Tau physics at Belle

KMi IMX KMI

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

K.Hayasaka (KMI, Nagoya Univ.)

1

2010/Dec/07

DISCRETE2010

Introduction

Lepton flavor violation (LFV) in charged leptons ⇒ negligibly small probability in the Standard Model (SM) even taking into account neutrino oscillations

$$Br(\tau \to \ell \gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^2}{m_W^2}\right)^2 < 10^{-54} \qquad \underbrace{\frac{W}{\tau}}_{\nu_{\tau}} \underbrace{\frac{W}{\nu_{\mu}}}_{\nu_{\mu}} \text{ (or e)}$$
(EPJC8 513(1999))

Observation of LFV is a clear signature of New Physics (NP) •Many extensions of the SM predict LFV decays. →These branching fractions could be enhanced as high as current experimental sensitivity.

Tau lepton :

- The heaviest charged lepton
- Many possible LFV decay modes
- \Rightarrow Ideal place to search for LFV

DISCRETE2010

KEKB/Belle

K Muon Detector

 K_{μ} , μ detection

σ(ττ)~0.9nb, σ(bb)~1.1nb

A B-factory is also a *τ*-factory! World-largest data sample!

DISCRETE2010

~9x10⁸ $\tau\tau$ at Belle

Search for $\tau \rightarrow \ell P^0(=\pi^0,\eta,\eta')$

previous result Data : 401 fb⁻¹ @ Belle, 339 fb⁻¹@BaBar (PLB648,341(2007)) (PRL98,061803(2007)) •To obtain high detection efficiency, $\eta(\eta')$ is reconstructed from $\gamma\gamma(\rho^0\gamma)$ as well as $\pi\pi\pi^0(\pi\pi\eta)$.

B<(0.8-2.4)x10⁻⁷ at 90%CL

•New search with 901fb⁻¹ data sample

> To obtain better resolution, $\eta(\eta')$ -momentum is evaluated by $\eta(\eta')$ -mass-constrained fit.

Differently from the previous analysis, selection criteria are set mode by mode. ex.) previous new commonly required $P_{\varrho} \ll 4.5 \text{GeV/c} \rightarrow P_{\mu} \ll \sqrt{s} < 0.38$ for $\tau \rightarrow \mu\eta$ not required for $\tau \rightarrow e\eta$ 0. $15 < P_{\mu} \ll \sqrt{s} < 0.38$ for $\tau \rightarrow \mu \pi^0$ $P_{e} \ll \sqrt{s} < 0.38$ for $\tau \rightarrow e\pi^0$ Finally, the efficiency is higher than previous (around 1.5x in average), while similar background is achieved. (#BG < 1)</p>

Search for $V^{0}(=\rho^{0}, K^{*0}, K^{*0}, \omega, \phi)$ previous result Data: 543 fb⁻¹ @ Belle, 451 fb⁻¹@BaBar (PLB664,35(2008)) (PRL100,071802(2008),PRL103,021801(2009)) •Differently from ℓP^0 , 2photon process could be large backgrounds for $\ell = e$. B<(0.3-1.9)x10⁻⁷ at 90%CL π π •New search with 854fb⁻¹ data sample •Detailed background study: e+ It turns out that not only 2photon process but ealso ee+X process become large background for $\tau^- \rightarrow \mu^- \rho^0$ and $\tau \rightarrow \pi - \pi^0 v$ with γ -conversion becomes $e^{-K^{*0}/K^{*0}}$ backgrounds because $e/h(=\pi, K)$ separation is worse in low momentum region. clear ppeak Fake K*0 main BG data **e+** due to $ee+_{\rho}(?)$ 300 e- miss KID signal 200 MC $(e\rho^0)$

Finally, higher or similar efficiency is kept (around 1.2x in average) while similar background level is achieved.

