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We are entering the TeV era. Why is ~5 GeV 
precision physics still interesting?

Any theory of the weak scale (susy, technicolor, 
extra-dimensions,…) has to have flavor 
structure. Can it be non-minimal?

Will we be able to learn about the origin of 
flavor at the LHC?

1)
2)
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First
B0 oscillations
seen at LHCb!

LHCb reaches adolescence
S. Stone @ LPCC



ACP(B0) = - 0.134 ± 0.041
ACP(Bs) = -  0.43  ± 0.17

CPV in B → πK 
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We are entering the TeV era. 

Why is ~5 GeV high precision 
physics still interesting?1)



SM has accidental symmetries (B, L), e.g. 

⇒ absence of violation probes very high scales

Flavor symmetries are only weakly broken 
(except top) & no tree-level FCNCs 

⇒ smallness of violation probes high scales

Indirect tests: new physics C.S.I.
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Why this structure? Small & hierarchical.
    
Other dimensionless parameters of the SM:   

gs ~1,  g ~ 0.6,  g’ ~ 0.3,  λHiggs ~ 1,  

The SM flavor puzzle

YU ≈




6 · 10−6 −0.001 0.008 + 0.004i
1 · 10−6 0.004 −0.04 + 0.001

8 · 10−9 + 2 · 10−8i 0.0002 0.98





YD ≈ diag
�
2 · 10−5 0.0005 0.02

�

|θ| < 10−9



Operator Bounds on Λ in TeV (cij = 1) Bounds on cij (Λ = 1 TeV) Observables

Re Im Re Im

(s̄LγµdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; �K
(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; �K
(c̄LγµuL)

2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|,φD

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|,φD

(b̄LγµdL)2 5.1× 102 9.3× 102 3.3× 10−6 1.0× 10−6 ∆mBd ; SψKS

(b̄R dL)(b̄LdR) 1.9× 103 3.6× 103 5.6× 10−7 1.7× 10−7 ∆mBd ; SψKS

(b̄LγµsL)2 1.1× 102 7.6× 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7× 102 1.3× 10−5 ∆mBs

UTfit 08, Isidori et. al ‘10
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Very strong suppression! New flavor violation
must either approximately follow SM pattern… 
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… or exist only at very high scales (102  - 105 TeV) 



Why are FCNCs so suppressed in the SM?

no tree FCNCs:                                 ~ (1/30)2     

mixing & GIM:                                   ~ (1/400)2sin2 θC
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Experimental picture
 + spectrum, BR, ACP, particle-antiparticle oscillations
 + determine masses, mixing angles and phases

Theorist’s view
  + In the absence of  Yukawas, SM globally
                                                         symmetric

Flavor and CP in the SM

v Yu = Uu




mu

mc

mt



 Vu v Yd = Ud




md

ms

mb



 Vd

SU(3)QL × SU(3)uR × SU(3)dR
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Experimental picture
 + spectrum, BR, ACP, particle-antiparticle oscillations
 + determine masses, mixing angles and phases

Theorist’s view
  + In the absence of  Yukawas, SM globally
                                                         symmetric

Flavor and CP in the SM

v Yu = Uu




mu

mc

mt



 Vu v Yd = Ud




md

ms

mb



 Vd

SU(3)QL × SU(3)uR × SU(3)dR

unphysical due to SU(3)3 !Vckm

⇒



Yukawa matrices YU & YD encode flavor violation

Flavor and CP in the SM

(Q̄i
LQj

L)
YUY †

U

YDY †
D

VCKM

Y †
DYD

Y †
UYU

(d̄i
Rdj

R)

(ūi
Ruj

R)

+ LR, RL



v Yu = Uu
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Charged currents: 
   measure only LH misalignment

v Yd = VCKM
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v Yu = Uu




mu

mc

mt



 Vu

Charged currents: 
   measure only LH misalignment

Neutral currents:
   enhanced flavor symmetry
   
   Yukawas diagonal, no (tree-level) flavor violation

SU(3)Q → SU(3)uL × SU(3)dL

v Yd = VCKM
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Two 3x3 Yukawa matrices:           2 x (9 real, 9 phases)

Flavor symmetry  U(3)Q x U(3)u x U(3)d / U(1)B

rotates away  3 x (3, 6)U(3) - (0,1)B = (9 real,17 phases) 

Physical parameters:           ⇒ ( 6masses + 3angles , 1CP )

CP violation in the quark sector



Which are the sources of flavour symmetry breaking accessible at low energies?

G. Isidori –  The Challenges of Flavour Physics                              ICHEP 2010, Paris, 27
th
 July 2010

The good overall consistency of the experimental constraints appearing in the so-
called CKM fits seems to indicate there is not much room for new sources of flavour 
symmetry breaking
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We have come a long way… 

source: utfit.org



Which are the sources of flavour symmetry breaking accessible at low energies?

G. Isidori –  The Challenges of Flavour Physics                              ICHEP 2010, Paris, 27
th
 July 2010

The good overall consistency of the experimental constraints appearing in the so-
called CKM fits seems to indicate there is not much room for new sources of flavour 
symmetry breaking
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Only a subset of all constraints, other precision tests also 
consistent…  



Tree level CKM
not affected by new physics, crucial to constrain NP

Need better precision 
in gamma to resolve 
tensions in CKM!

γ[◦] = −106± 11

and 74± 11
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“Most likely, CP violation in flavor violating processes 
is dominated by the KM-phase.”

Various 2~3    tensions:  first signs of NP or flukes?

CKM assumption self-consistent?

σ



“Most likely, CP violation in flavor violating processes 
is dominated by the KM-phase.”

Various 2~3    tensions:  first signs of NP or flukes?

CKM assumption self-consistent?

σ

P
R

L 103  (2009) 171801 

~2.6 σ~2.7σ
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FIG. 16: The observed and expected like-sign dimuon charge
asymmetries in bins of dimuon invariant mass. The expected
asymmetry is shown for (a) Ab

sl = 0.0 and (b) Ab
sl = −0.00957.
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FIG. 17: (Color online) Comparison of Ab
sl in data with the

standard model prediction for ad
sl and as

sl. Also shown are
the existing measurements of ad

sl [23] and as
sl [24]. The error

bands represent the ±1 standard deviation uncertainties on
each individual measurement.

FIG. 18: (Color online) The 68% and 95% C.L. regions of
probability for ∆Γs and φs values obtained from this mea-
surement, considering the experimental constraints on ad

sl [23].
The solid and dashed curves show respectively the 68% and
95% C.L. contours from the B0

s → J/ψφ measurement [25].
Also shown is the standard model (SM) prediction for φs and
∆Γs.
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FIG. 19: (Color online) Probability contours in the (φs,∆Γs)
plane for the combination of this measurement with the result
of Ref. [25], using the experimental constraints on ad

sl [23].
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~3.2    σ

NB: CDF in         in agreement 
with SM at 1      σ

Aψφ+ re + CDF & BaBar results
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These tensions might all go away with higher 
statistics.

Want high precision determination of theoretically 
clean observables.

Preferably 1) SM “Null tests”  (CP phase in Bs-Bs ) 
               2) SM FCNC + additionally suppressed 
                 (helicity suppression of                     )
               3) tree-level CKM (   )
               4) FB Asymmetries 
               5) Golden Kaon modes  

Future experimental challenges

Bq → µ+µ−

γ
B → K∗µµ

K → πνν
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Any theory of the weak scale (susy, 
technicolor, extra-dimensions,…) has 
some flavor breaking. Can it be non-
minimal?2)



Minimal flavor violation
New particles/interactions, but flavor structure ~ VCKM

(Q̄i
LQj

L)
YUY †

U

YDY †
D

VCKM

Y †
DYD

Y †
UYU

(d̄i
Rdj

R)

(ūi
Ruj

R)

MFV

condition: moderate tanß or small U(1)PQ breaking

MFV

+ LR, RL

|MFV| ≈ O(|SM|)

Chivukula Georgi; Buras et. al; D’Ambrosio et. al



New physics is MFV, if...

ΛNP

<H>

Origin of flavor structure decoupled
  ΛFlavor >> ΛNP

NP below ΛFlavor is flavor degenerate 
(or flavor like in SM)

But : little learned about the origin of 
flavor 

ΛFlavor

E



MSSM with unbroken SUSY is already MFV!

  => MSSM is MFV if SUSY is flavor blind

Example:  Gauge mediation with Mmess << Λflavor

(Gravity mediation in general not MFV)

MFV non-SUSY alternatives: UED and 
the Littlest Higgs with appropriate UV 
completions.

MFV example: SUSY



MFV Technicolor?
Chivukula, Georgi ‘87; Chivukula, Georgi,Randall ‘87; Randall ’93; Georgi ’94, Skiba ’96128 L. Randall / ETC with GIM mechanism

n
u 12D

12L
SU 2SL SD

ETCU ETCL ETCD

n+12 n+12 2 n+12

S-lu S-iD

Fig. 2. Models 1 and 2.

gauge group; that is a linear combination of this SU(n) and the SU(n)’s embedded

in the extended technicolor groups is technicolor. Finally, color and hypercharge

are weakly gauged. We discuss hypercharge in sect. 5.

Now we discuss the fermions. Again we start from the bottom of the moose.

There are fermions which transform as (n + l2~,5 — 1~)and (n +
12D’ ~ — 1~)

and fermions which transform as an (ii~, n + 12L) and an ~ n + 12L),

where the n + 12’s refer to different ETC groups. These fermions are necessary

for anomaly cancellation of the ETC groups. In this model, they are the light

fermions whose exchange mixes the left- and right-handed ETC gauge generators

so that physical fermions can acquire a mass.

The physical fermions (that is light quarks, leptons, and technifermions) are the

(n + 12w) (three up quarks), the (n + 12D) (three down quarks and three leptons),

and the (2, n + 121) (three quark electroweak doublets and three lepton dee-

troweak doublets).

