Rare K Decays Discrete 2010 Rome

Emmanuel Stamou

estamou@ph.tum.de

TU Munich

6 December 2010

Master-Amplitude in SM

$$\mathcal{A}_{
m decay} = \sum_i \; \langle Q_i
angle \; \; V^i_{
m CKM} \; \; F_i({
m high energy parameters})$$

valid for B,D,K -Decays

- F_i : Loop Functions (SD)
- V_{CKM}^i : CKM factors
- $\langle Q_i \rangle$: Matrix elements of operators (LD)

- : different in BSM
- : change in MFV

Master-Amplitude in SM

$${\cal A}_{
m decay} = \sum_i \; \langle Q_i
angle \; \; V^i_{
m CKM} \; \; egin{array}{c} F_i({
m high \, energy \, parameters}) & F_i({
m high \, ener$$

valid for B,D,K -Decays

- F_i : Loop Functions (SD)
- V_{CKM}^i : CKM factors
- $\langle Q_i \rangle$: Matrix elements of operators (LD)

- : different in BSM
- : change in MFV

Master-Amplitude in SM

$${\cal A}_{
m decay} = \sum_i \; \langle Q_i
angle \; rac{V^i_{
m CKM}}{V^i_{
m CKM}} \; F_i({
m high energy parameters})$$

valid for B,D,K -Decays

 F_i : Loop Functions (SD)

- CKM factors
- $\langle Q_i \rangle$: Matrix elements of operators (LD)

- : different in BSM
- : change in MFV

Master-Amplitude in SM

$$\mathcal{A}_{ ext{decay}} = \sum_i \langle Q_i \rangle V^i_{ ext{CKM}} F_i (ext{high energy parameters})$$

valid for B,D,K -Decays

- F_i : Loop Functions (SD)
- V_{CKM}^i : CKM factors
- $\langle Q_i \rangle$: Matrix elements of operators (LD)

- : different in BSM
- : change in MFV

Master-Amplitude in SM

$$\mathcal{A}_{\mathrm{decay}} = \sum_{i} \langle Q_i \rangle ~ V^i_{\mathrm{CKM}} ~ F_i(\mathrm{high~energy~parameters})$$

NP may hide everywhere

tower of **EFTs** essential for the NP distillation

valid for B,D,K -Decays

Motivations for K-Physics

Master-Amplitude $\mathcal{A}_{decay} = \sum_i \langle Q_i \rangle$ V^i_{CKM} F_i

 $K_L o \pi^0 l^+ l^-$

1. Contribution :

direct
$$CP$$

$$\mathcal{H}_{\text{eff}}^{V,A} = -\frac{G_F \alpha}{\sqrt{2}} \lambda_t \left[y_{7V} \ (\bar{s}\gamma_\mu d)(\bar{l}\gamma^\mu l) + y_{7A} \ (\bar{s}\gamma_\mu d)(\bar{l}\gamma^\mu\gamma_5 l) \right] + h.c.$$

 y_{7V}, y_{7A}

- effective coupling for vector- and axial-vector operators
- perturbative calculation
- \circ + γ -Penguin \longrightarrow logarithmic GIM

 \rightarrow NLO QCD (Buras, Lautenbacher, Misiak, Münz 94) $\approx \pm 5\%$ uncertainty

$$K_L o \pi^0 l^+ l^-$$

DCPV

$$\mathcal{H}_{\mathsf{eff}}^{V,A} = -\frac{G_F \alpha}{\sqrt{2}} \lambda_t \left[y_{7V} \left(\bar{s} \gamma_\mu d \right) (\bar{l} \gamma^\mu l) + y_{7A} \left(\bar{s} \gamma_\mu d \right) (\bar{l} \gamma^\mu \gamma_5 l) \right] + h.c.$$