Result for $\ell V^0(=\rho^0, K^{*0}, K^{*0}, \omega, \phi)$

τ^{-}	Eff.	N _{BG} ^{exp} U	L (x10 ⁻⁸)	$\tau^{-} \rightarrow$	Eff.	N _{BG} ^{exp} U	_ (x10 ⁻⁸)
$e- ho^0$	7.6%	0.29 ± 0.15	1.8	e-K*0	4.4%	0.39 ± 0.14	3.2
$\mu^- ho^0$	7.1%	1.48 ± 0.35	1.2	$\mu^- K^{*0}$	3.4%	0.53 ± 0.20	7.2
е-ф	4.2%	0.47 ± 0.19	3.1	e-K*0	4.4%	0.08 ± 0.08	3.4
μ-φ	3.2%	0.06 ± 0.06	8.4	$\mu^{-}\overline{K^{*0}}$	3.6%	0.45 ± 0.17	7.0
e- ω	2.9%	0.30 ± 0.14	4.8	μ ⁻ ω	2.4%	0.72 ± 0.18	4.7

UL for $\tau \rightarrow \mu \rho^0$ is the most stringent among all the τ -LFV decays

Upper Limits on LFV τ Decay

Before this summer, ...

New Upper Limits on LFV τ Decay

Our sensitivity reaches O(10⁻⁸)!

11

sensitive

than CLEO's

In hadronic rest frame

🖌 Π

CP in the lepton sector should be conserved in SM \rightarrow CPV in the tau decay is a signature for NP. Here, CPV by Higgs-exchange in NP is studied. Differential decay width Hadronic current into K⁰π scalar form

 $J_{\mu} = \left\langle K^{0}(q_{1})\pi(q_{2}) \middle| \overline{u}\gamma_{\mu}s \middle| 0 \right\rangle \qquad \text{vector form} \quad \text{factor } (\mathsf{K}^{*}) \nearrow \quad \text{factor } (\mathsf{K}_{0})$ $d\Gamma(\tau \to K\pi v)$ $dQ^2 d\cos\theta d\cos\beta$ $= (q_1 - q_2)^{\nu} \left(g_{\mu\nu} - \frac{Q_{\mu}Q_{\nu}}{Q^2} \right) F_{\nu}(Q^2) + Q_{\mu}F_{\sigma}(Q^2)$ =(CP-conserving-term) $+C(Q^2)\cos\psi\cos\beta\times\operatorname{Re}(F_V\widetilde{F}_S)$ $(Q^{\mu} = q_1^{\mu} + q_2^{\mu})$ •Higgs-exchange is considered. S-V interference $F_S \to \tilde{F}_S = F_S + \eta_S F_H$ this include CPV term. Experimentally, we evaluate complex coupling $A_{\psi\beta}^{CP} = \langle \cos\psi\cos\beta \rangle_{-} - \langle \cos\psi\cos\beta \rangle_{-}$ $Im(\eta_s)$ ~size of CPV 0/Dec/07 DISCRETE2010 12

Event selection and $M_{K\pi}$ dist.

data:700fb⁻¹

(previous analysis is performed by CLEO with $13fb^{-1}$ data sample)

- π (from primary vtx) and Ks⁰(from sec. vtx) are selected.
- missing is required.
- tag side decay should be one prong decay.
- \rightarrow 3x10⁵ events obtained (BG:23%)

2010/Dec/07

Result for tau CPV measurement

A^{CP} distribution

•0 consistent result • γ -Z interference and detector effects are corrected using $\tau \rightarrow \pi\pi\pi\nu$ sample.

A^{CP}~O(10⁻³)

•Limits for multi Higgs doublet model

X,Z: complex coupling for Higgs M_H :lightest charged Higgs mass

90%CL upper limit: Im(η_s)<(0.012—0.026) (depending on the model for form factors of S,

2010/Dec/07

DISC

Summary

Lepton flavor violation is a good signature of NP.

We have updated search for τ LFV decays into $\ell + M^0(=\pi^0, \eta, \eta', \rho^0, K^{*0}, K^{*0}, \omega, \phi)$ using the world-largest data sample obtained by KEKB/Belle

No LFV signals are observed yet and we set limits of branching faction around O(10⁻⁸).

→Improve sensitivity by factor ~100 from CLEO

•UL for $\tau\!\rightarrow\!\mu\rho^0$ is the most stringent among all the $\tau\text{-LFV}$ decays

•not only much larger data samples but also more effective BG rejection after detailed examination of the BG CPV in $\tau \rightarrow Ks\pi\nu$ is measured: 700fb⁻¹ data sample (CLE0:13fb⁻¹)

90%CL upper limits for CP parameter $|Im(\eta_S)| < (0.016 - 0.026) @90\%CL$ (improvement of one order is achieved from CLEO) Belle preliminary

Belle started the analyses for the various modes using its full data sample!(~1ab⁻¹)

