

Dark Matter searches at LHC

Vasiliki A. Mitsou *IFIC Valencia* for the ATLAS and CMS Collaborations

DISCRETE 2010

Symposium on Prospects in the Physics of Discrete Symmetries 6–11 December 2010, Sapienza Università de Roma, Italy

Outline

- Introduction
 - LHC, ATLAS, CMS achievements
 - dark matter, WIMPs & colliders
- Supersymmetry
 - R-parity; model framework
 - search strategy at LHC & discriminating variables
- Searches for SUSY with 7-TeV data
 - data-driven background estimation
 - MET-based inclusive signatures
- Prospects for 2011 run (~1 fb⁻¹)
 - expected exclusion limits & discovery reach
- Conclusions & outlook
 - SUSY @ LHC
 - dark matter: colliders cosmology interplay

DISCRETE 2010

V. A. Mitsou

LHC operation

- Nov 2009: First collisions @ 900 GeV (SPS injection energy)
- Dec 2009: First collisions @ 2.36 TeV
 - exceeding Tevatron c.m.s. energy
- Since March 2010: 7-TeV collisions
 - final commissioning
 - first physics
- Nov-Dec 2010: Heavy ion collisions
 - Pb ions @ 2.76 TeV

Peak Stable Luminosity Delivered	2.07x10 ³²
Maximum Luminosity Delivered in one fill	6304.61 nb ⁻¹
Maximum Luminosity Delivered in one day	5983.78 nb ⁻¹
Maximum Luminosity Delivered in 7 days	24637.08 nb ⁻¹
Maximum Colliding Bunches	348
Maximum Average Events per Bunch Crossing	3.78
Longest Time in Stable Beams for one fill	30.3 hours

Excellent performance!

DISCRETE 2010

V. A. Mitsou

The CMS detector

 $E_{T}^{miss} = 161 \text{ GeV}$

V. A. Mitsou

High missing energy event

ATLAS EXPERIMENT Candidate Event with a $Z \rightarrow \mu \mu$ and missing E_{τ} Run 167776, Event 129360643 Time 2010-10-28 10:41:18 CET

Z bosons in heavy-ion collisions

V. A. Mitsou Valencia, April 2010

Dark matter cosmological evidence

- Astrophysical observations (gravitational)
 - galaxy clusters rotation curves
 - velocity dispersions of galaxies
 - gravitational lensing
 - structure formation
 - → Cold Dark Matter: non-relativistic matter
- Precise DM measurements
 - Cosmic Microwave Background (CMB)
 - + other (BAO, H_o, ...)
 - $\Omega_{\chi} \approx 0.23\%$

Valencia, April 2010 V. A. Mitsou

Dark matter candidates

Weakly Interacting Massive Particles (WIMPs)

- 1 GeV < m_{γ} < 50 TeV
- thermal relics from Big Bang
- being *stable* and *weakly*-interacting only, if produced at a collider, escape detection

\rightarrow large missing energy

possible WIMPs

- lightest supersymmetric particle (neutralino, mass $\mathcal{O}(100 \text{ GeV})$)
- Kaluza-Klein states (UED, warped GUTs)
- T-odd states in "Little Higgs"
- axino, gravitino (extremely WIPs) \rightarrow search for long-lived charged particles

cross section

Other DM explanations

- axions (solve strong CP problem)
- non-thermal (superheavy) relics
- wimpzillas, cryptons, ...

focus on SUSY in this talk

search strategy at LHC similar to that of SUSY

Supersymmetry (SUSY)

- SUSY = global symmetry between fermions & bosons
 - all SM particles have SUSY-partners with spin difference of ±1/2

- Theoretical motivation (*besides DM*)
 - Higgs mass stabilisation against loop corrections (*fine-tuning* problem)
 - unification of gauge couplings at single scale
- R-parity: $R = (-1)^{3(B-L)+2s} \rightarrow R = \begin{cases} +1, \text{ for SM particles} \\ -1, \text{ for superpartners} \end{cases}$
 - R-parity conservation *hinted* but not required by proton stability
- If R-parity is conserved \rightarrow lightest SUSY-particle (LSP) is stable
 - should be colorless and neutral
 - WIMP dark matter candidate

SUSY model framework

- Minimal SuperSymmetric Standard Model (MSSM) contains
 >100 free parameters
 → assume specific physics-motivated
 - model for systematic studies

• **mSUGRA**: minimal SuperGravity

- universal masses and couplings at GUT scale
- LSP: lightest neutralino χ_1^{o}
- **GMSB**: gauge messengers; light gravitino LSP
- **AMSB**: anomalies in SUGRA L; no flavour problem
- **pMSSM:** 19 parameters

Inclusive searches at LHC:

model independent; not optimized for specific decay chains

DISCRETE 2010

V. A. Mitsou

SUSY signature at LHC

- Relatively large cross sections
- Strongly interacting sparticles (~q, ~g) dominate production
- Long cascade decay into the LSP

- Golden discovery channel: multi jets + missing E_T + (leptons)
- Divide search in channels with different #leptons (exclusive) and #jets (inclusive)
- Other modes also investigated: b-jets, photons, tau leptons

