A model for neutrino masses and mixing based on the non-abelian discrete symmetry A4

Davide Meloni Institut für Theoretische Physik und Astrophysik Universität Würzburg

Roma 6/12/2010

Talk based on G.Altarelli & DM, J.Phys.G36:085005,2009

Neutrino physics is entering a "precision era"

In the standard parameterization of the mixing matrix

This is the most general structure of M_{ν} diagonalized by TBM This is a symmetric matrix with $a_{11} + a_{12} = a_{22} + a_{23}$

Then if you want to get a TBM neutrino mixing, your model must be able to produce this kind of mass matrix

The group A_4 is a good candidate

1 - A_4 is the group of even permutations of 4 objects \rightarrow 12 elements

2 - as usual, to generate all the group elements we need to identify "generators of the group" and their action on the elements of the group

these are called S and T

One possible "representation": S²=T³=(ST)³=1

3 - they act as follows: $(1234) \rightarrow (4321)$ under S

 $(1234) \rightarrow (2314)$ under T

The group A_{4} is also the symmetry of a tetrahedron

The 12 elements are obtained considering all possible permutations of 1234. They belong to 4 conjugacy classes... given a of G, $\left[g^{-1}ag, \forall g \in G\right]$

 A_4 has 4 irreducible representations

- three singlets 1, 1' and 1''
- 1 triplet 3

A representation of the group

1: S=1 T=1 1': S=1 T=e^{i4 \pi/3} = ω^2 1'': S=1 T=e^{i2 \pi/3} = ω 3₁: $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$ $S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$

Table of multiplication

$$1_{1} \otimes any = any$$

$$1' \otimes 1' = 1'' \quad 1' \otimes 1'' = 1 \quad 1'' \otimes 1'' = 1''$$

$$3 \otimes 3 = 1 + 1' + 1'' + 3_{S} + 3_{A}$$

The TBM is derived considering that:

 A_4 is a symmetry of the Nature at a very high energy scale Λ

The symmetry is spontaneously broken by a set of scalar multiplets Φ (FLAVONS) with VEV aligned in some particular directions

The preserved subgroups in the charged and neutrino sectors must be different otherwise

$$U_l = U_v \implies U_{PMNS} = U_l^+ U_v = I$$

Different symmetry breaking patterns needed !!! corresponding to some subgroup of A4

The model: $A_4 \times Z_4$

Table 1. Transformation properties of leptons, electroweak Higgs doublets and flavons under $A_4 \times Z_4$ and $U(1)_R$.

 Z_4 maintains the neutrino and charged lepton sectors separated at leading order⁹

The charged lepton sector

- the hierarchy is garanteed by flavon insertion
- the diagonal form of the mass matrix by Z4

The charged lepton sector

The A4 symmetry is completely broken by

 $<\phi_{T} >= v_{T}(0,1,0) \text{ and } <\xi' >=u'$

and gives

$$m_{\ell} = \begin{pmatrix} \frac{v_T v_d}{\Lambda^3} \left(2y_e v_T u' + y'_e u'^2 + y''_e v_T^2 \right) & 0 & 0 \\ 0 & \frac{v_T v_d}{\Lambda^2} (2y_\mu v_T + y'_\mu u') & 0 \\ 0 & 0 & \frac{y_\tau v_d v_T}{\Lambda} \end{pmatrix}$$

If we assume that both vevs v_{τ} and u' have the same order of magnitude then the charged lepton hierarchy is reproduced with

$$\frac{v_T}{\Lambda} = \frac{u'}{\Lambda} = \epsilon = \lambda_c^2$$

The neutrino sector

we assume that neutrino masses are generated by the See-Saw mechanism

 $M^{\nu} = -m_D^T m_M^{-1} m_D$

Simmetry breaking: $\langle \phi_s \rangle = v_s(1,1,1)$ and $\langle \xi \rangle = u$ (Z2)

 $w_{\nu} = y_{\nu}(\nu^{c}\ell)h_{u} + (M + a\xi)\nu^{c}\nu^{c} + b\nu^{c}\nu^{c}\varphi_{S}$

