

Double-Chooz Neutrino Experiment

y Tecnológicas

Carmen Palomares (Ciemat, Spain) for Double-Chooz Collaboration

The main goal of upcoming experiments is the determination of $\theta^{}_{13:}$

• CP violation depends on non-zero value of θ_{13} • Any realistic possibility to determine the sign of Δm_{31} relies on a not-too-small θ_{13}

The main limit comes from CHOOZ reactor experiment '97

Roma December 7th 2010 C. Palomares Double Chooz Experiment

Experimental methods to measure θ_{13}

Long-Baseline Accelerators: Appearance ($v\mu \rightarrow ve$) Oscillation probability complicated and dependent not only on θ_{13} but also: CP violation parameter, sign of Δm_{31} , size of sin² θ_{23}

Improving CHOOZ

CHOOZ: $R=N_{meas}/N_{exp} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (sys)

Statistical error

	CHOOZ	Double Chooz
Target volume	5.55 m3	10.3 m3
Data taking period	Few months	3-5 years
Event rate	2700	Chooz-far 60000/3y
Statistical error	2.8%	0.5%

Systematic error

	CHOOZ	Double Chooz
Reactor uncertainties v flux and reactor power	2.1%	<
Number of protons	0.8%	0.2%
Detector Efficiency	1.5%	0.5%

The Double Chooz Collaboration

Double Chooz Concept

To look for non-zero values of Θ_{13} Beyond the previous systematic limitations:

- 1. Two detectors to remove uncertainties of the reactor flux
- 2. Identical detectors to reduce errors due to detector acceptance

Roma December 7th 2010

The Double Chooz Laboratories

Inner detector

Inner muon veto

 \blacksquare long-lived (9Li, 8He) β -decaying isotopes induced by μ

Improving CHOOZ

BACKGROUND

 Single e⁺-like reduced:

 PMT very low radioactive glass
 PMT is not in contact with liquid scintillator (PMT single rate CHOOZ: ~60 Hz. Double-Chooz ~1.2 Hz)
 Detector shielded by 15 cm iron

Neutron rate reduced by using a more efficient cosmic muon veto system

DETECTOR PERFORMANCE

<u>Calibration</u> relative detection efficiency between near and far detector should be known with an uncertainty <0.5% <u>Detector stability</u> liquid scintillator stability tested over 3 years

Gd doped liquid scintillator stability

MUBLE

Status and Schedule

- Far detector filled and almost ready !!!
- First neutrino by Christmas
- 2011 Data taking with Far detector
- 2011 Construction of Near Lab
- 2012 Construction of Near detector and data taking with both detectors by fall.

Expected Sensitivity

Double Chooz : sensitivity limit versus year

Near Detector

Authorisations and funding secured by the region Champagne-Ardennes, EDF and French agencies. Involvement of EDF on the construction

Schedule

- Tender process for construction is over
- Lab available fall 2011
- Near D. construction 30 weeks
- Data taking by fall 2012

Summary

- Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from a reactor to measure Θ₁₃
- First neutrino event just round the corner !!
- Running far detector: current limit sin²2Θ₁₃<0.11 @ 90% CL in few weeks and <0.06 running 1 year
- 2012 start of data taking with both detectors
- Detector stability will allow a long data taking period
- Three years running both detectors: sin²2O₁₃<0.03 @ 90% CL</p>

Neutrino oscillations: present status

arXiv:0808.2016

Roma		
December	7th	2010

Θ_{13} Determination

A non-zero value for θ_{13} ?

- Solar + KamLAND data lead to a hint for non-zero θ_{13} (1.5 σ)
- However, the CHOOZ + atmospheric data give a smaller value.
- The global combination including the MINOS appearance data gives a nonzero best fit value of θ₁₃

$$\sin^2 \theta_{13} = 0.013^{+0.013}_{-0.009}$$

arXiv:0808.2016

Θ_{13} Determination

Θ_{13} Determination

Reactor experiments proposals

NUBLE

Reactor and antineutrino spectrum

Double-Chooz: Systematic errors

		Chooz	Double-Chooz			
Reactor- induced	ν flux and σ	1.9 %	<0.1 %			
	Reactor power	0.7 %	<0.1 %	Two "identical" detectors,		
	Energy per fission	0.6 %	<0.1 %	LOW DRg		
	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter		
Detector - induced	Target Mass	0.3 %	0.2 %	Same weight sensor for both det.		
	Density	0.3 %	<0.1 %	Accurate T control (near/far)		
	H/C ratio & Gd concentration	1.2 %	<0.2%	Same scintillator batch + Stability		
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS		
	Live time	few %	0.25 %	Measured with several methods		
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %			
	Total	2.7 %	< 0.6 %	(Total ~0.45% without contigency)		

Background

No Veto System

Detector	Site	Background					
			Accidental			Correlated	
			Materials	PMTs	Fast n	μ -Capture	⁹ Li
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	2.0 ± 2.0	28	1.0 ± 0.5
$(69 \nu/d)$	Far	bkg/ν	0.7%	2.2%	(2.9%)	(40%)	1.4%
Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	9.1 ± 9.1	266	9 ± 5
(500 v / d)	Near	bkg/ν	0.5%	1.7%	0.8%	26%	0.9%

Inner and Outer Veto

Detector	Site	Background					
			Accidental			Correlated	
			Materials	\mathbf{PMTs}	Fast n	$\mu\text{-Capture}$	⁹ Li
Double Chooz		Rate (d^{-1})	0.1 ± 0.1	0.3 ± 0.2	0.11 ± 0.11	< 0.1	1.0 ± 0.5
$(69 \ \nu/d)$	Far	bkg/ν	0.1%	0.4%	(0.2%)	< 0.1%	1.4%
		systematics	${<}0.1\%$	< 0.1%	0.2%	$<\!0.1\%$	0.7%
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.7 ± 0.9	0.15 ± 0.15	0.4	9 ± 5
(500 y / d)	Near	bkg/ν	< 0.1%	0.2%	< 0.1%	< 0.1%	0.9%
		systematics	${<}0.1\%$	< 0.1%	< 0.1%	< 0.1%	0.5%

Calibration System

Deployment of radioactive sources:

Articulated arm (Target) Guide tubes (Gamma-catcher) Buffer tubes Z-axis system Light Injection: LED systems IV and buffer Laser (Z-axis)