There are (5w, n + 121), (~, n + 121) and (n + 12L’ 251) fermions. These will

condense with the fermions which carry global flavor symmetry when the two

SU(S) and the SU(2S) groups get strong.

There are (i~, 51), (T~,~ and (2SL, 121) fermions. Here l2~,12D’ and

are global flavor symmetry groups. When the S and 2S groups get strong, the

degeneracy of the ETC gauge boson masses will reflect this global symmetry. In

this model, the global symmetry is weakly broken by six-fermion operators,

involving the (i2~,S1), (~, n + 121), (n + l2~,S — 1), (~T, n + 121),

(n + 12L’ 251), ~ 12L) fermions and similarly with (i2~,5D)• This is the

weakest feature of the “model”. We assume the existence of these operators, but

do not address the question of their origin.

The global SU(12) symmetries are also broken by the weakly gauged SU(3) and

U(1) subgroups. These are required so that after the ETC gauge groups are

broken, color SU(3) and hypercharge are maintained. This of course means that
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Simpler proposal: 
AdS/CFT construction : 5D GIM mechanism 

Cacciapaglia, Csaki, Galloway, Marandella,Terning, A.W., ‘08



Figure 3: Comparison of the effectiveness of different rare observables in setting fu-

ture bounds on the scale of the representative operator (Q̄LY †
UYUγµQL)(L̄LγµLL) within

MFV models [30]. The vertical axis indicates the relative precision of a hypothetical

measurement of the observable with central value equal to the SM expectation. All the

curves are obtained assuming a 1% precision on the corresponding overall CKM factor.

• within the so-called littlest-Higgs model, B(KL → π0νν̄) could saturate the 6·10−11

bound according to [40]. On the other hand, in [41] only deviations from the SM

by at most 10% have been found. This discrepancy should be soon clarified.

3.4 Beyond MFV

The possibility of new sources of CP violation and flavor mixing in the 1−10 TeV region

is, in principle, the most natural possibility. At present, this scenario is challenged by
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σ~10 % ΔF=1 measurement probes 
m ≈ 6 TeV (tree) or m ≈ 600 GeV (1loop)



Br ∝ (tanβ)6

Can be magnitudes larger in
multi-Higgs models even in 
MFV. In the MSSM:
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B!l+l−  decays are both helicity suppressed 
and GIM suppressed (FCNC)

Excellent probes of models with 2 Higgs 
doublets (such as the MSSM) at large/moderate 
tanβ

III. Helicity-suppressed rare B decays

 tan3β 
µ AU

 

Μq
2 ~

mb ml

MA
2A(B!ll)H ~

Possible large enhancement over the SM for “natural values” of the free 
parameters (contrary to CPV in Bs mixing, no new CPV phases needed).                
But the magnitude of the effect can vary a lot in different SUSY-breaking 
scenarios

Within the MSSM, with MFV:

 

The B(Bd ! µ µ)/B(Bs ! µ µ) ratio 
is a key observable to proof or 
falsify MFV 

G. Isidori –  The Challenges of Flavour Physics                              ICHEP 2010, Paris, 27
th
 July 2010

In the SM both GIM and 
helicity suppressed

Br ∝
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Br(Bd,s → µ+µ−)



LHCb sensitivity for 1/fb
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Bs → µ+µ−

Br ∝ (tanβ)6MSSM:

 B(Bs !"µ µ) < 4.3 × 10-8 (95%CL)

B(Bd !"µ µ) < 7.6 × 10-9 (95%CL)

Constrained - MSSM
Constrained – MSSM with 

non-universal Higgs masses (NUHM)

Buchmuller et al. 
arXiv: 0907.5568  [hep-ph]

B(Bs !"µ µ)SM = 3.2(2) × 10-9
 

B(Bd !"µ µ)SM = 1.0(1) × 10-10

Present exp. status: SM expectations:

III. Helicity-suppressed rare B decays

CDF '09, very similar by D0 @ this conf.

G. Isidori –  The Challenges of Flavour Physics                              ICHEP 2010, Paris, 27
th
 July 2010

Buchmuller et al. arXiv: 0907.5568
Constrained – MSSM with 
non-universal Higgs masses (NUHM)



Falsifying MFV is easy...

MFV falsified by violating “sum rules”

New CP phases e.g. CPV in Bs mixing 

At the LHC: Br(q3)~ Br(q1,2)

Top FCNCs

...

e.g. Bobeth, Bona, Buras, Ewerth, Pierini, Silvestrini, A.W.

...once you have shown that the SM is dead

Aψφ



Is there anything else beside
the SM Yukawa couplings?

→ main goal of flavor physics
    in the early LHC phase



Will we be able to learn something 
about the origin of flavor at the LHC?3)



Quark and Lepton 
mass hierarchy



Masses on a Log-scale



Why this structure?
    
Other dimensionless parameters of the SM:   

gs ~1,  g ~ 0.6,  g’ ~ 0.3,  λHiggs ~ 1,  

The SM flavor puzzle

YU ≈




6 · 10−6 −0.001 0.008 + 0.004i
1 · 10−6 0.004 −0.04 + 0.001

8 · 10−9 + 2 · 10−8i 0.0002 0.98





YD ≈ diag
�
2 · 10−5 0.0005 0.02

�

|θ| < 10−9



If                 , then the      don’t look crazy.

Log(SM flavor puzzle)

Y = e−∆ ∆

− log |YD| ≈ diag (11 8 4)

− log |YU | ≈




12 7 5
14 6 3
18 9 0







Massij ∝ Yije
−MR(ci+cj)

∝ Yij

�
µlow

µhigh

�γi+γj

∝ Yij

�
�Φ�

Mmess

�Qi−Qj

anarchic (“structure-less”)

split fermions/RS

strong dynamics

Froggatt-Nielsen



Dynamics that generates hierarchies in masses &
mixings usually partially aligned with SM

NP Flavor dynamics
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+ LR, RL
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Dynamics that generates hierarchies in masses &
mixings usually partially aligned with SM

NP Flavor dynamics

(Q̄i
LQj

L)
YUY †

U

YDY †
D

VCKM

Y †
DYD

Y †
UYU

(d̄i
Rdj

R)

(ūi
Ruj

R)

NP

NP

NP 

+ LR, RL

Effects are O(SM) but not MFV, still
possible for M ~ TeV: expect 
signatures also in direct tests! 



Although the mechanism to generate the 
hierarchies looks similar, constraints are
different. 

MFV: 

wave-
function/
RS

U(1)horizontal

How low can we go?

XIJ = (YUY
†
U )

IJ ≈ λ2
tV

∗
3IV3J

(Q̄I
LX

IJQJ
L)

XIJ ∼ F I
QF

J
Q ∼ (F 3

Q)
2 V3IV3J

XIJ ∼
�

θ

M

�−QI+QJ

≈ λ1 orλ5 . . .
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wave-
function/
RS
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†
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depending on 
model & charge 
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Example III

The third example is a non-holomorphic model that has not previously been discussed.
In addition to having the good prediction for Vcb = O(ms/Mb) it also has a (1, 1)
texture zero giving the relation Vus = O(

√
ms/md). In this case there are two familon

fields, θ, θ̄, with charges ±1 and equal vevs to ensure D-flatness. The Higgs fields have
charge −ω and the quark charges are

qL 1,2,3 : (−3 + w, 2 + w,w)

dc 1, 2, 3 : (−5, 0, 0)

uc 1, 2, 3 : (−5, 0, 0) (40)

where w is a free parameter. It gives the following Yukawa matrices:

YU,D =




ε8u,d ε3u,d ε3u,d
ε3u,d ε2u,d ε2u,d
ε5u,d 1 1





where εu,d = <θ>
MU,D

and we have allowed for different messenger masses in the up and

the down sectors.

Example IV: A U(1)× U(1)′ Model

The charges are defined in Table 9, see also [29]. The expansion parameter for the U(1)

U(1) U(1)′

Q̄1 −3 0

Q̄2 0 −1

Q̄3 0 0

D1 1 −2

D2 −4 1

D3 0 −1

U1 1 −2

U2 −1 0

U3 0 0

.

Table 9: Charges in the U(1)2 model.

is ε1 and for the U(1)′ it is ε2. We shall assume (after [29]) that ε1 ∼ ε, and ε2 ∼ ε2.
The resulting mass matrices are

30

Leurer Nir Seiberg

XIJ ∼ F I
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2 V3IV3J

XIJ ∼
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θ

M

�−QI+QJ

≈ λ1 orλ5 . . .



SM on thick brane & domain wall ⇒ chiral localization

Hierarchies w/o Symmetries

!

x5

"

Figure 2: Profile of the scalar domain wall field Φ in the x5 dimension.
A chiral zero mode fermion is localized at the zero of Φ.

to a four dimensional chiral fermion stuck at the zero of Φ [12]. A convenient

representation for the 4 × 4 gamma matrices in five dimensions is

γi =

(

0 σi

σi 0

)

, i = 0..3 , γ5 = −i

(

1 0
0 −1

)

. (1)

As it will be useful in the following sections, we record below the two different

Lorentz invariant fermion bilinears in 5 dimensions

Ψ̄1Ψ2, ΨT
1 C5Ψ2 (2)

where

C5 = γ0γ2γ5 =

(

ε 0
0 −ε

)

in the Weyl basis. (3)

The first is the usual Dirac bilinear, while the second is the Majorana bilinear

which generalizes the familiar 4-dimensional expression, where instead of C5

we have C4 = γ0γ2.

The action for a five dimensional fermion Ψ coupled to the background

scalar Φ is then

S =
∫

d4x dx5 Ψ[i#∂4 + iγ5∂5 + Φ(x5)]Ψ . (4)

Here the coordinates of our 3+1 dimensions are represented by x whereas

the fifth coordinate is x5; five-dimensional fields are denoted with capital

5

of massive Dirac fermions. The shape of the wave function of the chiral

fermion is Gaussian, centered at x5 = 0. Note that coupling Ψ to −Φ would

have rendered 〈x5 |R, 0〉 normalizable and we would have instead localized a

massless right handed chiral fermion.