Dirac mass term $m_D = y_{\nu}v_u \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $m_M = \begin{pmatrix} M + au + 2bv_s & -bv_s & -bv_s \\ -bv_s & 2bv_s & M + au - bv_s \\ -bv_s & M + au - bv_s & 2bv_s \end{pmatrix}$ $m = \begin{pmatrix} x & y & y \\ y & x + v & y - v \\ y & y - v & x + v \end{pmatrix}$

Vacuum alignment

Any serious flavour model must derive the vacuum expectation values of the flavon fields from general principles

To achieve this aim, one introduces new Standard Model singlet fields, DRIVING FIELDS with well defined transformation properties under $A_4 \times Z_4$

- we build the most general superpotential W allowed by the symmetries of the theory and derive the scalar potential in the usual way

$$V = \Sigma \left| \frac{\partial W}{\partial \phi_i} \right|^2 + m_i^2 \left| \phi_i \right|^2 + \dots$$

 φ_i are driving fields components

Since m_i are expected to be smaller than the mass scales in W, we can neglect this term and then working in the SUSY limit

$$V = 0 \quad \Rightarrow \quad \left| \frac{\partial W}{\partial \phi_i} \right| = 0$$

We get a set of equations for the flavon field components; the solution of the system of equations are the VEV configurations

Light neutruno spectrum

We parametrize the Lagrangian parameters in the following way:

$$w_{\nu} = y_{\nu}(\nu^{c}\ell)h_{u} + (M + a\xi)\nu^{c}\nu^{c} + b\nu^{c}\nu^{c}\varphi_{S}$$

$$A = M + au = |A| e^{i\phi_{A}}, \qquad B = 3bv_{S} = |B| e^{i\phi_{B}}$$

$$\alpha = \frac{|B|}{|A|}, \qquad \phi = \phi_{B} - \phi_{A}.$$

A is a measure of the Majorana mass scale

The LO light masses are:

$$m_{1} = -\frac{v_{u}^{2} y_{v}^{2}}{|A| e^{i\phi_{A}}} \left(\frac{1}{1+\alpha e^{i\phi}}\right)$$
$$m_{2} = -\frac{v_{u}^{2} y_{v}^{2}}{|A| e^{i\phi_{A}}}$$
$$m_{3} = \frac{v_{u}^{2} y_{v}^{2}}{|A| e^{i\phi_{A}}} \left(\frac{1}{1-\alpha e^{i\phi}}\right).$$

Notice the tipical A4 sum rule $\frac{1}{m_3} = \frac{1}{m_1} - \frac{2}{m_2}$

Light neutruno spectrum - Normal Hierarchy

It is easy to compute the ratio r:

$$r = \frac{\Delta m_{\text{sol}}^2}{\left|\Delta m_{\text{atm}}^2\right|} = \frac{(1 + \alpha^2 - 2\alpha\cos\phi)(\alpha + 2\cos\phi)}{4|\cos\phi|}$$

A small r~1/30 is obtained for

$$\cos \phi \sim \alpha \sim 1$$

Normal Hierarchy

 $\cos \phi = -\alpha/2 + \delta \alpha$ Inverted Hierarchy

$$\frac{\text{For Normal Hierarchy}}{|m_1|^2 = \frac{1}{3}\Delta m_{atm}^2 r} |m_2|^2 = \frac{4}{3}\Delta m_{atm}^2 r} |m_3|^2 = \left(1 + \frac{r}{3}\right)\Delta m_{atm}^2} |m_{ee}|^2 = |m_1 U_{el}^2 + m_2 U_{e2}^2| = \frac{16}{27} \Delta m_{atm}^2 r \sim (0.007 \, eV)^2$$
15

Light neutruno spectrum- Inverted Hierarchy

The results depend on $\alpha = |B/A|$

$$|m_2|^2 = |m_1|^2 + \left|\Delta m_{\rm atm}^2\right|r = \left|\Delta m_{\rm atm}^2\right| \left(\frac{1+2\alpha^2}{2\alpha^2}\right) \left[1+r\left(1+\frac{1}{(1+2\alpha^2)^2}\right)\right] + \cdots + |m_3|^2 = |m_1|^2 - \left|\Delta m_{\rm atm}^2\right|.$$

$$|m_{ee}|^{2} = \left|\Delta m_{\rm atm}^{2}\right| \left(\frac{1+2\alpha^{2}}{2\alpha^{2}}\right) \left(1-\frac{2}{9}\alpha^{2}\right)$$

