



# Studies of Hadronic B Decays with Early LHCb Data

#### Eduardo Rodrigues On behalf of the LHCb Collaboration

DISCRETE 2010, Rome, Italy, 9 December 2010



#### **OUTLINE**:

- $\clubsuit \quad \textbf{B} \rightarrow \textbf{D} \textbf{X} \text{ decays}$
- Prospects for the 2011 LHC(b) run

## Is the study of hadronic B decays worth it ?



DISCRETE 2010, Rome, Italy, 9 Dec. 2010

(Non-comprehensive listing)

= Discussed

in talk

## Status of $\gamma$ in CKM global fits

α

-0.2

0.0

0.0

-0.4



Taken from CKM fitter http://ckm fitter.in 2p3.fr

Eduardo Rodrigues

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

ρ

0.4

0.6

0.8

1.0

0.2

## Status of $\gamma$ in CKM global fits



**Eduardo Rodrigues** 

## Direct measurements of $\gamma$

**Tree-level decays** 



- $\textbf{B} \rightarrow \textbf{D} \textbf{X}$  decays :
- Time-integrated measurements
- **Time-dependent measurements**

Standard Model benchmark measurement of γ







**Measurement of**  $\gamma$ **sensitive to New Physics** 

### $\textbf{B} \rightarrow \textbf{h} \textbf{h}$ (h) modes :

- **D** Time-dependent measurements exploiting U-spin symmetry ( $B \rightarrow hh$ )
- $\Box \quad \text{Time-integrated Dalitz plot analysis (B} \rightarrow \text{hhh})$



# The LHCb experiment

## The LHCb experiment @ the LHC

#### **Forward spectrometer**

Acceptance: ~10 – 300 mrad

**Nominal lumi.:** 2•10<sup>32</sup> cm<sup>-2</sup> s<sup>-1</sup>

Nominal # B's / 2fb<sup>-1</sup>: 10<sup>12</sup> (nominal year)

#### **Reconstruction:**

- muons: easy
- hadronic tracks: fine
- electrons: OK

b

(rad)

b

- $\pi^0$ 's, K<sub>s</sub>,  $\Lambda$ : OK;  $\pi^0$ 's difficult
- neutrinos, neutrons, K<sub>1</sub>: no

#### Mission statement

- Search for new physics probing the flavour structure of the SM
- Study CP violation and rare decays with beauty & charm hadrons



## **System requirements**

#### (Hadronic) trigger

□ Fast, flexible and efficient

#### Vertexing

- Precise reconstruction and separation of primary and secondary vertices
  - identification of long-lived heavy flavour decays

#### Tracking

- Precise determination of track parameters
  - $\Rightarrow$  excellent momentum resolution  $\delta p/p = 0.35\%$  to 0.55%
  - ⇒ excellent impact parameter (IP) resolutions

#### **Particle identification**

 Mass peaks often overlap
 -> need for excellent π/K/p separation over large momentum range to separate the topologically similar decay modes



## Crucial to LHCb physics programme



#### Beauty & charm mesons Excellent

- mass resolutions ~10-40 MeV
- propertime resolution ~50 fs

## **Trigger scheme**



#### **High E<sub>T</sub> particles**

- Partial detector information
  - Fast decision

### **Search for physics signatures**

- Software trigger run in event farm
- Full detector information
- Increasing level of complexity in event reconstruction and selection

## Tracking

- High momentum resolution needed to separate topologically similar decay modes
- Silicon strip and straw-tube detectors for tracking
  - long lever arm ~ 10 m
  - hit resolutions ~ 55 and 250  $\mu m,$  respectively
- Together with precise determination of track slopes provides very good mass resolutions
  - Worse by 10-20% compared to MC. But still excellent.