For clarity, let us write the full wave function of the massless chiral fermion

in the chiral basis

Ψ(x, x5) =

(

〈x5 |L, 0〉ψ(x)
0

)

. (12)

2.2 Many chiral fermions

We can easily generalize Eq. (4) to the case of several fermion fields. We

simply couple all 5-d Dirac fields to the same scalar Φ

S =
∫

d5x
∑

i,j

Ψ̄i[i $∂5 + λΦ(x5) − m]ijΨj . (13)

Here we allowed for general Yukawa couplings λij and also included masses

mij for the fermion fields. Mass terms for the five-dimensional fields are

allowed by all the symmetries and should therefore be present in the La-

grangian. In the case that we will eventually be interested in – the standard

model – the fermions carry gauge charges. This forces the couplings λij

and mij to be block-diagonal, with mixing only between fields with identical

gauge quantum numbers. For simplicity we will set λij = δij in this paper,

then mij can be diagonalized with eigenvalues mi.

Finding the massless four-dimensional fields is completely analogous to

the single fermion case of the last section. Each 5-d fermion Ψi gives rise to a

single 4-d left chiral fermion. Again, the wave functions in the 5th coordinate

are Gaussian, but they are now centered around the zeros of Φ − mi. In

the SHO approximation this is at xi
5 = mi/2µ2. Thus, at energies well

below µ the five-dimensional action above describes a set of non-interacting

four dimensional chiral fermions localized at different 4-d “slices” in the 5th

dimension. Note that while the overall position of the massless fermions

8

Ψ =
�

ΨL

ΨR

�
=

�
ψ0

L
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�
+ KK modes

Arkani-Hamed, Schmaltz
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Figure 2: Profile of the scalar domain wall field Φ in the x5 dimension.
A chiral zero mode fermion is localized at the zero of Φ.
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Quarks Leptons

thick wall

Figure 1: Profile of Standard Model fermion wave functions (vertical
axis) in the extra dimensions (horizontal axis). The fermions freely
propagate in 3+1 dimensions (not shown) and are “stuck” at different
locations in the extra dimensions. The gauge and Higgs fields’ wave
functions occupy the whole width of the thick wall. Direct couplings
between the fermions are then suppressed by the exponentially small
overlap of their wave functions. If – as shown here – quarks and lep-
tons live on opposite ends of the wall profile protons become essentially
stable. The hierarchy of Yukawa couplings arises from order one (in
units of the fermion wave function width) distances between left and
right handed components of the fermions.

we will see that the long-distance 4-dimensional theory can naturally have

exponentially small Yukawa couplings, arising from the small overlap between

left- and right-handed fermion wave functions. Similarly, without imposing

any symmetries to protect against proton decay, the proton decay rate can be

exponentially suppressed to safety if the quarks and leptons are are localized

at different ends of the wall ∗. We emphasize that there is nothing fine-tuned

about this from the point of view of the low-energy 4-dimensional theory;

all the exponentially small couplings are technically natural. However, our

examples violate the usual intuition that small couplings in a low-energy

theory must be explained by symmetries in the high-energy theory. Instead,
∗Our approach to to the fermion mass hierarchy similar in spirit to the one in [7]. For

other approaches to suppressing Yukawa couplings and proton decay, see [6].

2

SM on thick brane & domain wall ⇒ chiral localization
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Figure 2: Profile of the scalar domain wall field Φ in the x5 dimension.
A chiral zero mode fermion is localized at the zero of Φ.
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locations in the extra dimensions. The gauge and Higgs fields’ wave
functions occupy the whole width of the thick wall. Direct couplings
between the fermions are then suppressed by the exponentially small
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units of the fermion wave function width) distances between left and
right handed components of the fermions.

we will see that the long-distance 4-dimensional theory can naturally have

exponentially small Yukawa couplings, arising from the small overlap between

left- and right-handed fermion wave functions. Similarly, without imposing

any symmetries to protect against proton decay, the proton decay rate can be

exponentially suppressed to safety if the quarks and leptons are are localized

at different ends of the wall ∗. We emphasize that there is nothing fine-tuned

about this from the point of view of the low-energy 4-dimensional theory;

all the exponentially small couplings are technically natural. However, our

examples violate the usual intuition that small couplings in a low-energy

theory must be explained by symmetries in the high-energy theory. Instead,
∗Our approach to to the fermion mass hierarchy similar in spirit to the one in [7]. For

other approaches to suppressing Yukawa couplings and proton decay, see [6].

2

hl ec
r

Figure 3: Yukawa coupling: the Gaussian wave functions of the
fermions l and ec overlap only in an exponentially small region, sup-
pressing the effective Yukawa coupling exponentially.

suppressed because the two fields are separated in space. The coupling is

then proportional to the exponentially small overlap of the wave functions.

Note that we did not impose any chiral symmetries in the fundamental

theory to obtain this result: the coupling κ can violate the electron chiral

symmetry by O(1). Even with chiral symmetry maximally broken in the

fundamental theory, we obtain an approximate chiral symmetry in the low

energy, 4-d effective theory.

3.2 Long live the proton

Proton decay places a very stringent constraint on most extensions of the

standard model. Unless a symmetry can be imposed to forbid either baryon

or lepton number violation, proton decay forces the scale of new physics to

be extremely high. In particular one might be tempted to conclude that

proton decay kills all attempts to lower the fundamental Planck scale M∗

significantly beneath the GUT scale, unless continuous or discrete gauge

symmetries are invoked. We now show that these no-go theorems are very

elegantly evaded by separating wave functions in the extra dimensions. Con-

sider for simplicity a one-generation model in five dimensions where the stan-

dard model fermions are again localized in the x5 direction by coupling the

five-dimensional fields to the domain wall scalar Φ. Assume that all quark

fields are localized near x5 = 0 whereas the leptons are near x5 = r as de-
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simply couple all 5-d Dirac fields to the same scalar Φ

S =
∫

d5x
∑

i,j

Ψ̄i[i $∂5 + λΦ(x5) − m]ijΨj . (13)

Here we allowed for general Yukawa couplings λij and also included masses

mij for the fermion fields. Mass terms for the five-dimensional fields are

allowed by all the symmetries and should therefore be present in the La-

grangian. In the case that we will eventually be interested in – the standard

model – the fermions carry gauge charges. This forces the couplings λij

and mij to be block-diagonal, with mixing only between fields with identical

gauge quantum numbers. For simplicity we will set λij = δij in this paper,

then mij can be diagonalized with eigenvalues mi.

Finding the massless four-dimensional fields is completely analogous to

the single fermion case of the last section. Each 5-d fermion Ψi gives rise to a

single 4-d left chiral fermion. Again, the wave functions in the 5th coordinate

are Gaussian, but they are now centered around the zeros of Φ − mi. In

the SHO approximation this is at xi
5 = mi/2µ2. Thus, at energies well

below µ the five-dimensional action above describes a set of non-interacting

four dimensional chiral fermions localized at different 4-d “slices” in the 5th

dimension. Note that while the overall position of the massless fermions

8

Ψ =
�

ΨL

ΨR

�
=

�
ψ0

L
0

�
+ KK modes

Arkani-Hamed, Schmaltz



Quarks Leptons

thick wall

Figure 1: Profile of Standard Model fermion wave functions (vertical
axis) in the extra dimensions (horizontal axis). The fermions freely
propagate in 3+1 dimensions (not shown) and are “stuck” at different
locations in the extra dimensions. The gauge and Higgs fields’ wave
functions occupy the whole width of the thick wall. Direct couplings
between the fermions are then suppressed by the exponentially small
overlap of their wave functions. If – as shown here – quarks and lep-
tons live on opposite ends of the wall profile protons become essentially
stable. The hierarchy of Yukawa couplings arises from order one (in
units of the fermion wave function width) distances between left and
right handed components of the fermions.

we will see that the long-distance 4-dimensional theory can naturally have

exponentially small Yukawa couplings, arising from the small overlap between

left- and right-handed fermion wave functions. Similarly, without imposing

any symmetries to protect against proton decay, the proton decay rate can be

exponentially suppressed to safety if the quarks and leptons are are localized

at different ends of the wall ∗. We emphasize that there is nothing fine-tuned

about this from the point of view of the low-energy 4-dimensional theory;

all the exponentially small couplings are technically natural. However, our

examples violate the usual intuition that small couplings in a low-energy

theory must be explained by symmetries in the high-energy theory. Instead,
∗Our approach to to the fermion mass hierarchy similar in spirit to the one in [7]. For

other approaches to suppressing Yukawa couplings and proton decay, see [6].

2

hl ec
r

Figure 3: Yukawa coupling: the Gaussian wave functions of the
fermions l and ec overlap only in an exponentially small region, sup-
pressing the effective Yukawa coupling exponentially.

suppressed because the two fields are separated in space. The coupling is

then proportional to the exponentially small overlap of the wave functions.

Note that we did not impose any chiral symmetries in the fundamental

theory to obtain this result: the coupling κ can violate the electron chiral

symmetry by O(1). Even with chiral symmetry maximally broken in the

fundamental theory, we obtain an approximate chiral symmetry in the low

energy, 4-d effective theory.