Lower limit on $\alpha \sim 0.07$ from the requirement that $|m_i| < 0.5$ eV

Majorana neutrino masses

$$M_{1} = |A|e^{\phi_{A}}(1+\alpha e^{\phi}) \qquad M_{2} = |A|e^{\phi_{A}} \qquad M_{3} = |A|e^{\phi_{A}}(-1+\alpha e^{\phi})$$

We explored the allowed parameter space under the restrictions that the experimental values of Δ_{sol} and r are fullfilled at 3 sigma level

M~10¹⁴-10¹⁵ GeV

Beyond the LO approximation

At the next level of approximation the superpotential is corrected by operators of higher dimensions whose contributions are suppressed by at least one power of VEVs/ Λ

NLO correction could affect any sector of the theory

Charged lepton and neutrino masses are modified by

Corrections to the vacuum alignment

 $\langle \Phi \rangle \rightarrow \langle \Phi \rangle^{LO} + \delta \Phi \quad where \quad \delta \Phi \sim \frac{\langle \Phi \rangle^{LO}}{\Lambda}$

Higher order operators (NLO) of $O(1/\Lambda)$ compared to the LO lagrangian

$$W^{tot} = W^{LO}(\langle \boldsymbol{\Phi} \rangle^{LO}) + W^{LO}(\delta \boldsymbol{\Phi}) + W^{NLO}(\langle \boldsymbol{\Phi} \rangle^{LO})$$

Beyond the LO approximation

The results of such a procedure are:

 $\langle \varphi_S \rangle = v_S (1 + \delta v_S, 1 + \delta v_S, 1 + \delta v_S)^T \qquad \langle \varphi_T \rangle = v_S (1 + \delta v_{T1}, 1 + \delta v_{T2}, 1 + \delta v_{T3})^T$

The diagonalizing matrix is:

$$U_{\ell} = \begin{pmatrix} 1 & \left(\frac{b_1}{b_2}\varepsilon'\right)^* & \left(\frac{c_1}{c_3}\varepsilon'\right)^* \\ -\frac{b_1}{b_2}\varepsilon' & 1 & \left(\frac{c_2}{c_3}\varepsilon'\right)^* \\ -\frac{c_1}{c_3}\varepsilon' & -\frac{c_2}{c_3}\varepsilon' & 1 \end{pmatrix}$$

Beyond the LO approximation

Neutrinos

The diagonalizing U_v has the same strucure as in the charged lepton sector

 $\sin \theta_{13} = |U_{e3}| \sim O(\lambda_c^2)$

$$U_{PMNS} = U_l^+ U_v$$

$$sin^{2} \theta_{12} = \frac{|U_{e2}|}{\sqrt{1 - |U_{e3}|^{2}}} \sim \frac{1}{3} + O(\lambda_{c}^{2})$$
$$sin^{2} \theta_{23} = \frac{|U_{\mu3}|}{\sqrt{1 - |U_{e3}|^{2}}} \sim \frac{1}{2} + O(\lambda_{c}^{2})$$

20

- TBM is a good description of neutrino experimental data
- Models for neutrino masses and mixing based on non-abelian discrete symmetries are quite good in reproducing this pattern
- We presented an example based on A_4 , able to generate NLO corrections to TBM compatible with the data
- The model allows for both mass spectra and is also compatible with leptogenesis

Workshop on FLAvour SYmmetries FLASY2011

Valencia-IFIC, 11-14 July 2011

Main goal:

- summarize the theoretical status of flavor symmetries, bringing together researchers in the field to stimulate discussions and new collaborations
- Interesting subjects: possible new physics scenarios to be tested at the LHC, as well as in future neutrino, cosmology experiments and dark matter searches.
- Talks mainly given by young researchers and PhD students

Official web page: soon available

Official e-mail address: flasy2011@ific.uv.es

Organizing Committee :

M. Hirsch (Valencia), D.Meloni (Wuerzburg), S.Morisi (Valencia),

S. Pastor (Valencia), E. Peinado (Valencia), J.W.F. Valle (Valencia).

Just an estimate....