Provides with high vertex resolutions an excellent propertime resolution



## Vertexing

#### Best such resolutions at the LHC !

Vertex detector – 2 retractable halves



□ IP resolutions ~ 20% worse than in MC. But still excellent







#### 12/32

2020

RICH 1

Kaon ring

# The 2010 LHC(b) run and prospects for 2011

## 2010 data taking – luminosity recorded



### **Excellent efficiency ~ 90%**



# Stable data taking High efficiency of all sub-detectors, increasing with time (experience)

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

## 2010 & 2011 running conditions

### 2010 running conditions :

- Collisions at 7 TeV
- □ ~ 38 pb<sup>-1</sup> collected

#### **Expectations for 2011 :**

- □ Reach 1 fb<sup>-1</sup> = 1000 pb<sup>-1</sup> by end 2011
- Discussion ongoing for 8 TeV run



(80% of design luminosity reached with 344 colliding bunches instead of 2622)

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

# **Towards** γ with B → D X decays Standard Model benchmark measurement

## The (large) $\mathbf{B} \rightarrow \mathbf{D} \mathbf{X}$ family

#### Modes :

- $\Box \quad \mathsf{B}^0 \to \mathsf{D} \ \pi \ , \ \mathsf{D} \ \mathsf{K}^{(*)}$
- $\Box \quad B^{-} \rightarrow D \pi^{-}, D K^{-}$
- $\Box \quad \mathsf{B}_{\mathsf{s}} \to \mathsf{D}_{\mathsf{s}} \ \pi \ , \ \mathsf{D}_{\mathsf{s}} \ \mathsf{K} \ , \ \mathsf{D} \ \mathsf{K}^* \ , \ \mathsf{D} \ \phi$
- $\Box \qquad \text{The above with } D \rightarrow 2\text{-/}3\text{-/}4\text{-body}$

### **Physics**:

- Set of modes with rich scope for CP violation measurements, BR ratios
- □ Theoretically clean measurement of  $\gamma$  with B → DK modes (relative weak phase between the 2 diagrams = - $\gamma$ )

Sensitivity to γ from interference between the 2 diagrams
 Only requirement: D<sup>0</sup> and D<sup>0</sup> decay to common final state



## $B \rightarrow D \; \pi$ / K decays – 2-body $D \rightarrow h \; h \; decays$



Time-integrated analyses (ADS/GLW methods)

 $\Rightarrow$  expect (stat.) error  $\sigma_{\gamma} \sim 17^{\circ}$  with 1 fb<sup>-1</sup> (2010+11 data sample)

Monte Carlo: expected yields in 1  $fb^{-1}$  @ 7 TeV (2011 running)

| $B^+ + B^- \rightarrow D_{\rm fav} K^\pm$ | $B^+ + B^-  ightarrow D_{ m sup} K^{\pm}$ | $B^+ + B^- \rightarrow D_{CP+}K^{\pm}$ |
|-------------------------------------------|-------------------------------------------|----------------------------------------|
| ${\sim}20000$                             | ${\sim}400$                               | ${\sim}2750$                           |

## $B \rightarrow D \; \pi \; decays$ – Dalitz analyses

❑ Mass peaks with ~ 34 pb<sup>-1</sup>, i.e. almost all the 2010 data sample

 $B^+ 
ightarrow D^0$  (K<sub>s</sub> $\pi\pi$ )  $\pi$ 





□ Dalitz plot analysis of B → DK with D →  $K_s \pi \pi$ ⇒ expect (stat.) error  $\sigma_\gamma \sim 18^\circ$  with 1 fb<sup>-1</sup> (2010+11 data sample)

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

 $B_{(s)} \rightarrow D_{(s)} h$  decays

□ Mass peaks with ~ 34 pb<sup>-1</sup>

#### **Time-dependent CP studies:**

**D** Eventually, measurement of  $\gamma$  from  $B_s \rightarrow D_s h$ (h =  $\pi$ , K)





Mixing / other studies :

- $\Delta m_s / \Delta m_d$  measurements
- $\Box$  f<sub>s</sub> / f<sub>d</sub> measurement

ome, Italy, 9 Dec. 2010

## $B \rightarrow D \ X$ : physics *goals* with the 2010-11 data sample?

□ Measurement of  $f_d/f_s$  ratio (b→d/s fragmentation)

- **D** Measurement of the  $D_s K/D_s \pi$  branching fractions ratio
- Measurements of relative rates and CP asymmetries
   Focus first on 2-body non-suppressed D decays