3.2 Long live the proton

Proton decay places a very stringent constraint on most extensions of the

standard model. Unless a symmetry can be imposed to forbid either baryon

or lepton number violation, proton decay forces the scale of new physics to

be extremely high. In particular one might be tempted to conclude that

proton decay kills all attempts to lower the fundamental Planck scale M∗

significantly beneath the GUT scale, unless continuous or discrete gauge

symmetries are invoked. We now show that these no-go theorems are very

elegantly evaded by separating wave functions in the extra dimensions. Con-

sider for simplicity a one-generation model in five dimensions where the stan-

dard model fermions are again localized in the x5 direction by coupling the

five-dimensional fields to the domain wall scalar Φ. Assume that all quark

fields are localized near x5 = 0 whereas the leptons are near x5 = r as de-

11
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Figure 2: Profile of the scalar domain wall field Φ in the x5 dimension.
A chiral zero mode fermion is localized at the zero of Φ.

to a four dimensional chiral fermion stuck at the zero of Φ [12]. A convenient

representation for the 4 × 4 gamma matrices in five dimensions is

γi =

(

0 σi

σi 0

)

, i = 0..3 , γ5 = −i

(

1 0
0 −1

)

. (1)

As it will be useful in the following sections, we record below the two different

Lorentz invariant fermion bilinears in 5 dimensions

Ψ̄1Ψ2, ΨT
1 C5Ψ2 (2)

where

C5 = γ0γ2γ5 =

(

ε 0
0 −ε

)

in the Weyl basis. (3)

The first is the usual Dirac bilinear, while the second is the Majorana bilinear

which generalizes the familiar 4-dimensional expression, where instead of C5

we have C4 = γ0γ2.

The action for a five dimensional fermion Ψ coupled to the background

scalar Φ is then

S =
∫

d4x dx5 Ψ[i#∂4 + iγ5∂5 + Φ(x5)]Ψ . (4)

Here the coordinates of our 3+1 dimensions are represented by x whereas

the fifth coordinate is x5; five-dimensional fields are denoted with capital

5

of massive Dirac fermions. The shape of the wave function of the chiral

fermion is Gaussian, centered at x5 = 0. Note that coupling Ψ to −Φ would

have rendered 〈x5 |R, 0〉 normalizable and we would have instead localized a

massless right handed chiral fermion.

For clarity, let us write the full wave function of the massless chiral fermion

in the chiral basis

Ψ(x, x5) =

(

〈x5 |L, 0〉ψ(x)
0

)

. (12)

2.2 Many chiral fermions

We can easily generalize Eq. (4) to the case of several fermion fields. We

simply couple all 5-d Dirac fields to the same scalar Φ

S =
∫

d5x
∑

i,j

Ψ̄i[i $∂5 + λΦ(x5) − m]ijΨj . (13)

Here we allowed for general Yukawa couplings λij and also included masses

mij for the fermion fields. Mass terms for the five-dimensional fields are

allowed by all the symmetries and should therefore be present in the La-

grangian. In the case that we will eventually be interested in – the standard

model – the fermions carry gauge charges. This forces the couplings λij

and mij to be block-diagonal, with mixing only between fields with identical

gauge quantum numbers. For simplicity we will set λij = δij in this paper,

then mij can be diagonalized with eigenvalues mi.

Finding the massless four-dimensional fields is completely analogous to

the single fermion case of the last section. Each 5-d fermion Ψi gives rise to a

single 4-d left chiral fermion. Again, the wave functions in the 5th coordinate

are Gaussian, but they are now centered around the zeros of Φ − mi. In

the SHO approximation this is at xi
5 = mi/2µ2. Thus, at energies well

below µ the five-dimensional action above describes a set of non-interacting

four dimensional chiral fermions localized at different 4-d “slices” in the 5th

dimension. Note that while the overall position of the massless fermions

8

SM Yukawa couplings and proton decay. Since our exponential suppression

factors dominate any power suppression we will not keep track of the various

powers of scales which arise from matching 5-d to 4-d Lagrangians.

3.1 Yukawa couplings

In this section we apply our mechanism to generating hierarchical Yukawa

couplings in four dimensions. Concentrating on only one generation and the

lepton sector for the moment, we start with the five-dimensional fermion

fields with action

S =
∫

d5x L̄[i !∂5 + Φ(x5)]L + Ēc[i !∂5 + Φ(x5) − m]Ec + κHLT C5E
c. (14)

where C5 was defined in Eq. (3). As discussed in the previous sections, we

find a left-handed massless fermions l from L localized at x5 = 0 and ec from

Ec localized at x5 = r ≡ m/(2µ2). For simplicity, we will assume that the

Higgs is delocalized inside the wall. We now determine what effective four-

dimensional interactions between the light fields results from the Yukawa

coupling in eq. (14). To this end we expand L and Ec as in eq. (6) and

replace the Higgs field H by its lowest Kaluza-Klein mode which has an

x5-independent wave function. We obtain for the Yukawa coupling

SY uk =
∫

d4x κ h(x)l(x)ec(x)
∫

dx5 φl(x5) φec(x5) . (15)

Here φl(x5) and φec(x5) are the zero-mode wave functions for the lepton

doublet and singlet respectively. φl is a Gaussian centered at x5 = 0 whereas

φec is centered at x5 = r. The overlap of Gaussians is itself a Gaussian and

we find
∫

dx5 φl(x5) φec(x5) =

√
2µ√
π

∫

dx5 e−µ2x2
5e−µ2(x5−r)2 = e−µ2r2/2 . (16)

This result is in agreement with the intuitive expectation from Figure 2.

Any coupling between the two chiral fermions is necessarily exponentially
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Quarks Leptons

thick wall

Figure 1: Profile of Standard Model fermion wave functions (vertical
axis) in the extra dimensions (horizontal axis). The fermions freely
propagate in 3+1 dimensions (not shown) and are “stuck” at different
locations in the extra dimensions. The gauge and Higgs fields’ wave
functions occupy the whole width of the thick wall. Direct couplings
between the fermions are then suppressed by the exponentially small
overlap of their wave functions. If – as shown here – quarks and lep-
tons live on opposite ends of the wall profile protons become essentially
stable. The hierarchy of Yukawa couplings arises from order one (in
units of the fermion wave function width) distances between left and
right handed components of the fermions.

we will see that the long-distance 4-dimensional theory can naturally have

exponentially small Yukawa couplings, arising from the small overlap between

left- and right-handed fermion wave functions. Similarly, without imposing

any symmetries to protect against proton decay, the proton decay rate can be

exponentially suppressed to safety if the quarks and leptons are are localized

at different ends of the wall ∗. We emphasize that there is nothing fine-tuned

about this from the point of view of the low-energy 4-dimensional theory;

all the exponentially small couplings are technically natural. However, our

examples violate the usual intuition that small couplings in a low-energy

theory must be explained by symmetries in the high-energy theory. Instead,
∗Our approach to to the fermion mass hierarchy similar in spirit to the one in [7]. For

other approaches to suppressing Yukawa couplings and proton decay, see [6].

2
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r

Figure 3: Yukawa coupling: the Gaussian wave functions of the
fermions l and ec overlap only in an exponentially small region, sup-
pressing the effective Yukawa coupling exponentially.

suppressed because the two fields are separated in space. The coupling is

then proportional to the exponentially small overlap of the wave functions.

Note that we did not impose any chiral symmetries in the fundamental

theory to obtain this result: the coupling κ can violate the electron chiral

symmetry by O(1). Even with chiral symmetry maximally broken in the

fundamental theory, we obtain an approximate chiral symmetry in the low

energy, 4-d effective theory.

3.2 Long live the proton

Proton decay places a very stringent constraint on most extensions of the

standard model. Unless a symmetry can be imposed to forbid either baryon

or lepton number violation, proton decay forces the scale of new physics to

be extremely high. In particular one might be tempted to conclude that

proton decay kills all attempts to lower the fundamental Planck scale M∗

significantly beneath the GUT scale, unless continuous or discrete gauge

symmetries are invoked. We now show that these no-go theorems are very

elegantly evaded by separating wave functions in the extra dimensions. Con-

sider for simplicity a one-generation model in five dimensions where the stan-

dard model fermions are again localized in the x5 direction by coupling the

five-dimensional fields to the domain wall scalar Φ. Assume that all quark

fields are localized near x5 = 0 whereas the leptons are near x5 = r as de-

11
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Figure 2: Profile of the scalar domain wall field Φ in the x5 dimension.
A chiral zero mode fermion is localized at the zero of Φ.

to a four dimensional chiral fermion stuck at the zero of Φ [12]. A convenient

representation for the 4 × 4 gamma matrices in five dimensions is

γi =

(

0 σi

σi 0

)

, i = 0..3 , γ5 = −i

(

1 0
0 −1

)

. (1)

As it will be useful in the following sections, we record below the two different

Lorentz invariant fermion bilinears in 5 dimensions

Ψ̄1Ψ2, ΨT
1 C5Ψ2 (2)

where

C5 = γ0γ2γ5 =

(

ε 0
0 −ε

)

in the Weyl basis. (3)

The first is the usual Dirac bilinear, while the second is the Majorana bilinear

which generalizes the familiar 4-dimensional expression, where instead of C5

we have C4 = γ0γ2.

The action for a five dimensional fermion Ψ coupled to the background

scalar Φ is then

S =
∫

d4x dx5 Ψ[i#∂4 + iγ5∂5 + Φ(x5)]Ψ . (4)

Here the coordinates of our 3+1 dimensions are represented by x whereas

the fifth coordinate is x5; five-dimensional fields are denoted with capital

5

of massive Dirac fermions. The shape of the wave function of the chiral

fermion is Gaussian, centered at x5 = 0. Note that coupling Ψ to −Φ would

have rendered 〈x5 |R, 0〉 normalizable and we would have instead localized a

massless right handed chiral fermion.

For clarity, let us write the full wave function of the massless chiral fermion

in the chiral basis

Ψ(x, x5) =

(

〈x5 |L, 0〉ψ(x)
0

)

. (12)

2.2 Many chiral fermions

We can easily generalize Eq. (4) to the case of several fermion fields. We

simply couple all 5-d Dirac fields to the same scalar Φ

S =
∫

d5x
∑

i,j

Ψ̄i[i $∂5 + λΦ(x5) − m]ijΨj . (13)

Here we allowed for general Yukawa couplings λij and also included masses

mij for the fermion fields. Mass terms for the five-dimensional fields are

allowed by all the symmetries and should therefore be present in the La-

grangian. In the case that we will eventually be interested in – the standard

model – the fermions carry gauge charges. This forces the couplings λij

and mij to be block-diagonal, with mixing only between fields with identical

gauge quantum numbers. For simplicity we will set λij = δij in this paper,

then mij can be diagonalized with eigenvalues mi.