The total CP asymmetries in the decay of a RH neutrino are defined as

$$\epsilon_i = \frac{\Gamma_i - \Gamma_i}{\Gamma_i + \overline{\Gamma}_i}$$

At one loop:

$$\epsilon_{i} = \frac{1}{8\pi (\tilde{Y} \tilde{Y^{+}})_{ii}} \Sigma_{j \neq i} \Im (\tilde{Y} \tilde{Y^{+}})_{ij}^{2} f\left(\frac{|M_{j}|^{2}}{|M_{i}|^{2}}\right)$$

"hat" matrices are Yukawa matrices in the basis

where the Majorana mass matrix is diagonal

For susy theories:

$$f(x) = -\sqrt{x} \left[\frac{2}{x-1} + \log\left(\frac{1+x}{x}\right) \right]$$

Leptogenesis

In the basis where the Majorana mass matrix is diagonal:

 \tilde{Y}

$$v_{d} \tilde{Y} = v_{d} U_{TBM}^{T} Y_{v} \qquad Y = \frac{m_{D}}{v_{d}}$$

$$\tilde{Y}^{+} = U_{TBM}^{T} \left(Y_{v} Y_{v}^{+}\right) U_{TBM}^{*} = U_{TBM}^{T} \left(diagonal \ matrix\right) U_{TBM}^{*} = I$$

NLO are crucial !

E.E.Jenkins and A.V.Manohar, Phys. Lett. B 668, 210 (2008)

 $\delta(\tilde{Y} \tilde{Y^{+}}) = U_{TBM}^{T} \delta(Y_{\nu} Y_{\nu}^{+}) U_{TBM}^{*}$ \downarrow $\epsilon_{1} \sim \epsilon_{3} \sim \epsilon^{3} \sim \lambda_{C}^{6} \sim 10^{-5}$ $\epsilon_{2} = 0$

RGE evolution of the mixing parameters

The value of r forces the Majorana masses to be $O(10^{15})$ GeV

- The running of the angle θ_{12} from $M_M = 10^{15}$ GeV down to $M_S = 10^3$ GeV can be non-negligible for nearly degenerate mass spectrum
- The evolution is large for $|m_1|$ sufficiently close to $|m_2|$

In our model:

In the case of CP conserved neutrino mixing matrix and in the limit of vanishing electron and muon Yukawas the evolution is dictated by P.H.Chankowski and S.Pokorski,

$$\frac{d}{dt}s_{12} = \frac{1}{2}s_{12}(1-s_{12}^2)A_{21}y_{\tau}^2$$
$$s_{12} = \sin\theta_{12} \qquad t = \frac{1}{16}\log\frac{M_M}{M}$$

 $16\pi^{-}$

MS

$$A_{21} = \frac{|m_1 + m_2|^2}{\Delta m_{sol}^2}$$

26

Int J.Mod.Phys.A 17, 575 (2002)

RGE evolution of the mixing parameters

We find the solution in terms of the deviation from the TBM value $\lambda = 1/3 - s^2 12$

$$\lambda = \frac{2}{9} A_{21} \frac{y_{\tau}^2}{16\pi^2} \log \frac{M_M}{M_S}$$

Since λ cannot be larger than 0.05 and $y_{\tau} \sim 10^{-4} (1 + \tan^2 \beta)$ we can avoid a running of θ_{12} beyond the experimental limit if

 $A_{21}(1+\tan^2\beta) \leq 10^4$

$$A_{21} = \frac{|m_1 + m_2|^2}{\Delta m_{\rm sol}^2} \sim \frac{1 + 2\alpha^2}{2\alpha^2 r} \left(4 - \alpha^2 + \frac{4\alpha^2 r}{1 + 2\alpha^2}\right)$$