Matrix Elements

- $\circ \langle \pi^0 e^+ e^- | Q_A | K^0(P)
 angle$ suppressed by m_e
- $\circ~{\rm extracted}~{\rm from}~K\to \pi l\nu~(K_{l3})~{\rm decays}$ including isospin breaking effects

few $\%_{00}$ uncertainty

(Mescia, Smith 07)

DCPV

 $K_L o \pi^0 l^+ l^-$

2. Contribution : j indirect CP

- \circ extract with χPT
- $\circ \ K_L \to \varepsilon_K K_1 [\to \pi^0 l^+ l^-]$
- 2 relevant parameters

 $\rightarrow \varepsilon_K$, (see talk by J. Brod)

 $ightarrow \left| a_{S}
ight|$ (main theory error, only absolute value known

from $K_L \rightarrow l^+ l^-$)

 $\approx 20\%$ uncertainty

(Buchalla, D'Ambrosio, Isidori 03; Friot, Greynat, De Rafael 04)

possible to extract sign from lepton asymmetry

(Mescia, Smith, Trine 06)

 $K_L o \pi^0 l^+ l^-$

3. Contribution :

CP conserving

- \circ NOT divergent as in $K_L \rightarrow \mu^+ \mu^-$
- NO amplitude saturation
- helicity suppressed (0 for e-mode)
- 30% uncertainty

(Isidori, Smith, Unterdorfer 04)

 $\overline{K_L}
ightarrow \pi^0 l^+ l^-$

Numbers

DCPV : ICPV : CPC compete

$$\begin{split} & \mathsf{Br}^{theo}(K_L \to \pi^0 e^+ e^-) = 3.54^{+0.98}_{-0.85} \quad (1.56^{+0.62}_{-0.49}) \quad \times 10^{-11} \\ & \mathsf{Br}^{theo}(K_L \to \pi^0 \mu^+ \mu^-) = 1.41^{+0.28}_{-0.26} \quad (0.95^{+0.22}_{-0.21}) \quad \times 10^{-11} \end{split}$$

(Mescia, Smith, Trine, 06)

$$\begin{split} &\mathsf{Br}^{exp}(K_L \to \pi^0 e^+ e^-) < 2.8 \times 10^{-10} \qquad [\text{kTeV 04}] \\ &\mathsf{Br}^{exp}(K_L \to \pi^0 \mu^+ \mu^-) < 3.8 \times 10^{-10} \qquad [\text{kTeV 04}] \end{split}$$

What can we do with $K_L \rightarrow \pi^0 l^+ l^-$?

$K_L o \pi^0 l^+ l^-$

$\mathcal{B}(K_L ightarrow \pi^0 \mu^+ \mu^-) / \mathcal{B}(K_L ightarrow \pi^0 e^+ e^-)$ -plane

ideal for discriminating NP models

(Isidori, Smith, Unterdorfer 04; Mescia, Smith, Trine 06)

Model Independent Analysis

(Mescia, Smith,Trine 06)

1. Scenario

- \circ NP changes only y_{7A}, y_{7V} (SD Wilson Coefficients)
- No new operators

$$\circ e^+e^- VS \mu^+\mu^-$$

- \rightarrow different phase-space
- $\rightarrow K_L \rightarrow \gamma \gamma$ contribution

$K_L o \pi^0 l^+ l^-$

$\mathcal{B}(K_L ightarrow \pi^0 \mu^+ \mu^-) / \mathcal{B}(K_L ightarrow \pi^0 e^+ e^-)$ -plane

ideal for discriminating NP models

(Isidori, Smith, Unterdorfer 04; Mescia, Smith, Trine 06)

Model Independent Analysis

(Mescia, Smith,Trine 06)

- \circ New Operators generated \circ Scalar-Pseudoscalar Operators $(\bar{s}d)(\bar{l}l)$ $(\bar{s}d)(\bar{l}\gamma_5 l)$
- \circ Tensor- Pseudotensor- Operators $(\bar{s}\sigma_{\mu\nu}d)(\bar{l}\sigma^{\mu\nu}l)$ $(\bar{s}\sigma_{\mu\nu}d)(\bar{l}\sigma^{\mu\nu}\gamma_5l)$
- With & Without Helicity Suppression