Finding the massless four-dimensional fields is completely analogous to

the single fermion case of the last section. Each 5-d fermion Ψi gives rise to a

single 4-d left chiral fermion. Again, the wave functions in the 5th coordinate

are Gaussian, but they are now centered around the zeros of Φ − mi. In

the SHO approximation this is at xi
5 = mi/2µ2. Thus, at energies well

below µ the five-dimensional action above describes a set of non-interacting

four dimensional chiral fermions localized at different 4-d “slices” in the 5th

dimension. Note that while the overall position of the massless fermions

8

SM Yukawa couplings and proton decay. Since our exponential suppression

factors dominate any power suppression we will not keep track of the various

powers of scales which arise from matching 5-d to 4-d Lagrangians.

3.1 Yukawa couplings

In this section we apply our mechanism to generating hierarchical Yukawa

couplings in four dimensions. Concentrating on only one generation and the

lepton sector for the moment, we start with the five-dimensional fermion

fields with action

S =
∫

d5x L̄[i !∂5 + Φ(x5)]L + Ēc[i !∂5 + Φ(x5) − m]Ec + κHLT C5E
c. (14)

where C5 was defined in Eq. (3). As discussed in the previous sections, we

find a left-handed massless fermions l from L localized at x5 = 0 and ec from

Ec localized at x5 = r ≡ m/(2µ2). For simplicity, we will assume that the

Higgs is delocalized inside the wall. We now determine what effective four-

dimensional interactions between the light fields results from the Yukawa

coupling in eq. (14). To this end we expand L and Ec as in eq. (6) and

replace the Higgs field H by its lowest Kaluza-Klein mode which has an

x5-independent wave function. We obtain for the Yukawa coupling

SY uk =
∫

d4x κ h(x)l(x)ec(x)
∫

dx5 φl(x5) φec(x5) . (15)

Here φl(x5) and φec(x5) are the zero-mode wave functions for the lepton

doublet and singlet respectively. φl is a Gaussian centered at x5 = 0 whereas

φec is centered at x5 = r. The overlap of Gaussians is itself a Gaussian and

we find
∫

dx5 φl(x5) φec(x5) =

√
2µ√
π

∫

dx5 e−µ2x2
5e−µ2(x5−r)2 = e−µ2r2/2 . (16)

This result is in agreement with the intuitive expectation from Figure 2.

Any coupling between the two chiral fermions is necessarily exponentially
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Quarks Leptons

thick wall

Figure 1: Profile of Standard Model fermion wave functions (vertical
axis) in the extra dimensions (horizontal axis). The fermions freely
propagate in 3+1 dimensions (not shown) and are “stuck” at different
locations in the extra dimensions. The gauge and Higgs fields’ wave
functions occupy the whole width of the thick wall. Direct couplings
between the fermions are then suppressed by the exponentially small
overlap of their wave functions. If – as shown here – quarks and lep-
tons live on opposite ends of the wall profile protons become essentially
stable. The hierarchy of Yukawa couplings arises from order one (in
units of the fermion wave function width) distances between left and
right handed components of the fermions.

we will see that the long-distance 4-dimensional theory can naturally have

exponentially small Yukawa couplings, arising from the small overlap between

left- and right-handed fermion wave functions. Similarly, without imposing

any symmetries to protect against proton decay, the proton decay rate can be

exponentially suppressed to safety if the quarks and leptons are are localized

at different ends of the wall ∗. We emphasize that there is nothing fine-tuned

about this from the point of view of the low-energy 4-dimensional theory;

all the exponentially small couplings are technically natural. However, our

examples violate the usual intuition that small couplings in a low-energy

theory must be explained by symmetries in the high-energy theory. Instead,
∗Our approach to to the fermion mass hierarchy similar in spirit to the one in [7]. For

other approaches to suppressing Yukawa couplings and proton decay, see [6].

2
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r

Figure 3: Yukawa coupling: the Gaussian wave functions of the
fermions l and ec overlap only in an exponentially small region, sup-
pressing the effective Yukawa coupling exponentially.

suppressed because the two fields are separated in space. The coupling is

then proportional to the exponentially small overlap of the wave functions.

Note that we did not impose any chiral symmetries in the fundamental

theory to obtain this result: the coupling κ can violate the electron chiral

symmetry by O(1). Even with chiral symmetry maximally broken in the

fundamental theory, we obtain an approximate chiral symmetry in the low

energy, 4-d effective theory.

3.2 Long live the proton

Proton decay places a very stringent constraint on most extensions of the

standard model. Unless a symmetry can be imposed to forbid either baryon

or lepton number violation, proton decay forces the scale of new physics to

be extremely high. In particular one might be tempted to conclude that

proton decay kills all attempts to lower the fundamental Planck scale M∗

significantly beneath the GUT scale, unless continuous or discrete gauge

symmetries are invoked. We now show that these no-go theorems are very

elegantly evaded by separating wave functions in the extra dimensions. Con-

sider for simplicity a one-generation model in five dimensions where the stan-

dard model fermions are again localized in the x5 direction by coupling the

five-dimensional fields to the domain wall scalar Φ. Assume that all quark

fields are localized near x5 = 0 whereas the leptons are near x5 = r as de-
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Figure 2: Profile of the scalar domain wall field Φ in the x5 dimension.
A chiral zero mode fermion is localized at the zero of Φ.

to a four dimensional chiral fermion stuck at the zero of Φ [12]. A convenient

representation for the 4 × 4 gamma matrices in five dimensions is

γi =

(

0 σi

σi 0

)

, i = 0..3 , γ5 = −i

(

1 0
0 −1

)

. (1)

As it will be useful in the following sections, we record below the two different

Lorentz invariant fermion bilinears in 5 dimensions

Ψ̄1Ψ2, ΨT
1 C5Ψ2 (2)

where

C5 = γ0γ2γ5 =

(

ε 0
0 −ε

)

in the Weyl basis. (3)

The first is the usual Dirac bilinear, while the second is the Majorana bilinear

which generalizes the familiar 4-dimensional expression, where instead of C5

we have C4 = γ0γ2.

The action for a five dimensional fermion Ψ coupled to the background

scalar Φ is then

S =
∫

d4x dx5 Ψ[i#∂4 + iγ5∂5 + Φ(x5)]Ψ . (4)

Here the coordinates of our 3+1 dimensions are represented by x whereas

the fifth coordinate is x5; five-dimensional fields are denoted with capital

5

of massive Dirac fermions. The shape of the wave function of the chiral

fermion is Gaussian, centered at x5 = 0. Note that coupling Ψ to −Φ would

have rendered 〈x5 |R, 0〉 normalizable and we would have instead localized a

massless right handed chiral fermion.

For clarity, let us write the full wave function of the massless chiral fermion

in the chiral basis

Ψ(x, x5) =

(

〈x5 |L, 0〉ψ(x)
0

)

. (12)

2.2 Many chiral fermions

We can easily generalize Eq. (4) to the case of several fermion fields. We

simply couple all 5-d Dirac fields to the same scalar Φ

S =
∫

d5x
∑

i,j

Ψ̄i[i $∂5 + λΦ(x5) − m]ijΨj . (13)

Here we allowed for general Yukawa couplings λij and also included masses

mij for the fermion fields. Mass terms for the five-dimensional fields are

allowed by all the symmetries and should therefore be present in the La-

grangian. In the case that we will eventually be interested in – the standard

model – the fermions carry gauge charges. This forces the couplings λij

and mij to be block-diagonal, with mixing only between fields with identical

gauge quantum numbers. For simplicity we will set λij = δij in this paper,

then mij can be diagonalized with eigenvalues mi.

Finding the massless four-dimensional fields is completely analogous to

the single fermion case of the last section. Each 5-d fermion Ψi gives rise to a

single 4-d left chiral fermion. Again, the wave functions in the 5th coordinate

are Gaussian, but they are now centered around the zeros of Φ − mi. In

the SHO approximation this is at xi
5 = mi/2µ2. Thus, at energies well

below µ the five-dimensional action above describes a set of non-interacting

four dimensional chiral fermions localized at different 4-d “slices” in the 5th

dimension. Note that while the overall position of the massless fermions

8

SM Yukawa couplings and proton decay. Since our exponential suppression

factors dominate any power suppression we will not keep track of the various

powers of scales which arise from matching 5-d to 4-d Lagrangians.

3.1 Yukawa couplings

In this section we apply our mechanism to generating hierarchical Yukawa

couplings in four dimensions. Concentrating on only one generation and the

lepton sector for the moment, we start with the five-dimensional fermion

fields with action

S =
∫

d5x L̄[i !∂5 + Φ(x5)]L + Ēc[i !∂5 + Φ(x5) − m]Ec + κHLT C5E
c. (14)

where C5 was defined in Eq. (3). As discussed in the previous sections, we

find a left-handed massless fermions l from L localized at x5 = 0 and ec from

Ec localized at x5 = r ≡ m/(2µ2). For simplicity, we will assume that the

Higgs is delocalized inside the wall. We now determine what effective four-

dimensional interactions between the light fields results from the Yukawa

coupling in eq. (14). To this end we expand L and Ec as in eq. (6) and

replace the Higgs field H by its lowest Kaluza-Klein mode which has an

x5-independent wave function. We obtain for the Yukawa coupling

SY uk =
∫

d4x κ h(x)l(x)ec(x)
∫

dx5 φl(x5) φec(x5) . (15)

Here φl(x5) and φec(x5) are the zero-mode wave functions for the lepton

doublet and singlet respectively. φl is a Gaussian centered at x5 = 0 whereas

φec is centered at x5 = r. The overlap of Gaussians is itself a Gaussian and

we find
∫

dx5 φl(x5) φec(x5) =

√
2µ√
π

∫

dx5 e−µ2x2
5e−µ2(x5−r)2 = e−µ2r2/2 . (16)

This result is in agreement with the intuitive expectation from Figure 2.