• $A_{21} \sim 10^4$ for a ~ 0.07 evolution non-negligible • $A_{21} \sim 150$ for a ~ 1 evolution neglected for tan $\beta < 10$ • $A_{21} \sim 2$ for a ~ 2 evolution negligible

More on the RGE evolution

$$\frac{d}{dt}s_{12} = \frac{1}{2}s_{12}(1-s_{12}^2)A_{21}y_{\tau}^2$$

$$A_{21} = \frac{|m_1 + m_2|^2}{\Delta m_{sol}^2} = \cos^2 \beta \frac{|m_1| + |m_2|}{|m_1| - |m_2|} + \sin^2 \beta \frac{|m_2| - |m_1|}{|m_1| + |m_2|}$$

 β being $\frac{1}{2}$ of the m1 and m2 phase shift

$$A_{21} = \cos^{2}\beta \frac{|m_{1}| + \sqrt{\Delta_{sol}} + |m_{1}|^{2}}{|m_{1}| - \sqrt{\Delta_{sol}} + |m_{1}|^{2}} + \sin^{2}\beta \frac{\sqrt{\Delta_{sol}} + |m_{1}|^{2} - |m_{1}|}{|m_{1}| + \sqrt{\Delta_{sol}} + |m_{1}|^{2}}$$

Degeneracy means $m_1 \gg \Delta_{sol}$ so that $A_{21} \rightarrow infinity$

Vacuum alignment

$$\frac{\partial W_{d}}{\partial \varphi_{01}^{s}} = 2 g_{1}(\varphi_{s_{1}}^{2} - \varphi_{s_{2}}\varphi_{s_{3}}) + (M + g_{2}\xi)\varphi_{s_{1}} = 0 \qquad \langle \varphi_{s} \rangle = v_{s}(1, 1, 1)^{T} \\ \frac{\partial W_{d}}{\partial \varphi_{02}^{s}} = 2 g_{1}(\varphi_{s_{2}}^{2} - \varphi_{s_{1}}\varphi_{s_{3}}) + (M + g_{2}\xi)\varphi_{s_{3}} = 0 \qquad \langle \xi \rangle = u \neq 0 \\ \frac{\partial W_{d}}{\partial \varphi_{03}^{s}} = 2 g_{1}(\varphi_{s_{3}}^{2} - \varphi_{s_{1}}\varphi_{s_{2}}) + (M + g_{2}\xi)\varphi_{s_{2}} = 0 \qquad \text{with} \\ v_{s}^{2} = \frac{1}{3g_{2}^{2}g_{3}} \left[g_{2}(M M_{\xi} - g_{2}M_{0}^{2}) - g_{4}M^{2} \right] \\ u = -\frac{M}{g_{2}}$$

We expect a common order of magnitude for the VEVs

$$\frac{v_T}{\Lambda} \sim \frac{u'}{\Lambda} \sim \epsilon$$
 and $\frac{v_S}{\Lambda} \sim \frac{u}{\Lambda} \sim \epsilon'$ 29

Vacuum alignment

the superpotential

 $w_{d} = M \varphi_{0}^{S} \varphi_{S} + g_{1}(\varphi_{0}^{S} \varphi_{S} \varphi_{S}) + g_{2}(\varphi_{0}^{S} \varphi_{S} \xi) + g_{3}(\xi_{0} \varphi_{S} \varphi_{S}) + g_{4}\xi_{0}\xi^{2} + M_{\xi}\xi_{0}\xi + M_{0}^{2}\xi_{0} + h_{1}\xi'(\varphi_{0}^{T} \varphi_{T})'' + h_{2}(\varphi_{0}^{T} \varphi_{T} \varphi_{T})$

