# First Results of Searches for New Physics at Vs=7TeV with the CMS detector

Paolo Azzurri SNS & INFN Pisa

DISCRETE 2010 – Rome December 10, 2010



## Outline

- Di-jet resonances
- Di-jet centrality ratio

Heavy Stable Charged Particles

Stopped Gluinos out of time decays



#### Results shown today with up to 10pb<sup>-1</sup> of pp Vs=7TeV

Discrete 2010 - Rome

# **Di-Jets**

#### Di-jet resonances



single jet trigger  $E_T$ >50GeV  $\epsilon$ >99.5% for  $m_{jj}$ >220GeV/c<sup>2</sup> Primary Vertex with |z|<24cm offline anti-kT calorimeter jets (R=0.7) Two leading jets | $\eta$ |<2.5 | $\Delta\eta$ |<1.3 jet energy corrections +(40-15%)



## **Di-jet resonance simulation**



#### 1.2 TeV

Searching for resonances with a narrow natural width (<< CMS di-jet mass resolution)

Resolution 5-16% for m<sub>ii</sub>=0.5-2.5 TeV

Low mass tail and degraded resolution due to QCD radiation (larger with gluon final states)

#### Di-jet mass cross section (2.9pb<sup>-1</sup>)



 $a(1-m/\sqrt{s})$  $\frac{d\sigma}{dm}$  $(m/\sqrt{s})^{c+d\ln(m/\sqrt{s})}$ 



#### Di-jet resonances limits



Discrete 2010 - Rome

P.Azzurri - New Physics Searches at CMS

#### **Di-jet centrality**



bin width ~ dijet mass resolution

Centrality Ratio among events with - both leading jets with  $|\eta| < 0.7$ - both leading jets with  $0.7 < |\eta| < 2.3$ 

$$R = \frac{N(|\eta| < 0.7)}{N(0.7 < |\eta| < 1.3)}$$

Compared to the complete angular analysis, R requires less statistics to be sensitive to finer mass binning . Systematic effects cancel in the ratio. More sensitive to **contact interactions** rather then to di-jet resonances.

### **Di-jet centrality**



Non perturbative effects (hadronization, multiple parton interactions) evaluated with PYTHIA and HERWIG

NLO uncertainties from normalization and factorization scales choices (3-4% effect)

The average ratio is ~7% lower than the corrected NLO

## Di-jet centrality



Effective low energy Contact interaction

$$L = \pm \frac{2\pi}{\Lambda^2} \left( \overline{q} \gamma_{\mu} q \right) \left( \overline{q} \gamma_{\mu} q \right)$$



enhanced production of central di-jets

## **Di-jet centrality limits**



Tevatron  $\Lambda > 2.8 \text{ TeV}$ 

Log-likelihood ratio

$$R_{LL} = \log L_{QCD+\Lambda} - \log L_{QCD}$$

to test the contact interaction scale  $\boldsymbol{\Lambda}$ 

Pseudo-experiments (frequentist) approach to derive 95%CL exclusion:

**Λ>4.0 TeV** (expected 2.9 TeV)

Systematic effects included with Cousins –Highland method

> arXiv: 1010.4439 accepted by PRL

## **Stable Massive Particles**

P.Azzurri - New Physics Searches at CMS

crete 2010 - Rome

## **HSCP** searches

#### (Quasi) Stable Massive Particles interact strong/e.m. and do not decay in the detector colored SMP form R-hadrons

Many new physics scenarios predict heavy long-lived particles

- Stau NLSP in GMSB, decaying via gravitational coupling only
- Light stop models with kinematically limited decays
- Split-SUSY, where gluino decay is suppressed by heavy squark masses
- Hidden valley models, GUTs

see Phys.Rep.438 (2007) 1

particular interest in cosmology

## HSCP searches in CMS

Generic search based on first 200nb<sup>-1</sup> of data . Triggers with :

-single-muon (p<sub>T</sub>>3 GeV)/ di-muons

-missing  $E_T$ >45 GeV

- single jets  $p_T$ >30 GeV/c

ε(R-hadron)≥50% ε(stau)≥95%

HSCP candidate: 1) *tracker-only,* or 2) *tracker+muon* Search for dE/dx (derive mass), eventually require muon-id

MC Signals from (quasi)-stable -stops : 100-800 GeV -gluinos: 200-900 GeV - sleptons (GMSB staus benchmark)

MC Backgrounds QCD inclusive (pT>30)

## **HSCP** Selection

select tracks with:

- Tracker Hits N≥12
- $p_T > 7.5 \text{ GeV/c}$   $\Delta p_T / p_T < 0.15$
- |∆d<sub>0</sub>|<0.25cm
- |Δz|<2cm

Clusters are cleaned from anomalous ionization contributions :

- overlapping MIPs
- nuclear interactions
- hard  $\delta$ -rays

$$I_h = \frac{dE}{dx} = \left(\frac{1}{N}\sum_{i}c_i^{-2}\right)^{-1/2}$$

generalized mean of grade k=-2



N number of layers with  $c_i$  charge measures

#### dE/dx estimator of MIP hypothesis



I<sub>as</sub> high dE/dx compatibility estimator, based on Smirnov - Cramer – von Mises estimator

I<sub>as</sub> estimator increases S/B separation by a factor 3 with respect to I<sub>h</sub> Further division in subsamples according to the number of hits (N) improves S/B by a factor 8

