rec}, E_{\nu}^{true})$$

Number of reconstructed events (ν_{μ} and ν_{e}) at SK can be predicted using near detectors (off-axis beam, neutrino cross sections) hadron production measurements (NA-61)

Compare prediction with SK observation to extract oscillation parameters:

Proton on target collected in 2010

First T2K run completed (January to June 2010)

- •3.23 ×10¹⁹ protons @ 30 GeV for T2K analysis
- •50 kW stable operation with trials at 100 kW
- •Super-K live fraction in excess of 99%
- •2011 aim: accumulate $150 \text{ kW} \times 10^7 \text{ sec by July } 2011$

Beamline overview

Fast extracted beam from MR ring

- 6 bunches/spill (increased to 8 in Fall 2010)
- Superconducting combined function magnets for proton transport

Primary beam monitors

 Intensity(CT), position(ESM), profile(SSEM), beam loss(IC), beam profile at target (OTR)

Target Station

- graphite core target (26 mm(D) x 900 mm L)
- 3 horns @ 250 kA (320 kA)

Target station connected to decay pipe 110 m long filled with Helium

Beam dump

Hadron absorber graphite modules

Secondary beam monitors

- muon profile after beam dump: ionisation chambers and SiPIN (MUMON)
- Emulsion exposures (low intensity)

Neutrino detectors at 280 m

Super-K direction given by GPS

Antonin Vacheret, NOW 2010

ND280 overview

On-axis detector:

INGRID

Off-axis detector:

sits inside the old UA1/NOMAD magnet

tracker: FGD +TPC

P₀D

ECAL (downstream and barrel)

SMRD

ND280 on-axis detector: INGRID

Consists of 16 modules of scintillator/iron sandwich planes

Measures neutrino beam profile in X and Y

→ beam direction

Large mass allows quick feedback on v beam shape

ND280 off-axis detector

Inside a 0.2 T magnetic field (UA1/NOMAD magnet)

Several fine grained detector and tracker

Would be impossible to use water Cherenkov because of pile-up

All sub-detectors were installed in 2009 and ready for 2010, apart from the barrel ECAL which was installed in summer 2010

Purpose

 $CC \nu_{\mu}$ events (normalization, disappearance)

 $CC \ \nu_e \ events$ $\pi^0 \ events$ Backgrounds to $\nu_\mu \! \to \! \nu_e \ search$

Tracker: TPC + FGD

Two detectors

- 15 XY layers (192 bars)
- 7 XY layers + 7 water panels

3 Time Projection Chambers (TPC)

1.8 x 2 x 0.70 m³ sensitive area
World's Largest TPC with micro-pattern read out
(MicroMeGas)
~124k channels

2 Fine Grained Detectors (FGD)

2 x1.3 Ton active target FGD1: plastic only FGD2: Plastic + water Light detection by Geiger mode avalanche photodiodes (MPPC)

~ 9500 channels

PoD: π^o detector & DS ECAL

The off-axis detector is really off-axis!

Contained vertices reconstructed in the 2 'Fiducial' detectors.

Lines show (approximate) iso-contours of off-axis angle.

Outer corner is roughly 20% further off-axis than inner corner.

Overview of events in the off-axis ND280

Super-Kamiokande overview

Event rate
Vertex distributions
Event displays

Event rates and timing

 ΔT_o : relative event time to the spill time

 ΔT_0 : -500 ~ +500 µsec

Out-of-time OD/LE rate is flat. No out-of-time FC events. GPS system is working correctly

Super-Kamiokande status - Selection cuts

For ν _μ disappearance analysis	For v _e appearance search			
Timing coincident w/ beam time (+TOF)				
Fully contained (No OD activity)				
Vertex in fiducial volume (Vertex >2m from wall)				
$E_{\rm vis} > 30{ m MeV}$	$E_{\rm vis} > 100{ m MeV}$			
nº of rings =1				
μ-like ring	e-like ring			
	No decay electron			
	Inv. mass w/ forced-found 2 nd ring < 105MeV			
	$E_{v}^{rec} < 1250 MeV$			

Event rates and vertex distributions

	# of events
Fully-Contained	33
+ FV cuts (FV) +Visible energy >30 MeV (FVFC)	23

Vertices are evenly distributed throughout the detector

February 24th 2010! First event!

[1st ring + 2nd ring]

Invariant mass: 133.8 MeV/c²

(close to π^0 mass)

Momentum: 148.3 MeV/c

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron

February 24th 2010! First event!

[1st ring + 2nd ring]

Invariant mass: 133.8 MeV/c²

(close to π^0 mass)

Momentum: 148.3 MeV/c

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron

February 24th 2010! First event!

[1st ring + 2nd ring]

Invariant mass: 133.8 MeV/c²

(close to π^0 mass)

Momentum: 148.3 MeV/c

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron

February 24th 2010! First event!

[1st ring + 2nd ring]

Invariant mass: 133.8 MeV/c²

(close to π^0 mass)

Momentum: 148.3 MeV/c

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron

February 24th 2010! First event!

[1st ring + 2nd ring]

Invariant mass: 133.8 MeV/c²

(close to π^0 mass)

Momentum: 148.3 MeV/c

Super-K is a water Cherenkov detector:

- Electrons create electro-magnetic showers → fuzzy ring
- Muons do not make shower → clear ring

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron

Conclusions

- T2K experiment is now fully operational and taking data
- First data taking period in 2010 accumulated 3.23 10¹⁹ @ 30 GeV p.o.t. and proton intensity increasing steadily
- Very hard work has been done on the beamline: everything is going great.
- Superb detector performance both at ND280 and SK
 - ECAL installation is now completed and we restarted taking data @ 100 kW

Preparing first physics result from 1st physics run.

Backups

Sensitivity as a function of CP violation phase

Two more mu-like events

Single ring mu-like

 P_{μ} = 1061 MeV/c -- 1 decay electron April 27th, 2010

Multi ring mu-like

 P_{μ} = 1438 MeV/c -- 2 decay electrons June 19th, 2010

Energy scale stability

RMS/MEAN

T2K period: 0.31%

(SK-IV all: 0.39%)

Measured with off-beam time cosmics.

RMS/MEAN

T2K period: 0.28%

(SK-IV all: 0.45%)

Very stable energy scale during T2K running period

SK stability

water scattering

water transparency

SMRD: Side muon range detector

Side Muon Range Detector:

- Sand muon veto, Cosmic trigger
- Large angle muon range
- •Efficiency for MIP > 99%

~2k scint. counters (87x17x0.7 cm3)

NuFact10: October 20-25, 2010

S.Dytman, University of Pittsburgh