 $\frac{\partial W_{d}}{\partial \varphi_{01}^{T}} = 2h_{2}(\varphi_{T_{1}}^{2} - \varphi_{T_{2}}\varphi_{T_{3}}) + h_{1}(\xi'\varphi_{T_{3}}) = 0 \qquad \langle \varphi_{T} \rangle = v_{T}(0, 1, 0)^{T}$ $\frac{\partial W_{d}}{\partial \varphi_{02}^{T}} = 2h_{2}(\varphi_{T_{2}}^{2} - \varphi_{T_{1}}\varphi_{T_{3}}) + h_{1}(\xi'\varphi_{T_{2}}) = 0 \qquad \langle \xi' \rangle = u' \neq 0$ $\frac{\partial W_{d}}{\partial \varphi_{03}^{T}} = 2h_{2}(\varphi_{T_{3}}^{2} - \varphi_{T_{1}}\varphi_{T_{2}}) + h_{1}(\xi'\varphi_{T_{1}}) = 0 \qquad v_{T} = -\frac{h_{1}u'}{2h_{2}}$

Large interest in recent years to find models for TBM (no GUT models in the list ...)

E. Ma and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arXiv:hep-ph/0106291]; E. Ma, Mod. Phys. Lett. A 17 (2002) 627 [arXiv:hep-ph/0203238]; K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552 (2003) 207 [arXiv:hep-ph/0206292]; M. Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del Moral, arXiv:hep-ph/0312244; Phys. Rev. D 69 (2004) 093006 [arXiv:hep-ph/0312265]; E. Ma, Phys. Rev. D 70 (2004) 031901; Phys. Rev. D 70 (2004) 031901 [arXiv:hepph/ 0404199]; New J. Phys. 6 (2004) 104 [arXiv:hep-ph/0405152]; arXiv:hepph/0409075; S. L. Chen, M. Frigerio and E. Ma, Nucl. Phys. B 724 (2005) 423 [arXiv:hep-ph/0504181]; E. Ma, Phys. Rev. D 72 (2005) 037301 [arXiv:hepph/0505209]; M. Hirsch, A. Villanova del Moral, J. W. F. Valle and E. Ma, Phys. Rev. D 72 (2005) 091301 [Erratum-ibid. D 72 (2005) 119904] [arXiv:hepph/0507148]; K. S. Babu and X. G. He, arXiv:hep-ph/0507217; E. Ma, Mod. Phys. Lett. A 20 (2005) 2601 arXiv:hep-ph/0508099]; A. Zee, Phys. Lett. B 630 (2005)58 [arXiv:hep-ph/0508278]; E. Ma, Phys. Rev. D 73 (2006) 057304 [arXiv:hepph/ 0511133]; X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604 (2006) 039[arXiv:hep-ph/0601001]; B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. K. Parida, Phys. Lett. B 638 (2006) 345 [arXiv:hep-ph/0603059]; E. Ma, Mod.Phys. Lett. A 21 (2006) 2931 [arXiv:hep-ph/0607190]; Mod. Phys. Lett. A 22 (2007) 101 [arXiv:hep-ph/0610342]; L. Lavoura and H. Kuhbock, Mod. Phys. Lett. A 22E. Ma and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arXiv:hep-ph/0106291]. E. Ma, Mod. Phys. Lett. A 17 (2002) 627 [arXiv:hep-ph/0203238]; K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552 (2003) 207 [arXiv:hep-ph/0206292]; M. Hirsch, J. C. Romao, S. Skadhauge, J. W. F. Valle and A. Villanova del Moral, arXiv:hep-ph/0312244; Phys. Rev. D 69 (2004) 093006 [arXiv:hep-ph/0312265]; E. Ma. Phys. Rev. D 70 (2004) 031901; Phys. Rev. D 70 (2004) 031901 [arXiv:hepph/0404199]; New J. Phys. 6 (2004) 104 [arXiv:hep-ph/0405152]; arXiv:hepph/ 0409075; S. L. Chen, M. Frigerio and E. Ma, Nucl. Phys. B 724 (2005)423 [arXiv:hep-ph/0504181]; E. Ma, Phys. Rev. D 72 (2005) 037301 [arXiv:hepph/ 0505209]; M. Hirsch, A. Villanova del Moral, J. W. F. Valle and E. Ma, Phys. Rev. D 72 (2005) 091301 [Erratum-ibid. D 72 (2005) 119904][arXiv:hepph/507148]; K. S. Babu and X. G. He, arXiv:hep-ph/0507217; E. Ma, Mod. Phys.Lett. A 20 (2005) 2601 arXiv:hep-ph/0508099]; A. Zee, Phys. Lett. B 630 (2005) 58 [arXiv:hep-ph/0508278]; E. Ma, Phys. Rev. D 73 (2006) 057304 [arXiv:hepph/0511133]; X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604 (2006) 039 [arXiv:hep-ph/0601001]; B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. K. Parida, Phys. Lett. B 638 (2006) 345 [arXiv:hep-ph/0603059] And many others ...