2010

# Towards γ with charmless B decays

New Physics sensitive measurement

## The $H_b \rightarrow h h$ family

#### "Standard" modes (BRs ~ 10<sup>-5</sup>–10<sup>-6</sup>):

- $\Box \quad B^0 \rightarrow \pi\pi , B_s \rightarrow KK$
- $\Box \quad B^{0} \rightarrow K\pi , B_{s} \rightarrow \pi K$
- $\Box \quad \Lambda_b \to pK, p\pi$

## **Physics**:

- Set of modes with rich scope for CP violation measurements
  - Time-independent and dependent  $A_{\mbox{\scriptsize CP}}$

#### Rare modes :

□  $B^0 \rightarrow KK$ ,  $B_s \rightarrow \pi\pi$ not yet found experimentally





DISCRETE 2010, Rome, Italy, 9 Dec. 2010

## The $H_b \rightarrow h h$ family

□ What's in the basket with 35 pb<sup>-1</sup>, i.e. almost all the 2010 data sample?



□ Applying particle identification cuts ...



Time-dependent CP asymmetries in view of γ measurement will take time ... (R. Fleischer method using U-spin symmetry – Phys. Lett. B 459 (1999), 306)

## Loose selection – B $\rightarrow$ K $\pi$



#### Note:

#### Raw numbers

 No corrections for production/detector asymmetries (same comment goes for all subsequent A<sub>CP</sub> results)

## Charge asymmetry in $B^0/B_s \rightarrow K \pi$ (tight selection)

**RAW asymmetry is visually obvious !** 



**Note:** No corrections for production/detector asymmetries

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

## Tight selection optimised for ${\rm B}_{\rm s} \to \pi \; {\rm K}$



**RAW B<sub>s</sub> / B<sub>d</sub> relative yield R<sub>\piK</sub> = (10.7 ± 2.0) % (stat. error only)** 

## $\Lambda_{\text{b}} \rightarrow p \text{ h decays}$

#### Both signals clearly seen



RAW yield: 35.2 ± 6.7 (stat.)

RAW yield: 31.9 ± 7.0 (stat.)

**CP** asymmetry measurements to follow shortly ...

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

## $H_b \rightarrow h \; h$ : physics goals with the 2010-11 data sample



- Sensitivity ~ 7° with 2 fb<sup>-1</sup> according to MC studies

In short: LHCb already competitive with CDF given the 2010 data sample !

and beyond

## Summary

□ LHCb has already proven to be a heavy flavour experiment at a hadron machine



- Excellent and promising results are coming out
   This was just the beginning
- Many world-class measurements just around the ... year
   And many competitive with the TeVatron results

□ Stay tuned ...

□ Thumbs up !



# **Back-up slides**

## **The LHCb detector**



## 2010 data taking – efficiency



## Particle identification – performance determined on data

1030

m<sub>κκ</sub> (MeV/c²)

1040

1130

 $m_{p\pi}$  (MeV/c<sup>2</sup>)



## Particle identification – delta log likelihood tuning



## $B \rightarrow D(\rightarrow hh) \pi / K decays$

Luminosity: ~ 34 pb<sup>-1</sup>



Luminosity: ~ 34 pb<sup>-1</sup>



## Is that all $B \rightarrow D X$ modes we see? Nope!



## $H_b \rightarrow h \; h \; decays$ – a rich physics case

- $\Box$  B<sup>0</sup>  $\rightarrow \pi\pi$ : time-dependent asymmetry
  - so far inconsistency in direct CP contribution ( $C_{\pi\pi}$ ) between BaBar and Belle
- $\Box B^{0} \rightarrow K^{+}\pi^{-}: direct CP violation measurement$
- $\Box$  B<sub>s</sub>  $\rightarrow \pi^+ K^-$ : direct CP violation, branching ratio (BR) measurement
- Gronau, Lipkin and Rosner relation

$$\left|A\left(B_{s} \to \pi^{+}K^{-}\right)\right|^{2} - \left|A\left(\overline{B}_{s} \to \pi^{-}K^{+}\right)\right|^{2} = \left|A\left(\overline{B}^{0} \to \pi^{+}K^{-}\right)\right|^{2} - \left|A\left(B^{0} \to \pi^{-}K^{+}\right)\right|^{2}$$