Any coupling between the two chiral fermions is necessarily exponentially
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✓ solution to the hierarchy problem
✓ AdS/CFT description: reappraisal of strong EW 
symmetry breaking (composite Higgs, technicolor,…)
✓ high scale unification, log running of gauge couplings
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Excursion into AdS/CFT

Why are FCNCs protected?



Text

Anti-de-Sitter (AdS)                       Conformal (CFT)

Compactification                            Mass gap 

Red-shifting of scales                       Dimensional trans-
                                                    mutation

AdS/CFT (popular science realization)
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Two ways of giving mass to fermions… 

Bi-linear (like SM):

Linear :

L = yfLOR + yRfROL + mOLOR, OR ∼ (3, 2) 1
6

L = yfLOHfR, OH ∼ (1, 2) 1
2

D.B. Kaplan ’91
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|heavy� = − sin φ|elem.�+ cos φ|comp.�

L = Lelem(gelem) + Lcomp(g∗) + Lmix

1 <∼ g∗ <∼ 4π

Partial compositeness



Two-site description
Contino,Kramer, Son, Sundrum 

elementary composite

the two sectors in the form of mass-mixing. The Lagrangian is then mass-diagonalized for
phenomenological use. Section 6 describes the impact of electroweak symmetry breaking on
the masses and couplings of the new physics. Section 7 makes the case that the tR should
be a composite on par with the Higgs doublet, and shows how to simply implement this
technically. In Section 8, it is shown that the dominant radiative corrections to the Higgs
mass from the elementary sector are UV-finite. These finite corrections are then used to
estimate Higgs fine tuning as a function of parameter space. Section 9 uses the formulas
for the new-physics contributions to flavor and electroweak precision variables computed in
the Appendices A, B and C to sketch the best motivated regions of the parameter space.
Section 10 discusses the most promising channels and strategies to discover the new TeV
states at the LHC. Finally, Appendix D estimates the maximal energy to which the model
is internally consistent, and shows that this is well above upcoming experimental reach.
Appendix E briefly describes the inclusion within the composite sector of the SM-neutral
graviton and radion excitations of the Randall-Sundrum model.

3 Elementary Sector

In this section we define the first building block of our minimal two-site model of partial
compositeness: the elementary sector. Its field content corresponds precisely to that of
the SM, but with the notable exception of the Higgs field. Indeed, the elementary fields
will ultimately constitute the dominant component of the physical SM fermions and gauge
bosons. The elementary gauge fields, corresponding to adjoints of the elementary gauge
group [SU(3)c ⊗ SU(2)L ⊗ U(1)Y ]el, are denoted by

Aµ ≡ {Gµ, Wµ,Bµ} . (8)

The SM electroweak doublet fermions are denoted by

ψL ≡ {qLi = (uLi, dLi), "Li = (νLi, eLi)} , i = 1, 2, 3 , (9)

or by their more individual names such as tL, νeL, µL. The SM electroweak singlet fermions
are denoted by 5

ψ̃R ≡ {uRi, dRi, νRi, eRi} . (10)

The only renormalizable interactions in this sector are gauge interactions,

Lelementary = −
1

4
F 2

µν + ψ̄Li $DψL + ¯̃ψRi $Dψ̃R . (11)

The associated gauge couplings, gel 1, gel 2, gel 3, will turn out to be approximately, but not
exactly, equal to the measured SM gauge couplings, g1, g2, g3. For technical reasons dis-
cussed below, it is more convenient to use the standard SO(10) grand unified theory (GUT)

5The collective symbol ψ̃R is deliberately redundant. Normally, right-handed SM fermions are assumed
to be electroweak singlets. Here, we additionally use the tilde to denote this fact and conform with our
notation for the composite sector, where both chiralities of electroweak singlets ultimately appear.
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convention for the hypercharge

g1 ≡
√

5

3
gY , YGUT ≡

√

3

5
Y , (12)

where gY and Y denote the hypercharge coupling and hypercharge generator in the usual
SM convention, and YGUT is defined by Eq. (12).

The elementary sector gauge dynamics obviously makes sense in isolation to the highest
scales, say the Planck scale. Non-renormalizable operators made of elementary fields, like
for example flavor and CP violating four-fermion interactions, will be strongly suppressed
and thus negligible. Any effect of flavor and CP violation must therefore come from the
composite sector and proceed through its interactions with the elementary fields.

4 Composite Sector

The composite sector comprises the Higgs plus what is essentially an “excited” copy of the
SM fermions and gauge bosons. The basic role of these excitations is to provide a small
composite component to the physical SM fermions and gauge bosons, which determines the
extent to which the latter couple to the Higgs and eventually feel electroweak symmetry
breaking. This would naively suggest, in particular, that the massive vector excitations
ρµ should correspond to an adjoint of SU(3) ⊗ SU(2) ⊗ U(1). However, in order to pro-
tect the electroweak T parameter as discussed below, the composite bosons must respect a
larger symmetry, minimally [SU(3) ⊗ SU(2) ⊗ SU(2) ⊗ U(1)]. In a controlled effective field
theory, massive vector mesons must always be realized as gauge bosons of a broken gauge
group. We therefore take the ρµ as gauge bosons (hence adjoint representations) of a group
[SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X ]comp. The SM Higgs field is assumed to transform as
a real bidoublet (H̃, H) under [SU(2)L ⊗ SU(2)R]comp, while the quantum numbers that we
adopt for the massive fermion excitations, χ, χ̃, are those given in Table 1. 6

The composite dynamics is then summarized by

Lcomposite = −
1

4
ρ2

µν +
M2

∗

2
ρ2

µ + |DµH|2 − V (H)

+ χ̄(i $D − m)χ + ¯̃χ(i $D − m̃)χ̃ − χ̄
(

Y∗uH̃χ̃u + Y∗dHχ̃d
)

+ h.c. ,
(13)

where χ̃u ≡ {Ũ , Ñ}, χ̃d ≡ {D̃, Ẽ}. The ρµ mass terms clearly break the composite gauge
invariance completely. Technically, one can imagine that this is due to a Higgs mechanism
(distinct from the electroweak Higgs mechanism) in which the associated Goldstone bosons
have been eaten by the massive ρ’s (that is, we are in unitary gauge), and other related
massive fluctuations are omitted because their masses are at the cutoff scale of our composite
effective field theory description. The perturbativity of our effective description then implies
an upper bound on this cutoff, which we estimate in Appendix D. It can be large enough

6The factor of
√

3/2 in the U(1)X charges comes from the relation YGUT =
(

T 3R + ξ TX

)

/
√

1 + ξ2,

where ξ =
√

2/3 and T 3R = 0 for all the fermions. See sec. 4.1 for more details.
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5 Partial Compositeness

Partial compositeness is realized by adding a set of mass-mixing (soft mixing) terms to our
model,

Lmixing = −M2
∗

gel

g∗
Aµρ

∗
µ +

M2
∗

2

(

gel

g∗
Aµ

)2

+ (ψ̄L∆χR + ¯̃ψR∆̃χ̃L + h.c.) , (22)

where an implicit sum over all species of gauge and fermionic fields is understood.

5.1 Residual Standard Model Gauge Invariance

The vector boson terms reflect the gauging of the global symmetry group of the composite
sector of Section 4 by the elementary gauge symmetry. This looks somewhat unfamiliar
because the (broken) ρ gauge symmetry is being treated in unitary gauge. Indeed, it is
straightforward to check that the sum of the vector mass terms in Eqs. (13), (22) is of the
form

M2
∗

2

(

ρµ −
gel

g∗
Aµ

)2

,

and that the entire Lagrangian, Eq. (1), is exactly invariant under an SU(3)⊗SU(2)⊗U(1)
gauge symmetry which we identify with the final SM gauge symmetry. The corresponding
SM gauge fields are then superpositions

g∗
√

g2
el + g2

∗

Aµ +
gel

√

g2
el + g2

∗

ρ∗
µ , (23)

and the SM gauge couplings have the form

g =
gel g∗

√

g2
el + g2

∗

# gel , for gel $ g∗ . (24)

The non-trivial superposition of Aµ and ρ∗
µ inside the SM gauge field is the vector meson

version of partial compositeness. In the literature of low-energy hadronic phenomenology
the analogous phenomenon is known as “photon-ρ” mixing.

The fermionic terms in Eq. (22) describe fermionic partial compositeness in terms of
mixing-mass parameters ∆, ∆̃, which are independent for each fermionic SM gauge repre-
sentation (or, equivalently, for each species of massive fermion). In the interest of simplicity,
they are chosen to be diagonal in the same basis as the m and m̃ are, in generation space.
They explicitly break the separate elementary and composite gauge symmetries of the ρµ and
Aµ but preserve the SM gauge invariance discussed above. The mass-mixing of elementary
chiral fermions with composite Dirac fermions necessarily results in a new set of massless
chiral fermions, which are linear combinations of the original χ and ψ, and are identified
with the SM fermions.

14
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|SM� = cos φ|elem.� + sinφ|comp.�

|heavy� = − sin φ|elem.�+ cos φ|comp.�

L = Lelem(gelem) + Lcomp(g∗) + Lmix

1 <∼ g∗ <∼ 4π

Partial compositeness

heavy ~ TeV,    up,down ~ MeV : 
 Rationale for  sin(Φ) << 1 ?