Group	d	Irr. Repr.'s	Presentation	Ref.'s
$D_3 \sim S_3$	6	1, 1', 2	$A^3 = B^2 = (AB)^2 = 1$	[154-175]
D_4	8	four 1, 2	$A^4 = B^2 = (AB)^2 = 1$	[176, 177]
D_7	14	1, 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$	[178, 179]
A_4	12	1, 1', 1'', 3	$A^3 = B^2 = (AB)^3 = 1$	[45-87]
$A_5 \sim PSL_2(5)$	60	1, 3, 3', 4, 5	$A^3 = B^2 = (BA)^5 = 1$	[115]
T'	24	1, 1', 1", 2, 2', 2", 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$	[88–97]
S_4	24	1, 1', 2, 3, 3'	$BM: A^4 = B^2 = (AB)^3 = 1$	
			$TB: A^3 = B^4 = (BA^2)^2 = 1$	[98 - 109]
$\Delta(27) \sim Z_3 \ \rtimes \ Z_3$	27	nine $1, 3, \overline{3}$		[110-114]
$PSL_2(7)$	168	$1, 3, \overline{3}, 6, 7, 8$	$A^3 = B^2 = (BA)^7 = (B^{-1}A^{-1}BA)^4 = 1$	[116-118]
$T_7 \sim Z_7 \rtimes Z_3$	21	$\overline{1, 1', \overline{1'}, 3, \overline{3}}$	$A^7 = B^3 = 1, \ AB = BA^4$	[119]

From Altarelli&Feruglio 2010

Effective operators for neutrino masses

Up to 1 flavon insertion

$$\begin{split} W_{v}^{\text{eff}} &= \frac{C}{\Lambda} \left(\ell h_{u} \ell h_{u} \right) + \frac{D}{\Lambda^{2}} \left(\ell h_{u} \ell h_{u} \right) \varphi_{S} + \frac{E}{\Lambda^{2}} \left(\ell h_{u} \ell h_{u} \right) \xi \\ &= \frac{C'}{\Lambda} \left(\ell h_{u} \ell h_{u} \right) + \frac{D}{\Lambda^{2}} \left(\ell h_{u} \ell h_{u} \right) \varphi_{S}. \end{split}$$

The corresponding mass matrix

$$m_{\rm eff} = \frac{v_u^2}{\Lambda} \begin{pmatrix} C' + 2D\frac{v_S}{\Lambda} & -D\frac{v_S}{\Lambda} & -D\frac{v_S}{\Lambda} \\ -D\frac{v_S}{\Lambda} & 2D\frac{v_S}{\Lambda} & C' - D\frac{v_S}{\Lambda} \\ -D\frac{v_S}{\Lambda}' & C' - D\frac{v_S}{\Lambda} & 2D\frac{v_S}{\Lambda} \end{pmatrix}$$

Light neutrino masses

$$m_1 = v_u^2 \left(\frac{-y_v^2}{M + au + 3bv_s} + \frac{C'}{\Lambda} + 3D\frac{v_s}{\Lambda^2} \right)$$
$$m_2 = v_u^2 \left(\frac{-y_v^2}{M + au} + \frac{C'}{\Lambda} \right)$$
$$m_3 = v_u^2 \left(\frac{y_v^2}{M + au - 3bv_s} - \frac{C'}{\Lambda} + 3D\frac{v_s}{\Lambda^2} \right)$$

It is natural to assume that $C \sim D \sim O(1)$. Then the D term is subleading and the importance of the C term depends on the relative size of M and . We know that M must be considerably smaller than Λ . Then the contribution of the effective operators in equation (45) is suppressed at a level comparable to ³² NLO corrections.