$K_L o \pi^0 l^+ l^-$

$\mathcal{B}(K_L ightarrow \pi^0 \mu^+ \mu^-) / \mathcal{B}(K_L ightarrow \pi^0 e^+ e^-)$ -plane

ideal for discriminating NP models

(Isidori, Smith, Unterdorfer 04; Mescia, Smith, Trine 06)

Model Independent Analysis

(Mescia, Smith,Trine 06)

2. Scenario

Pick your favourite Model:

- \circ MSSM large $\tan\beta$
- SUSY without *R*-parity
- leptoquarks
- o ...

disentangled on the $\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-) / \mathcal{B}(K_L \to \pi^0 e^+ e^-)$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \sum_{q=u,c,t} \lambda_q \ X(x_q) \ \overline{(\bar{s}_L \gamma_\mu d_L)(\bar{\nu}_{lL} \gamma^\mu \nu_{lL})} + h.c.$$

Matrix Elements

- \circ extracted from K_{l3} decays
- isospin breaking effects included (Mescia, Smith 07)

$$\circ \kappa_{\nu}^{+}$$
 and κ_{ν}^{L}

 $\circ~$ only 8%~ and 21%~ of total theory error!

NLO perturbative calculations relevant

EW corrections

Why EW corrections on X_t ?

$$\mathcal{H}_{\text{eff}} = \frac{2}{\pi\sqrt{2}} G_F \frac{\alpha}{\sin^2 \theta_W} \lambda_t X_t \left(\frac{m_t^2}{M_W^2} \right) + \dots \text{ charm...} + h.c.$$
$$X_t = X^{(0)} + \frac{\alpha_s}{i} X^{(1)} + \frac{\alpha_s^2}{i} X^{(2)} + \frac{\alpha_s^3}{i} X^{(3)} + \dots$$

$$X_t = \underbrace{X_{\text{LO}}^{(0)}}_{\text{LO}} + \underbrace{\frac{\alpha_s}{4\pi} X^{(1)}}_{\text{NLO QCD}} + \underbrace{\frac{\alpha_s}{(4\pi)^2} X^{(2)}}_{\text{NNLO QCD}} + \underbrace{\frac{\alpha_s}{(4\pi)^3} X^{(3)}}_{\text{NNNLO QCD}} + \dots$$

LO EW parameters still NOT fixed

 \circ ambiguity from EW renormalisation scheme (on-shell VS \overline{MS})

$$X_t = \underbrace{X_{\text{LO}}^{(0)}}_{\text{LO}} + \underbrace{\frac{\alpha}{4\pi} X^{(EW)}}_{\text{NLO EW}} + \dots$$

 \circ only fixed after calculating $X^{(EW)}$

EW corrections

Why EW corrections on X_t ?

\mathcal{H}_{eff}	$= \frac{2}{\pi\sqrt{2}} G_F \frac{\alpha}{\sin^2 \theta_W} \lambda_t X_t$	$\left(\begin{array}{c} \frac{m_t^2}{M_W^2} \end{array}\right) + \dots $	charm +	h.c.	
$X_t = \underbrace{X^{(0)}}_{\text{LO}} + \underbrace{\frac{\alpha_s}{4\pi} X^{(1)}}_{\text{NLO QCD}} + \underbrace{\frac{\alpha_s^2}{(4\pi)^2} X^{(2)}}_{\text{NNLO QCD}} + \underbrace{\frac{\alpha_s^3}{(4\pi)^3} X^{(3)}}_{\text{NNNLO QCD}} + \dots$					
	Table 10.2: Notations used to indicate the various schemes discussed in the text. Each definition of $\sin^2 \theta_W$ leads to values that differ by small factors depending on m_t and M_H . Approximate values are also given for illustration.				
∘ ambi	Scheme	Notation	Value		
	On-shell	s_W^2	0.2233		\overline{MS}
	NOV	$s_{M_Z}^2$	0.2311		
	MS	\widehat{s}_Z^2	0.2313	1	
	$\overline{\mathrm{MS}}$ ND	$\widehat{s}_{\mathrm{ND}}^2$	0.2315		
	Effective ar	gle \overline{s}_f^2	0.2316	1	
,	and the set of the set			the second s	J