1) Linear coupling of SM fields to composites

2) Strong sector conformal over large energy range

µ
dλ

dµ
= γλ γ = dim[OR] + 3/2− 4

LUV ⊃ λŌRψL

λ ∼
�

TeV
MPl

�γ

Contino, Pomarol
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|heavy� = − sin φ|elem.�+ cos φ|comp.�

L = Lelem(gelem) + Lcomp(g∗) + Lmix

1 <∼ g∗ <∼ 4π

Partial compositeness

Degree of compositeness: sin φ = F (c) ∼
�

TeV
Mpl

�c− 1
2
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strong dynamics
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−MR(ci+cj)

∝ Yij

�
µlow

µhigh

�γi+γj

anarchic (“structure-less”)

split fermions/RS

strong dynamics

Duality!



Structure of the mass matrix 

Yu , Yd ~ O(1) & anarchic and                 for i < j.

 Fermion zero mode on the IR brane  

         

mSM
u =

v√
2
FqYuFu,

mSM
d =

v√
2
FqYdFd

F (c) ∼
�

(TeV/Planck)c− 1
2 c > 1/2√

1− 2c c < 1/2

Fi � Fj

Meanwhile in the Extra-Dimension



Hierarchical mass eigenvalues (6 conditions)

and hierarchical mixing angles (2 conditions)

check Cabibbo:                                                                                   
                                                                       

FQ1/FQ3 ∼ θ13 ∼ λ3

FQ2/FQ3 ∼ θ23 ∼ λ2

θ12 ∼ FQ1/FQ2 ∼ FQ1/FQ3 · FQ3/FQ2 ∼ λ

Match SM spectrum and VCKM

!

(mu,d)ii ∼
v√
2
FQiYu,dFui,di Fq =

�
F

Λ

�q



Flavor hierarchy from hierarchy in Fi
FdL

FdR

~(g*/Mkk)2  FdL FsL FdR FsR 

~(g*/Mkk)2  md ms / (<H> Y*)

RS GIM - partial compositeness

Y*
md ∼ v FdLY ∗FdR

Gherghetta, Pomarol; Huber;Agashe, Perez, Soni; 



Flavor hierarchy from hierarchy in Fi
FdL

FdR

~(g*/Mkk)2  FdL FsL FdR FsR 

~(g*/Mkk)2  md ms / (<H> Y*)

RS GIM - partial compositeness

Y*
md ∼ v FdLY ∗FdR

KK gluon FCNCs proportional to
the same small Fi :

∼ (g∗)2

M2
KK

FdLFdRFsLFsR

∼ (g∗)2

M2
KK

md ms

(vY ∗)2

KK gluonFdL FdR

FsL FsR

g* g*

Gherghetta, Pomarol; Huber;Agashe, Perez, Soni; 



              (strongest constraint from      )

                           

              (strongest constraint from         ) 

FCNCs assuming anarchy

K K̄ C4(M∗) ∼
1

M2
∗

2mdms

v2

�
g∗
Y∗

�2

M∗ >∼ 10
�

g∗
Y∗

�
TeV

!
b s

γ

h

�K

∆F = 1

∆F = 2

Combined constraints ⇒ ‘little’ flavor problem w/ anarchy

Csaki, Falkowski, W; Buras et al; Casagrande et al

M∗ >∼ 1.3 Y∗ TeV

��/�



Adding flavor symmetries: 
flavor gauge bosons

o tension with ΔF=2 bounds require some alignment
   & additional flavor symmetries
o global symmetries of the strong sector are dual to   
   local gauge symmetries (consequence of AdS/CFT)

(to avoid arbitrary cutoff-flavor breaking, need to gauge 
SM approximate flavor currents)
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LHC phenomenology for string theorists Joseph Lykken

At NNLO (see Figure 3) one gets a result with a reduced dependence on

µF (not to mention an even more reduced dependence on the

renormalization scale). Given a NNLO result, one can pick the optimal

value for µF such that the NLO and NNLO results agree. This is

similar in spirit to the K factor method. This trick is important

because NLO event generators are beginning to become available for

LHC physics, whereas NNLO event generators are out of the realm of

possibility for (at least) the LHC era.

Drell-Yan

Figure 4: Schematic of Drell-Yan production.

Drell-Yan means the production of a pair of hard muons or electrons

through quark-antiquark annihilation into a virtual photon or Z boson

(see Figure 4). This process has a clean final state that is relatively easy

to detect experimentally. Letting kµ, k′
µ denote the 4-momenta of the

leptons, the invariant mass squared of the dilepton pair is given by

M2 = (kµ + k′
µ)(kµ + k′µ) . (14)

In the data, a plot of the lepton invariant mass versus number of events

should show a strong peak around M2 = M2
Z = (91.19 GeV)2. Such a

peak is indeed seen in the Tevatron data (see Figure 5).

EC-RTN Winter School CERN, 15-19 January 2007

σbb ∼ 0.1 (1)pb
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Flavor scalars & gauge bosons♦ The KK flavor gauge bosons & scalars might be 

observable.

Alignment, flavor at the LHC (preliminary!)

Csaki, Lee, GP & Weiler, preliminary.
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Wednesday, September 9, 2009

Csaki, Lee, Perez, AW in preparation

Interplay between ATLAS/CMS & LHCb



By Moriond 2011, LHCb will be competitive.
In the summer/end of 2011, LHCb will perform 
worlds best measurements of NP sensitive 
observables

            

FB asymmetry in 

CPV in charm ?

Outlook

Aψφ Bs → µ+µ− γ
B → K∗µµ



Further constraints from compositeness of Higgs

FCNCs from composite Higgs
Agashe, Contino; Azatov, Toharia, Zhu
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Ỹ

d

Λ2
Q̄LHdR(H†

H) +
Z̃

Λ2
Q̄L i �D QL(H†

H) + . . .

Md = vY d −
�
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FIG. 5: Generic bounds in the plane (mh, MKKG1 ) coming from εK due to tree level Higgs exchange, where mh is the Higgs
boson mass and MKKG1 is the mass of the first excited KK gluon. We perform a scan over 5D Yukawa matrices (such that
|Y ij

5D| ∈ [0.3, 3] (left panel) and |Y ij
5D| ∈ [1, 4] (right panel)) and over fermion bulk c-parameters. In the scan, we choose

Y 5D
1 = Y 5D

2 and take the β → ∞ limit (the result has only a mild dependence on β). The 25% quantile and 75% quantile
curves trace the points in this plane where 25% and 75% of the randomly generated parameter points are safe from Higgs
mediated FCNC’s (and are otherwise in agreement with the rest of experimental constraints in the scenario). The “estimate”
curve is based on the expected size of Higgs flavor violating couplings (see Eqs. (80) and (81)) for the chosen range of the 5D
Yukawas.
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where we compare the aij elements with their estimated values, for a fixed average Yukawa coupling Ȳ = 2 and KK
scale given by 1/R′ = 1500 GeV (see formulae for the estimates from Eqs. (80) and (81) ). We also choose to compare
the Higgs mass with a nominal value of mh = 350 GeV. We can see that the bound on ImC4

K coming from εK gives
the strongest constraint on the Higgs mass. Specifically, we have

mh >∼ 350 GeV for Im(ad
21a

d
12) = (0.04 × 0.032) (106)

for a fixed KK scale of 1/R′ = 1.5 TeV and average 5D Yukawa of Ȳ5D = 2.
In Fig.5, we show the results of our numerical scan by plotting the bounds coming from εK in the (mh-MKKG)

plane, where MKKG ≈ 2.45R′−1 is the mass of the first KK gluon. In the left panel we show results for the case
|Y 5D

ij | ∈ [0.3, 3], and in the right panel we show results for the case |Y 5D
ij | ∈ [1, 4]. It can be seen quite clearly that

a larger 5D Yukawa coupling leads to a higher bound on the KK scale. Note that the bounds coming from KK
gluon exchange are inversely proportional to the size of the 5D Yukawa couplings Ȳ5D. This leads to an interesting
observation

• The new contribution to εK coming from Higgs exchange has opposite dependence on the 5D Yukawa coupling
as that of KK gluon exchange. Thus, increasing the overall size of Y5D will alleviate pressure from KK gluon
exchange but, as we have seen, this will also enhance the effect of Higgs mediated FCNC’s.

With the chosen Ȳ5D (∼ 2), we can see that for the region of parameter space with MKKG ∼ 3 TeV (accessible at the
LHC), a Higgs mass mh < 400 GeV is disfavored. On the other hand, if a light (< 150 GeV) Higgs is found in the
LHC, we should expect sizable new physics contributions to ∆F = 2 processes, just below current bounds.

Toharia, Zhu
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If composite Higgs is not just ordinary bound state
but pGB associated with G→H in strong sector

Constraints are less severe (only from kinetic
terms, suppressed by small quark masses).

Agashe, Contino;, 



Anarchy alone does not seem to work

o Finetuned scales? Raise the KK scale to MKK ~ 10-20 TeV 

o Finetuned Yukawas?  Yukawas might allow accidental
   cancellations

o No tuning, more structure: Alignment and flavor  
   symmetries
   Fitzpatrick, Randall, Perez; Santiago; Csaki Falkowski, A.W; 

Csaki, Grossman, Perez, Surujon,A.W. ; Agashe;

Agashe et al., Buras et al., Casagrande et al., Gedalia et al.



Without the Yukawas SM has  

global flavor symmetry.