Data-driven background estimation

- check control regions
- understand SM-processes tails in SUSY-sensitive observables

DISCRETE 2010

V. A. Mitsou

Missing transverse energy MET (or E_T^{miss})

- = imbalance of total measured transverse momentum
 - true MET indicates *invisible*,
 i.e. weakly interacting, particles
 - e.g. neutrinos, WIMPs
 - may be defined/measured by various ways
 - calorimetric clusters, MET
 - calorimetric jets, MHT
 - tracks, MPT
- Crucial in SUSY searches is understanding and *cleaning* the sample from sources of fake MET
 - detector cracks
 - jet mis-measurement

••••

jets j

Other discriminating variables

- Effective mass, **M**_{eff}
 - scalar sum of MET and p_T of selected jets and leptons
 - correlates with SUSY mass scale
- Transverse mass, **m**_T
 - $\, \circ \, \,$ constructed from highest-p_T lepton and $E_T^{\rm miss}$
- **H**_T: scalar sum over p_T of the selected jets $|H_T = \sum p_{Tj}|$
- Missing transverse momentum, **MHT**
- $\mathbf{a}_{\mathbf{T}}$: introduced to characterize di-jet events:
 - $\alpha_T \approx$ 0.5: well-measured QCD events
 - + α_T < 0.5: QCD events with mis-measured jet
 - $\alpha_{\rm T}$ > 0.5: lost third jet; true MET; SUSY, W, ttbar, ...
 - generalized to *n*-jets events
- Transverse sphericity, $\mathbf{S}_{\mathbf{T}}$
 - related to geometrical distribution of reconstructed objects
 - SUSY events more `spherical' than SM ones

$$M_{\rm eff} = \sum_{\rm jets} p_{\rm T} + \sum_{\rm leptons} p_{\rm T} + E_{\rm T}^{miss}$$

$$m_T^2 = 2 \left| \vec{p}_T^{\ell} \right\| \vec{E}_T^{miss} - 2 \vec{p}_T^{\ell} \vec{E}_T^{miss}$$

$$MHT \equiv \left| \sum_{j ets \ j} (-\vec{p}_{Tj}) \right|$$

$$\alpha_T = \frac{\sqrt{p_{T2}/p_{T1}}}{\sqrt{2(1 - \cos\Delta\phi)}}, \text{ for 2 jets}$$
$$\alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - (MHT)^2}}, \text{ for } n \text{ jets}$$

Searches with 7-TeV data

ATLAS/CMS data analysis with luminosity up to 300 nb⁻¹ on R-parity conserving SUSY

- ICHEP results mostly
- no exclusion limits set yet

NOT COVERED: searches for long lived sparticles

- not relevant for Dark Matter
- new exclusion limits already set (R-hadrons)

Background estimation from data

• Estimate background in *control* sample and propagate measurement to *signal* sample, e.g. **ABCD method**

- Example: Replace method for $Z \rightarrow vv$ background
 - estimate E_T^{miss} distribution of $Z \rightarrow vv$ from $p_T(\ell^+\ell^-)$ distribution of $Z \rightarrow \ell^+\ell^-$
 - apply corrections for lepton reconstruction efficiency and coverage, additional cuts, ...

QCD background estimation with α_T

- QCD background
 - large cross section; poorly known properties
 - sensitive to detector performance
- MC agreement in control sample far from signal region (high HT>350 GeV)
- Study of α_T > 0.55 rejection power as H_T threshold increases shows robust behaviour of α_T cut

Suppressing fake MET in jet events

- $\Delta \phi^* = \Delta \phi$ (MHT, jets) cut
 - in jet samples MHT may coincide with a mismeasured jet
 - $\Delta \phi^*$ peaks at zero; narrower for increasing HT
- SUSY or true-MET events
 - uniform $\Delta \phi^*$ distribution
 - emulate SUSY by randomly removing one jet

- $\Delta \phi$ (MPT,MHT) cut
 - in events with real MET, MPT and MHT coincide
 - in events with fake MET (such as QCD) MPT and MHT are uncorrelated
- Expectations confirmed by data

CMS PAS SUS-10-001 (2010)

O-lepton + MET (I)

- QCD normalized in control region $p_T(jet1) > 70$ GeV, $p_T(jet2) > 30$ GeV
- Mono-jet channel
 - require one jet, $p_T > 70$ GeV and veto additional jets with $p_T > 30$ GeV
 - $\Delta \phi$ (MET, jet) \approx O for QCD events
- Three-jet channel
 - require three jets with $p_T > (70, 30, 30)$ GeV and MET > 0.25 Meff
 - no data events where 1.9 ± 0.9 are expected from MC
- Agreement between ATLAS data and SM simulation → jets are well understood

O-lepton + MET (II)

- Two-jet channel
 - MET > max{40 GeV, 0.3 M_{eff} }, $\Delta\phi(MET, jets) < 0.2$
 - 4 events found where 6.6 ± 3 are expected
- Four-jets
 - $\,\,\circ\,\,\,3^{rd}$ and 4^{th} jet of 30 GeV and loosen to MET > 0.2 M_{eff}
 - 1 event is found where 1.0 ± 0.6 are expected
- All data distributions consistent with normalized MC