- $\Box B^{0} \rightarrow K^{+}\pi^{-}, B^{+} \rightarrow K^{+}\pi^{0} : \neq \text{ in CP asymmetry hard to understand theoretically}$
- $\Box$  B<sup>0</sup>  $\rightarrow \pi\pi$ , B<sub>s</sub>  $\rightarrow$  KK : determination of the CP angle  $\gamma$  exploiting U-spin symmetry
- □ Rare  $B \rightarrow h^+h^{-}$ :  $h = \pi$ , K ... but also a baryon such as p,  $\Lambda$

 $\Box \Lambda_b \rightarrow pK, p\pi : CP$  asymmetries, lifetime ratio measurements (wrt B<sup>0</sup>)

#### **Etc. List non exhaustive**

Eduardo Rodrigues

DISCRETE 2010, Rome, Italy, 9 Dec. 2010

CDF Collaboration, arXiv:0812.4271v1 [hep-ex]

1 fb<sup>-1</sup>

TABLE I: Yields and significances of rare mode signals. The first quoted uncertainty is statistical, the second is systematic.

| Mode                           | $N_s$              | Significance |  |
|--------------------------------|--------------------|--------------|--|
| $B_s^0 \to K^- \pi^+$          | $230\pm34\pm16$    | $8.2\sigma$  |  |
| $B_s^0 \to \pi^+ \pi^-$        | $26\pm16\pm14$     | $< 3\sigma$  |  |
| $B^0 \rightarrow K^+ K^-$      | $61 \pm 25 \pm 35$ | $< 3\sigma$  |  |
| $\Lambda_b^0 \rightarrow pK^-$ | $156\pm20\pm11$    | $11.5\sigma$ |  |
| $\Lambda_b^0 \to p \pi^-$      | $110\pm18\pm16$    | $6.0\sigma$  |  |



