Decoding new physics at 1 fb⁻¹ LHC with Flavour and CP observables

Robert N. Hodgkinson

Discrete 2010 - 10th December 2010, Valencia

Based on L. Calibbi, J.Jones-Perez, RNH, A. Masiero, V. Mitsou and O. Vives Work in Progress

Robert N. Hodgkinson Decoding new physics with Flavour and CP

イロト イヨト イヨト イヨト

The Present

The LHC is operational!

- QCD spectrum πs , Ks, $J/\Psi s$, $\Upsilon s \dots$
- Ws and Zs
- Top quarks

The Future

What to expect in the 1 year $7 \sim 8$ TeV run?

The Present

The LHC is operational!

- QCD spectrum πs , Ks, $J/\Psi s$, $\Upsilon s \dots \sqrt{}$
- Ws and Zs
- Top quarks

The Future

What to expect in the 1 year $7 \sim 8$ TeV run?

The Present

The LHC is operational!

- QCD spectrum πs , Ks, $J/\Psi s$, $\Upsilon s \dots \sqrt{}$
- \bullet Ws and Zs \surd
- Top quarks

The Future

What to expect in the 1 year $7 \sim 8$ TeV run?

The Present

The LHC is operational!

- QCD spectrum πs , Ks, $J/\Psi s$, $\Upsilon s \dots \sqrt{}$
- \bullet Ws and Zs \surd
- Top quarks \surd

The Future

What to expect in the 1 year $7 \sim 8$ TeV run?

The Present

The LHC is operational!

- QCD spectrum πs , Ks, $J/\Psi s$, $\Upsilon s \dots \sqrt{}$
- \bullet Ws and Zs \surd
- Top quarks \surd

The Future

What to expect in the 1 year $7 \sim 8$ TeV run?

 \bullet Higgs boson \times

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

The Present

The LHC is operational!

- QCD spectrum πs , Ks, $J/\Psi s$, $\Upsilon s \dots \sqrt{}$
- \bullet Ws and Zs \surd
- Top quarks \surd

The Future

What to expect in the 1 year $7 \sim 8$ TeV run?

- \bullet Higgs boson \times
- New Physics!

LHC can easily see new light, coloured particles

Introduction SUSY $@ 1 \, \text{fb}^{-1}$ LHC

Outline

\bigcirc SUSY $@ 1 \, \text{fb}^{-1}$ LHC

Outline

$\textcircled{0} \text{SUSY} @ 1 \text{ fb}^{-1} \text{ LHC}$

Flavour Tools and Constraints
SUSY spectrum in MFV
Flavour Model Constraints

Robert N. Hodgkinson Decoding new physics with Flavour and CP

(日) (四) (王) (王) (王)

New Physics at Early LHC

LHC Potential

Higher C.O.M. energy gives

- Higher production threshold
- Increased gluino-gluino cross-section

Decay modes

- Energetic Jets
- High Multiplicity
- Missing (transverse) energy

New Physics at Early LHC

LHC Potential

Higher C.O.M. energy gives

- Higher production threshold
- Increased gluino-gluino cross-section

Decay modes

- Energetic Jets
- High Multiplicity
- Missing (transverse) energy

Supersymmetry

SUSY

Supersymmetry connects bosons and fermions

$$Q\Psi \to \Phi$$
, $Q\Phi \to \Psi$

It predicts

- two scalar partners for each charged fermion
- a fermionic partner for each gauge boson

New Coloured Particles

- \bullet Gluons $g \to$ Gluinos \tilde{g}
- Quarks $q \to \text{Squarks } \tilde{q}_1, \ \tilde{q}_2$

Tevatron limits

- $m_{\tilde{g}} \gtrsim 300 \text{ GeV}$
- $m_{\tilde{t}} \gtrsim 115 \text{ GeV}$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Lightest Squarks- Mixing

- EW doublet and singlet quarks mix
- Mass matrix (single flavour)

$$\widetilde{M}_t^2 \approx \left(\begin{array}{cc} \widetilde{M}_Q^2 & Y_u \, v \, \mu \\ Y_u \, v \, \mu & \widetilde{M}_U^2 \end{array} \right)$$

• Large mixing for 3rd generation \rightarrow lightest \tilde{q} typically a stop.