ATLAS-CONF-2010-065

$One-lepton \ selection \ - \ MET$

- Split into e and μ channels
- MC normalization in control regions
 - Pythia QCD: MET < 40 GeV; m_T < 40 GeV
 - Alpgen W+jets: 30 GeV< MET <50 GeV; 40 < m_T < 80 GeV
- Event selection after standard cleaning cuts
 - ℓ with $p_T > 20$ GeV and veto more ℓ with $p_T > 10$ GeV
 - two or more jets with p_T > 30 GeV

ATLAS-CONF-2010-066

ATLAS-CONF-2010-066

Yellow band:

uncertainly

jet energy scale

One-lepton selection $-m_{T}$

- After preselection no MET, m_T cuts
- Electron channel
 - QCD background dominates
 - 143 events in data compared to 157 ± 85 from MC
- Muon channel
 - W+jets largest contribution at high m_T; QCD important at low m_T values
 - 40 events in data compared to 37 ± 14 from MC

One-lepton selection $- M_{eff}$

- Additional cut: MET > 30 GeV
- Electron channel
 - 13 events in data compared to 16 ± 7 from MC
 - with $m_T > 100$ GeV: 2 data events survive compared with 3.6 ± 1.6
- Muon channel
 - 17 events in data compared to 15 ± 7 from MC
 - with $m_T > 100$ GeV: 1 data event survives compared with 2.8 ± 1.2

2-lepton + MET channel

- Selection cuts
 - exactly two leptons, p_T > (20 GeV, 10 GeV)
 - $M_{\ell\ell} > 5 \text{ GeV}$
 - MET > 30 GeV
- Events subdivided in opposite-sign (OS) and same-sign (SS) lepton pairs
- Observed events consistent with SM expectations

ATLAS-CONF-2010-066

Search with b-jets

- b-tagging based on secondary-vertex tagger
 - $\varepsilon_{\text{b-tagging}} \sim O(50\%)$
- 0-lepton mode
 - □ ≥ 2 or 3 jets (pT >70, 30, 30 GeV)
 - \geq 1 b-tagged jet
 - rejection of light quark jets at 98-99%
 & charm jets at 80-90%
- Good agreement MC–data in full range

g according

a ′0000000€

 \tilde{g}

 $\longrightarrow \tilde{\chi}_1^0$

h

V. A. Mitsou

 \overline{b}

 $\xrightarrow{} \chi_1$

 $\tilde{\chi}_1^-$

DISCRETE 2010

^g 00000000

g 00000000

b

 $\longleftrightarrow \tilde{\chi}_1^0$

b-jets + 1 lepton channel

- Applied cuts as o-lepton except
 - 2 jets (p_T>30 GeV , p_T> 30 GeV)
 - □ \geq 1 lepton (p_T>20 GeV)
- Reasonable agreement data MC
 - SM background reduced to few events
 - top production dominates
 - no sensitivity to mSUGRA signal yet

Prospects for end of 2011

- SUSY discovery reach & exclusion limits for ~1 fb⁻¹ and \sqrt{s} = 7 TeV
- 2011 run at $\sqrt{s} = 8 \text{ TeV}$
 - to be decided at Chamonix (January 24 28 2011)

V. A. Mitsou DISCRETE 2010 ATLAS-PHYS-PUB-2010-010 5σ 0 lepton 4 jets 5σ 0 lepton 4 jets

Evolution up to 2 fb⁻¹

- Systematic uncertainties included
- Caveat: excess of events is not enough •
 - possibly other physics beyond the Standard Model
 - further precision measurements required

simulation studies

Conclusions on SUSY @ LHC

- ATLAS and CMS performed first analyses with luminosity up to 300 nb^{-1}
 - good understanding of detector performance & physics objects
 - background processes well under control
 - no significant deviations from SM seen so far
- New results competing with Tevatron can be obtained with 2010 data: ~40 pb⁻¹ (≈ 500 × ICHEP!)
- Monte Carlo studies for 1 fb⁻¹ show that LHC with $\sqrt{s} = 7$ TeV has sensitivity to
 - SUSY parameter space well beyond the Tevatron limits
 - SUSY with squark, gluino masses up to 700 GeV can be discovered

Outlook on Dark Matter & LHC

- Discovery: search for deviation from SM in inclusive signatures like missing energy + jets (+leptons)
- Scheme developed for SUSY, but applicable to other BSM scenarios, e.g. UED, T-parity Little Higgs, ...
- LHC capable of discovering generic WIMP dark matter
 - non-trivial to prove that it has the right properties
 - □ → LHC upgrade, ILC: extend LHC observations
 - improve on LHC capability of identifying DM model
 - more precise determination of model parameters
- Complementarity between LHC and astroparticle detectors
 - uncorrelated systematics
 - measure different parameters
- Continuous interplay between particle physics experiments (LHC, LHC upgrade, ILC) and cosmological observations

32

V. A. Mitsou DISCRETE 2010

Back up slides...

SUSY particle spectrum