## $B^0 \rightarrow \pi\pi$ direct and mixing-induced CP asymmetries (1/2)



## $B^0 \rightarrow \pi\pi$ direct and mixing-induced CP asymmetries (2/2)



| August 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| harge asymm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | etry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heavy Fla                                                                                                                                                                                                                                                                                                                                                                                                        | vor Averaging                                                                                                                                 | g Group             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Compilation of $CP$ Asymmetries for $B^0$ modes<br>In PDG2010 New since PDG2010 (preliminary) New since PDG2010 (published)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| RPP# Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ode PDG2010 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . BABAR                                                                                                                                                                                                                                                                                                                                                                                                          | Belle                                                                                                                                         | CLEO                | CDF                    | New Avg.                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $\begin{array}{c} 10 & K^{+} \\ 213 & \eta' H \\ - & \eta' K_0^* (\\ - & \eta' K_2^* (\\ 215 & \eta K \\ 216 & \eta K_0^* (\\ 217 & \eta K_2^* (\\ 222 & b_1^{-} \\ 227 & \omega K \\ 229 & \omega K_0^* (\\ 230 & \omega K_2^* (\\ 230 & \omega K_2^* (\\ 24 & \mathbf{LHCk} \\ 24 & \mathbf{LHCk} \\ 24 & \mathbf{Ck} \\ 24 & \mathbf$ | $\begin{array}{cccc} \pi^{-} & -0.098 \pm 0.013 \\ \kappa^{*0} & 0.08 \pm 0.25 \pm 0.1 \\ 1430)^{0} & \text{New} \\ 1430)^{0} & \text{New} \\ \kappa^{*0} & 0.19 \pm 0.05 \\ 1430)^{0} & 0.06 \pm 0.13 \pm 0.1 \\ 1430)^{0} & -0.07 \pm 0.19 \pm 0.06 \\ \kappa^{+} & 0.07 \pm 0.12 \pm 0.06 \\ \kappa^{+} & 0.07 \pm 0.12 \pm 0.06 \\ \kappa^{+} & 0.07 \pm 0.12 \pm 0.06 \\ \kappa^{+} & 0.07 \pm 0.00 \\ \kappa^{+} & 0.07 \pm 0.00 \\ \kappa^{+} & 0.05 \text{ fb}^{-1} \text{ ex} \\ \mathbf{A}_{\mathrm{K}\pi} \mathbf{A} \mathbf{A}_{\mathrm{K}\pi} \mathbf{A}$ | $\begin{array}{r} & -0.107 \pm 0.016 \substack{+0.006 \\ -0.004} \\ 02 & 0.02 \pm 0.23 \pm 0.02 \\ & -0.19 \pm 0.17 \pm 0.02 \\ & 0.14 \pm 0.18 \pm 0.02 \\ & 0.21 \pm 0.06 \pm 0.02 \\ 02 & 0.06 \pm 0.13 \pm 0.02 \\ 02 & -0.07 \pm 0.19 \pm 0.02 \\ 02 & 0.07 \pm 0.12 \pm 0.02 \\ 0.07 \pm 0.12 \pm 0.02 \\ & 0.07 \pm 0.09 \pm 0.02 \\ & 0.37 \pm 0.17 \pm 0.02 \\ \hline \end{array}$                      | $-0.094 \pm 0.018 \pm 0.008$ $0.17 \pm 0.08 \pm 0.01$ $0.07 \pm 0.11 \pm 0.01$ $0.22^{+0.22\pm0.06}_{-0.29\pm0.02}$ $-0.21 \pm 0.11 \pm 0.07$ | -0.04 ± 0.16 ± 0.02 | -0.086 ± 0.023 ± 0.009 | $\begin{array}{c} -0.098 \substack{+0.012 \\ -0.098 \substack{+0.012 \\ -0.011 } \end{array} \\ \hline 0.02 \pm 0.23 \\ -0.19 \pm 0.07 \\ 0.14 \pm 0.18 \\ 0.19 \pm 0.05 \\ 0.06 \pm 0.13 \\ -0.07 \pm 0.19 \\ 0.07 \pm 0.12 \\ 0.45 \pm 0.25 \\ -0.07 \pm 0.09 \\ 0.37 \pm 0.17 \\ 0.000 \substack{+0.059 \\ -0.061 \\ 0.15 \pm 0.06 \\ 0.07 \pm 0.15 \\ -0.22 \substack{+0.32 \\ -0.31 \\ -0.01 \pm 0.05 \\ -0.18 \pm 0.07 \end{array}$ |  |  |
| $\begin{array}{ccccccc} 246 & K_0^*(143)\\ 252 & K^* \\ 259 & K^{*0},\\ 260 & K^* \\ 261 & f_0(98)\\ 264 & a_1^- \\ 279 & K^{*0}K \\ 280 & \phi K \\ 281 & K^{*0},\\ 289 & \phi K_0^*(120)\\ 294 & \phi K_2^*(120)\\ 301 & K^* \\ 316 & \pi^0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.07 \pm 0.05 \pm 0.01 \\ -0.15 \pm 0.12 \pm 0.02 \\ 03 & 0.07 \pm 0.04 \pm 0.03 \\ 02 & 0.09 \pm 0.19 \pm 0.02 \\ -0.17 \pm 0.28 \pm 0.02 \\ 0.01 & -0.16 \pm 0.12 \pm 0.01 \\ 02 & 0.01 \pm 0.05 \pm 0.02 \\ 0.01 \pm 0.06 \pm 0.03 \\ 20 & 0.22 \pm 0.33 \pm 0.20 \\ 0.20 \pm 0.14 \pm 0.06 \\ -0.08 \pm 0.12 \pm 0.05 \\ -0.16 \pm 0.22 \pm 0.07 \\ 0.43 \pm 0.26 \pm 0.05 \\ \end{array}$ | $0.02 \pm 0.09 \pm 0.02$<br>$0.44^{+0.73+0.04}_{-0.62-0.06}$                                                                                  | It has a w          | vord to say.           | $\begin{array}{c} 0.07\pm 0.05\\ -0.15\pm 0.12\\ 0.07\pm 0.05\\ 0.09\pm 0.19\\ -0.17\pm 0.28\\ -0.16\pm 0.12\\ 0.01\pm 0.05\\ 0.01\pm 0.05\\ 0.22\pm 0.39\\ 0.20\pm 0.15\\ -0.08\pm 0.13\\ -0.16\pm 0.23\\ 0.43\substack{+0.25\\-0.24}\end{array}$                                                                                                                                                                                        |  |  |

Eduardo Rodrigues

DISCRETE 2010, Rome, Italy, 9 Dec. 2010