SUSY-breaking and Unification

Parameters

Assume unification at the GUT scale

- Universal scalar mass m_0
- Universal gaugino mass $m_{1/2}$
- Universal trilinear coupling A_0
- Ratio of Higgs VEVs $\tan\beta$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

• Sign of μ

Minimal Flavour Violation

- Diagonal squark mass matrices $\widetilde{\mathbf{M}}^2=m_0^2\mathbf{1}$
- Trilinear couplings $\mathbf{a}_{u,d,e} = A_0 \mathbf{Y}_{u,d,e}$

The Question for this Talk

Robert N. Hodgkinson

Decoding new physics with Flavour and CP

Squark/Gluino production

• Production X-sections insensitive to details of spectrum

A B A B A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Production rates

Coloured NP excess at $\sim 600 \text{ GeV} \Longrightarrow$ Gluino candidate

Robert N. Hodgkinson

Decoding new physics with Flavour and CP

 $\begin{array}{c} {}_{\rm SUSY \ @ \ 1 \ fb^{-1} \ LHC} \end{array}$ Flavour Constraints

SUSY spectrum in MFV Flavour Model Constraints

Outline

\bigcirc SUSY $@ 1 \, \text{fb}^{-1}$ LHC

2 Flavour Tools and Constraints

- SUSY spectrum in MFV
- Flavour Model Constraints

Robert N. Hodgkinson Decoding new physics with Flavour and CP

(日) (四) (王) (王) (王)

 $\begin{array}{c} {\rm Introduction}\\ {\rm SUSY} @ 1\,{\rm fb}^{-1}\ {\rm LHC}\\ {\rm Flavour}\ {\rm Constraints}\\ {\rm Conclusions}\end{array}$

SUSY spectrum in MFV Flavour Model Constraints

Outline

Robert N. Hodgkinson Decoding new physics with Flavour and CP

(日) (四) (王) (王) (王)

SUSY spectrum in MFV Flavour Model Constraints

Gaugino Masses from Running

Robert N. Hodgkinson Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

SUSY Flavour Contributions

Processes

SUSY partners contribute to precision observables such as

SUSY spectrum in MFV Flavour Model Constraints

SUSY Flavour Contributions

Processes

SUSY partners contribute to precision observables such as

SUSY spectrum in MFV Flavour Model Constraints

Parameter Scan I

Points satisfy Direct Search exclusion and Higgs bounds

Robert N. Hodgkinson Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

SUSY Flavour Contributions I

$b \to s\gamma$

- Agreement at 2σ
- Lower limit on the masses of the squarks

- Experiment $\mathcal{B}(b \rightarrow s\gamma) = (3.55 \pm 0.26) \times 10^{-4}$ HFAG, arXiv:0704.3575
- SM prediction $\mathcal{B}(b \rightarrow s\gamma) = (3.12 \pm 0.21) \times 10^{-4}$ Feroz, Hobson, Roszkowski, Ruiz de Austri, Trotta arXiv:0903.2487

・ロト ・ 同ト ・ ヨト ・ ヨト

SUSY spectrum in MFV Flavour Model Constraints

Parameter Scan II

Robert N. Hodgkinson Decoding new physics with Flavour and CP

イロト イヨト イヨト イヨト

Э

Mass Bounds II

Lightest SUSY particles

	Direct Search		$+ b \rightarrow s\gamma$		$+(g-2)_{\mu}$	
	min	max	min	max	min	\max
$ ilde{g}$	535	653	535	653		
$\tilde{\chi}^{\pm}$	138	206	138	206		
$ ilde{\chi}^0$	76	107	76	107		
\tilde{t}	131	1400	194	1400		
\tilde{b}	420	1960	531	1960		
$ ilde{ au}$	86	2390	105	2390		