In RS broken by        Yu* , Yd*  +  FQ , Fd , Fu

No dangerous FCNCs in the down sector if 

Yd*  +  FQ , Fd  aligned (diagonal in the same basis)

Spurion analysis

SU(3)QL × SU(3)uR × SU(3)dR



FQ

Anarchy and hierarchical F’s
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Align down sector
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similar to Nir, Seiberg ’93 for MSSM
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Combination of K-K and D-D
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contribution to D-D mixing

no effect in K-K mixing

Nir 07; Blum et. al ’09
Cannot simultaneously eliminate constraints from D & K
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alignment Susy models:

EW

Furthermore, in models of alignment, the phases are assumed to be of order one. Taking

maximal phases, we obtain from Eq. (6.8)

∆m̃2
Q2Q1

m̃2
Q

≤ 0.23,

�
∆m̃2

Q2Q1

m̃2
Q

∆m̃2
U2U1

m̃2
U

�1/2

∼< 0.071. (6.11)

Taking [28] m̃Q = 1
2(m̃Q1 + m̃Q2) and similarly for the SU(2)-singlet squarks, we find that

we thus have an upper bound on the splitting between the first two squark generations:

mQ̃2
−mQ̃1

mQ̃2
+ mQ̃1

∼< 0.05− 0.14,

mũ2 −mũ1

mũ2 + mũ1
∼< 0.02− 0.04. (6.12)

The first bound applies to the up squark doublets, while the second to the average of the

doublet mass splitting and the singlet mass splitting. The range in each of the bounds

corresponds to values of the phase between zero and maximal. We can thus make the

following conclusions concerning models of alignment:

1. The mass splitting between the first two squark doublet generations should be below

14%. For phases of order one, the bound is about 2− 3 times stronger.

2. In the simplest models of alignment, the mass splitting between the first two squark

generations should be smaller than about four percent.

3. The second (stronger) bound can be avoided in more complicated models of alignment,

where holomorphic zeros suppress the mixing in the singlet sector.

4. While renormalization group evolution (RGE) effects can provide some level of univer-

sality, even for anarchical boundary conditions, the upper bound (6.12) requires not

only a high scale of mediation [29] but also that, at the scale of mediation, the gluino

mass is considerably higher than the squark masses.

In any model where the splitting between the first two squark doublet generations is

larger than O(y2
c ), |K

uL
21 −KdL

21 | = sin θc = 0.23. Given the constraints from ∆mK and �K on

|KdL
12 |, one arrives at a constraint very similar to the first bound in Eq. (6.12). We conclude

that the constraints on the level of degeneracy between the squark doublets (stronger than

13
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In the bulk: gauged SU(3)Q x SU(3)d flavor 

Flavor broken by vev of  Yukawa field Y*d only 

UV breaking ‘shines’ into the bulk via marginal 
operator

Φd : (3,1,3),   <Φd> = Y*d (z/R)-ε

Large effects in up-FCNCs expected.
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A theory of flavor at the 
LHC?



Flavor scalars & gauge bosons♦ The KK flavor gauge bosons & scalars might be 

observable.

Alignment, flavor at the LHC (preliminary!)

Csaki, Lee, GP & Weiler, preliminary.

mass_t_1_anti_t_1

Entries  400000

Mean    840.6

RMS     252.9

!"#$%&
''

(

)*** )+** ,*** ,+** -*** -+**

.
/
0)
*
#
$
%

!-
)*

!,)*

!))*

)

)*

mass_t_1_anti_t_1

Entries  400000

Mean    840.6

RMS     252.9

tt
/dM!d

Thanks to S. Lee.

.
gx = gs√

6
diag(1, 1,−2)

Wednesday, September 9, 2009

Csaki, Lee, Perez, AW in preparation

thanks to Seung Lee for the plot





Neutrino wave function picks up UV tail of Higgs

Exponential suppression of overall mass scale
but O(1) ν mixing angles.

Remark on lepton flavor

0 5 10 15 20 25 30 35

Higgs in the bulk
⇒ H = H(z)

Leptons

Agashe, Sundrum, Okui

Flavor symmetries alternative: Perez, Randall; Delaunay, 



Neutrino wave function picks up UV tail of Higgs

Exponential suppression of overall mass scale
but O(1) ν mixing angles.

Remark on lepton flavor

0 5 10 15 20 25 30 35

Higgs in the bulk
⇒ H = H(z)

Leptons

2

of the zero-modes H(0), ψ(0)
Li

, ψ(0)
Rj

satisfies (2) (up to non-

exponential normalization factors), where M and the sign
of exponent can depend on both SM representation (qL,
uR, dR, "L, eR, νR, H) and generation i = 1, 2, 3.

Now, note that the integral (3) is generically exponen-
tially dominated at y ∼ 0 or ∼ a. For example, consider

a case where both ψ(0)
Li

and ψ(0)
Rj

lean away from H(0) as
in Fig. 1, and imagine an assortment of MLi

and MRj
.

There are two cases, the integral (3) being dominated at
y ∼ 0 or ∼ a, depending on whether MLi

+ MRj
> MH

or < MH , respectively:

Y4D,ij ∼
∫ a

0
dy Y5D,ij(y) e−(MLi

+MRj
)y+MH(y−a)

(MLi
+MRj

>MH)↙ ↘(MLi
+MRj

<MH ) (4)

∼ Ỹ0,ij e−MHa $ ∼ Ỹa,ij e−(MLi
+MRj

)a ,

where Ỹ0,ij (Ỹa,ij) is an O(1) linear combination of
Ybulk,ij and Y0,ij (Ya,ij). The strong inequality in the
last line of (4) follows simply from the condition on the
exponents in the y ∼ a case, MLi

+ MRj
< MH . The

y ∼ a case is the classic model of charged fermion mass
matrices, yielding exponential hierarchies in masses and
mixings [2, 3]. Note that this would be the only case if
H were boundary-localized (MH → ∞) as is often as-
sumed in extra-dimensional flavor models. But if that
were true, it would strongly suggest that ν masses and
mixings should exhibit hierarchies comparable to charged
fermions in stark contrast to data, unless there is some
extra rationale for degeneracies among the M!Li

and the
MνRj

.

On the other hand, for a generic bulk H (MH < ∞),
we can elegantly accommodate ν data while simultane-
ously capturing charged fermion hierarchies.1 For suffi-
ciently large MνRj

such that M!Li
+ MνRj

> MH , the
ν’s switch to the y ∼ 0 case by (4), which naturally has
no large flavor-dependent hierarchies. Note that this does
not affect our discussion above regarding charged fermion
hierarchies generated at y ∼ a. Moreover, the last line
of (4) means that the ν’s are exponentially lighter than
the charged fermions. The structures and relations be-
tween the ν and charged mass matrices are quite robust
because they derive from the branching in (4), based on
simple inequalities among the M ’s.

Returning to (3), we could also consider ψ(0)
L,R lean-

ing toward H(0) in contrast to Fig. 1. Indeed, an O(1)
top Yukawa coupling does not match either exponentially

suppressed case in (4), but robustly follows once t(0)L,R

1 Even if H is exactly boundary-localized, at the quantum level,
loops containing fermion pairs with Higgs quantum numbers re-
produce the effects of a bulk Higgs.

both lean towards H(0). Then different leanings for ψ(0)
L,R

contribute to a smaller bottom quark mass and mixing
angles. In this way the simple extra-dimensional frame-
work captures the presence and absence of hierarchies
across the range of flavor physics.

The case of Majorana neutrinos works differently. In
this case, the smallness of mν comes just from its non-
renormalizable origins, "L"LHH/Λ. As for the non-
hierarchical nature of neutrinos, it is a generic conse-

quence precisely when all "(0)
Li

lean toward H(0), regard-
less of the precise M!Li

:

mν,ij ∼ O(1)ij
v2

Λ
, (5)

where v is the weak scale. The hierarchical structure
among charged leptons can be generated if e(0)

Ri
lean away

from H(0).
The minimal experimental implications reduce in the

ν sector to those of the “neutrino mass anarchy” sce-
nario [8], namely, θ13 should be close to the current upper
bound ∼ 0.2, and CP-violating phase(s) should be O(1).
More speculatively, at the other end of the spectrum, a
4th SM generation is a natural possibility in the Dirac

ν case, and in order for it to be heavy, their ψ(0)
L,R must

be leaning toward H(0), just like the top. Thus, we ex-
pect large mixing with the 3rd generation, which would
dominate the phenomenology.

We must also consider the impact of Kaluza-Klein
(KK) excitations. While 4D gauge fields couple flavor-
blindly by 4D gauge invariance, gauge KK modes are
sensitive to the flavor-dependent profiles of the fermions.
Exchanging them will generate flavor-violating 4-fermion
operators with strength ∼ g2

SM/M2
KK with MKK ∼ a−1.

To avoid excessive flavor-changing neutral currents (FC-
NCs) from such interactions we need a−1 >∼ 1000 TeV
[9]. Therefore, we should address the hierarchy problem
between the electroweak scale and at least this high scale.
We will consider two solutions, warping the above extra
dimension [10] and supersymmetry (SUSY) [11].

The simplest 5D warped spacetime is given by:

ds2 = e−2kydx2
4D − dy2 (0 ≤ y ≤ a) . (6)

The curvature scale k is comparable to the typical 5D
mass scale, such as M and a−1, and is taken to be very
high. An exponentially small v ∼ ke−ka emerges natu-
rally for a >∼ k−1, provided that H(0) is sufficiently lo-
calized near y = a [12]. The zero-mode profiles continue
to be exponentials in y, but with the curvature-modified
exponents [2]:

eMH(y−a) −→ e
(
k+

√
4k2+M2

H

)
(y−a) for H(0),

{
e−My

eM(y−a) −→
{

e(k/2−M)y

e(k/2+M)(y−a) for each ψ(0). (7)

Mi = ci

Agashe, Sundrum, Okui

Flavor symmetries alternative: Perez, Randall; Delaunay, 
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Quasi conformal sector between TeV … Mpl

Linear coupling of SM fields to composites

4D CFT explanation

µ
dλ

dµ
= γλ γ = dim[OR] + 3/2− 4

LUV ⊃ λŌRψL

λ ∼
�

TeV
MPl

�γ

γ = c− 1
2

AdS/CFT translation:

Contino, Pomarol
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Fermion masses & mixings
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Higgs as flavon

“Higgs dependent Yukawas”
Yukawas effective interaction after integrating out
heavy physics. Postulate leading terms are absent

nij generation dependent integer, determines mass 
hierarchy
 
                             =>                           

Babu, Nandi ’99; Giudice, Lebedev ’08
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ij
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                Higgs 
dependent Yukawas

Higgs as flavon: signals
Giudice, Lebedev ’08
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