 \circ only fixed after calculating $X^{(EW)}$

(PDG 10)

EW corrections

Why EW corrections on X_t ?

$$\mathcal{H}_{\text{eff}} = \frac{2}{\pi\sqrt{2}} G_F \frac{\alpha}{\sin^2 \theta_W} \lambda_t X_t \left(\frac{m_t^2}{M_W^2} \right) + \dots \text{ charm...} + h.c.$$
$$X_t = X^{(0)} + \frac{\alpha_s}{i} X^{(1)} + \frac{\alpha_s^2}{i} X^{(2)} + \frac{\alpha_s^3}{i} X^{(3)} + \dots$$

$$X_t = \underbrace{X_{\text{LO}}^{(0)}}_{\text{LO}} + \underbrace{\frac{\alpha_s}{4\pi} X^{(1)}}_{\text{NLO QCD}} + \underbrace{\frac{\alpha_s}{(4\pi)^2} X^{(2)}}_{\text{NNLO QCD}} + \underbrace{\frac{\alpha_s}{(4\pi)^3} X^{(3)}}_{\text{NNNLO QCD}} + \dots$$

LO EW parameters still NOT fixed

 \circ ambiguity from EW renormalisation scheme (on-shell VS \overline{MS})

$$X_t = \underbrace{X_{\text{LO}}^{(0)}}_{\text{LO}} + \underbrace{\frac{\alpha}{4\pi} X^{(EW)}}_{\text{NLO EW}} + \dots$$

 \circ only fixed after calculating $X^{(EW)}$

 $\circ X^{(EW)}$ known for large- m_t limit

 \circ large- m_t known to be a bad approximation

(Buchalla, Buras 98)

 $\circ~\pm 2\%$ uncertainty in X_t scales to $\pm 4\%$ uncertainty in Branching Ratios

EW corrections

 $\circ X^{(EW)}$ known for large- m_t limit

 \circ large- m_t known to be a bad approximation

(Buchalla, Buras 98)

 $\circ~\pm 2\%$ uncertainty in X_t scales to $\pm 4\%$ uncertainty in Branching Ratios

 $\circ X^{(EW)}$ known for large- m_t limit

 \circ large- m_t known to be a bad approximation

(Buchalla, Buras 98)

 $\circ~\pm 2\%$ uncertainty in X_t scales to $\pm 4\%$ uncertainty in Branching Ratios

EW corrections

Calculation

- full two-loop calculation $\mathcal{O}(1000)$ diagrams
- $\circ\,$ matching on 5-quark effective theory at μ_t
- $\circ \overline{MS}$ renormalisation for calculation

Details

• HV-scheme for diagrams with anomalies

Checks

- 2 independent calculations (form, mathematica)
- \circ reproduced large- m_t limit

Error Estimation

3 schemes

on-shell: G_F , M_Z , M_t , M_H , and α

 \overline{MS} : g_1 , g_2 , v, λ , and y_t

one-loop running and fit for initial conditions

 \rightarrow introduces residual M_H dependence

mix: on-shell masses, but \overline{MS} couplings

EW corrections

completely fixes the renormalisation scheme dependence $\pm 2\% \rightarrow \pm 0.3\%$

(arXiv:1009.0947v1 (hep-ph))

EW corrections

completely fixes the renormalisation scheme dependence $\pm 2\% \rightarrow \pm 0.3\%$

(arXiv:1009.0947v1 (hep-ph))

Loop-functions are universal:

Correction applies also to: $B \to X_{d,s} \nu \bar{\nu}$

 $K^+
ightarrow \pi^+
u ar{
u}$

$$\operatorname{Br}\left(K^{+} \to \pi^{+} \nu \bar{\nu}\right) = \kappa_{\nu}^{+} \left|\lambda_{t} X_{t} + \operatorname{Re}\lambda_{c}\left(P_{c} + \delta P_{c,u}\right)\right|^{2}$$

Long Distance

- $\circ \ \kappa_{
 u}^+$ with isospin corrections
- QED radiative corrections (Mescia, Smith 07)
- $\circ \delta P_{c,u}$: dim-8 operators below μ_c (Falk, Lewandowski, Petrov 01)
- $\circ \delta P_{c,u}$: light quark contributions (Isidori, Mescia, Smith 05)
- Improvement by lattice possible!

(Isidori, Martinelli, Turchetti 06)

Emmanuel Stamou: Rare K Decays

 $K^+ o \pi^+
u ar{
u}$

$$\operatorname{Br}\left(K^{+} \to \pi^{+} \nu \bar{\nu}\right) = \kappa_{\nu}^{+} \left|\lambda_{t} X_{t} + \operatorname{Re}\lambda_{c}\left(P_{c} + \delta P_{c,u}\right)\right|^{2}$$

Short Distance

 P_c: NNLO QCD (Buras, Gorbahn, Haisch, Nierste 05)
 P_c: NLO EW (Brod, Gorbahn 08)
 X_t: NLO QCD (Misiak, Urban; Buchalla, Buras 99)
 X_t: NLO EW

(Brod, Gorbahn, ES 10)

Emmanuel Stamou: Rare K Decays

 $K^+ o \pi^+
u ar{
u}$

Emmanuel Stamou: Rare K Decays

Technische Universität München

 $\overline{K_L}
ightarrow \pi^0
u ar{
u}$

$$\mathsf{Br}\left(K_L \to \pi^0 \nu \bar{\nu}\right) = \kappa_{\nu}^L \left(1 - \sqrt{2} |\epsilon_K| \frac{1 + P_c(X)/A^2 X_t - \rho}{\eta}\right) \left(\frac{\mathsf{Im}\lambda_t}{\lambda^5} X_t\right)^2$$

• CPC contribution negligible (Buchalla, Isidori 98)

- small 1% effect from ICPV (Buchalla, Buras 96)
- $\circ \mathcal{CP}$: only top contribution
- very clean and sensitive to SD

 $K_L o \pi^0
u ar
u$

$$\mathsf{Br}\left(K_L \to \pi^0 \nu \bar{\nu}\right) = \kappa_{\nu}^L \left(1 - \sqrt{2} |\epsilon_K| \frac{1 + P_c(X)/A^2 X_t - \rho}{\eta}\right) \left(\frac{\mathsf{Im}\lambda_t}{\lambda^5} X_t\right)^2$$

Numbers

upper bound from E391a

 $\mathsf{Br}^{exp} < 6.7 \times 10^{-8}$

$$\mathsf{Br}^{theo} = (2.43^{+0.40}_{-0.37} \pm 0.06) \times 10^{-11}$$

(Brod, Gorbahn, ES 10) \circ KOTO@JPARC $\mathcal{O}(100)$ events ?

Emmanuel Stamou: Rare K Decays

Technische Universität München

(http://www.lnf.infn.it/wg/vus/content/Krare.html)

Even after 60 years of intensive Kaon studies (and 2 Nobel prices)

Kaons are still exciting!

Together with ε_K , rare K decays:

- probe high energy regimes 0
- provide stringent bounds on NP models 0
- discriminate between models BSM (e.g. $K_L \rightarrow \pi^0 l^+ l^-$) 0
- can measure NP parameters 0

(e.g. $K \rightarrow \pi \nu \bar{\nu}$)

Interesting times are ahead!