• Agreement with experiment at 3σ

SUSY spectrum in MFV Flavour Model Constraints

• $\Delta a_{\mu} \equiv a_{\mu}^{\text{Exp}} - a_{\mu}^{\text{SM}} =$

 $(316 \pm 79) \times 10^{-11}$ Passera, Marciano, Sirlin arXiv:1001.4528

SUSY Flavour Contributions II

 $(g-2)_{\mu}$

- **Disagreement** at $> 3\sigma$
- Upper limit on the masses of the sleptons

SUSY spectrum in MFV Flavour Model Constraints

Parameter Scan III

Robert N. Hodgkinson Decoding new physics with Flavour and CP

イロト イヨト イヨト イヨト

æ

Mass Bounds III

Lightest SUSY particless

	Direct Search		$+ b \rightarrow s\gamma$		$+(g-2)_{\mu}$	
	min	max	min	max	\min	max
\tilde{g}	535	653	535	653	537	653
$\tilde{\chi}^{\pm}$	138	206	138	206	155	199
$ ilde{\chi}^0$	76	107	76	107	80	106
Ť	131	1400	194	1400	376	859
\tilde{b}	420	1960	531	1960	531	1040
$ ilde{ au}$	86	2390	105	2390	105	982

 $\bullet\,$ Agreement with experiment at 3σ

SUSY spectrum in MFV Flavour Model Constraints

Mass Bounds IV

Lightest SUSY particless

	Direct	Search	+Flavour Constraints		
	min	max	min	max	
$ ilde{g}$	535	653	535	619	
$\tilde{\chi}^{\pm}$	138	206	155	185	
$ ilde{\chi}^0$	76	107	80	95	
\tilde{t}	131	1400	576	681	
\tilde{b}	420	1960	771	873	
$ ilde{ au}$	86	2390	733	835	

•
$$(g-2)_{\mu}$$
 at 3σ
• $b \to s\gamma$ at 2σ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の��

Robert N. Hodgkinson Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Outline

• Flavour Model Constraints

Robert N. Hodgkinson Decoding new physics with Flavour and CP

(日) (四) (王) (王) (王)

Mass Insertion Limits

Non-MFV

- Previously assumed Minimal Flavour Violation
- Squark Mass Matrices assumed diagonal at GUT scale $\widetilde{\mathbf{M}}^2\sim \mathbf{1}_3$
- Flavour Models predict off-diagonal flavour-mixing elements

$$\widetilde{\mathbf{M}}^2 \sim m_0^2 \, \left(\begin{array}{ccc} 1 & \delta_{12} & \delta_{13} \\ \delta_{21} & 1 & \delta_{23} \\ \delta_{31} & \delta_{32} & 1 \end{array} \right)$$

• Parametrise in terms of Mass Insertions δ_{ij}

CP Violation

- Squark mass² matrices are Hermitian
- δ_{ij} s generally complex- new CP-violating phases

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits I

Robert N. Hodgkinson

Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits II

Robert N. Hodgkinson Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits III

Robert N. Hodgkinson

Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits IV

Robert N. Hodgkinson Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits V

Robert N. Hodgkinson

Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits VI

Robert N. Hodgkinson Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits VII

Robert N. Hodgkinson Decoding ne

Decoding new physics with Flavour and CP

SUSY spectrum in MFV Flavour Model Constraints

Mass Insertion Limits VIII

Robert N. Hodgkinson Decoding new physics with Flavour and CP

Outline

$\bigcirc SUSY @ 1 \, fb^{-1} LHC$

Flavour Tools and Constraints
SUSY spectrum in MFV
Flavour Model Constraints

Summary

SUSY Spectrum

- LHC may see evidence of New Physics by the end of 2011
- This will be interpreted as a SUSY signal! (Rightly or wrongly)
- Precision observables already set tight limits on the spectrum in constrained models
- $\mathcal{B}(b \to s\gamma)$ and $(g-2)_{\mu}$ particularly useful
- The better we can measure the masses, the more useful the flavour limits become!

Flavour Limits

- Can also place limits on the squark Mass Insertions
- Crucial information for Flavour Model-builders