#### **HSCP** Mass estimator



## HSCP Search

Counting experiment in the 75<m<1200 GeV/c<sup>2</sup> range Cuts on  $p_T$  and  $I_{as}$  with constant background efficiencies  $\epsilon(p_T)=0.01-10\% \epsilon(I_{as})=0.03-3\%$  required for each subsample

| LOOSE        | $\epsilon_{p_T}$   | $p_T^{cut}$ | $\epsilon_{I}$     | I <sup>cut</sup> |
|--------------|--------------------|-------------|--------------------|------------------|
| Tracker+Muon | 10-1.0             | 7.7 - 25.9  | 10 <sup>-1.5</sup> | 0.0036 - 0.4521  |
| Tracker only | 10 <sup>-2.0</sup> | 7.9 - 67.4  | 10 <sup>-2.0</sup> | 0.0037 - 0.5293  |
|              |                    |             |                    | -                |
| TIGHT        | $\epsilon_{p_T}$   | $p_T^{cut}$ | $\epsilon_I$       | I <sup>cut</sup> |
| Tracker+Muon | 10-3.0             | 7.7 - 125.9 | 10 <sup>-3.0</sup> | 0.0036 - 0.6526  |
| Tracker only | 10 <sup>-4.0</sup> | 7.9 - 259.0 | 10 <sup>-3.5</sup> | 0.0037- 0.8901   |



Data driven background estimation in the signal region  $D_i = B_i C_i / A_i$  where the four regions are determined by the (uncorrelated) cuts on  $p_T$  and  $dE/dx(I_{as})$ .

Observed discrepancies in control samples (with  $m < 75 \text{ GeV/c}^2$ ) are used to correct the expected backgrounds +(5-10%) and the spreads are used to assign systematic uncertainties ~(14-17%)



## HSCP 95% CL limits

Bayesian limits with lognormal prior, no background subtraction



Tevatron: m(stop)>249 GeV/c<sup>2</sup>, m(gluino)>322-397 GeV/c<sup>2</sup>

Discrete 2010 - Rome

P.Azzurri - New Physics Searches at CMS

## Stopped gluinos

Address case of lower  $\beta$  (<0.3) gluinos that may lose more energy, are **stopped** while traversing the detector **and decay during no-beam periods** 

Dedicated triggers for signal decays during beam gaps (using beam position & timing monitors BPTX@z=±174m)

1 L1 jet with  $E_T$  (L1) > 10 GeV && 1 HLT jet with E > 20 GeV,  $|\eta| < 3.0$ 

Background: Low luminosity minimum bias sample

model independent search with split-SUSY gluino benchmark

Discrete 2010 - Rome

## **Stopped gluinos simulation**





#### Stopped gluino selection

#### control sample rates

•Search dataset: 15.5 pb–1 delivered by LHC (optimized for best S/B)

•Sensitive luminosity for out-of-time decays depends on lifetime: a maximum of 10.2 pb–1, for 90 $\mu$ s ( $\tau_{LHC}$ )< $\tau$ <T<sub>fill</sub>

•Counting optimized time window: 1.25T following each collision

| Cut                                            | BG rate (Hz)           |        |
|------------------------------------------------|------------------------|--------|
| HLT                                            | 3.09                   |        |
| BPTX/BX veto                                   | 3.07                   |        |
| vertex veto                                    | 3.07                   |        |
| beam halo veto                                 | 3.07                   |        |
| muon veto                                      | 2.73                   |        |
| HBHE noise filter                              | $6.9 	imes 10^{-1}$    |        |
| $E_{jet} > 50 \text{ GeV},  \eta_{jet}  < 1.3$ | $7.9 	imes 10^{-2}$    |        |
| $n_{90} > 3$                                   | $4.1 \times 10^{-3}$   |        |
| $n_{phi} < 5$                                  | $7.9	imes10^{-5}$      |        |
| $R_1 > 0.15$                                   | $7.1 	imes 10^{-5}$    |        |
| $0.1 < R_2 < 0.5$                              | $5.7 	imes 10^{-5}$    |        |
| $0.4 < R_{peak} < 0.7$                         | $5.4	imes10^{-5}$      | signal |
| $R_{outer} < 0.1$                              | $(5.1 \times 10^{-5})$ | ε=17%  |

| Lifetime [s]       | Expected Background ( $\pm$ stat. $\pm$ syst.) | Observed |
|--------------------|------------------------------------------------|----------|
| $1 \times 10^{-7}$ | $0.8 \pm 0.2 \pm 0.2$                          | 2        |
| $1 \times 10^{-6}$ | $1.9 \pm 0.4 \pm 0.5$                          | 3        |
| $1 	imes 10^{-5}$  | $4.9 \pm 1.0 \pm 1.3$                          | 5        |
| $1 \times 10^{6}$  | $4.9\pm1.0\pm1.3$                              | 5        |

Discrete 2010 - Rome

## Stopped gluinos time profile



bunch crossing (BX) number veto : (-2,+1 wrt collision)

## Stopped gluinos limits



95% CL production upper limits derived using a frequentist CLs method

τ < few 100 ns : Decays occur during vetoed BXs

τ > T<sub>fill</sub> :Lose sensitivity as most decays occur post-fill

## Stopped gluinos mass limits



Discrete 2010 - Rome

#### Conclusions

... Nothing New Yet from CMS on : - Di-Jet masses & centrality - Stable Massive Particle searches

 many TeVatron Limits Extended (up to x2) m(S)>2.5 TeV m(q\*)>1.58 TeV m(A,C)>1.17 TeV stable gluino: m>274 GeV & m>370 GeV with 10μs<τ<10<sup>3</sup>s (Δm>100GeV)

#### Looking Forward to Higher Luminosity



## **CMS** Luminosity



## Di-jet resonances: Specific models

| Model Name             | X  | Color   | $J^{P}$ | $\Gamma/(2M)$ | Final-state Partons              |
|------------------------|----|---------|---------|---------------|----------------------------------|
| String                 | S  | mixed   | mixed   | 0.003-0.037   | <i>qq̄, qq, gg</i> and <i>qg</i> |
| Axigluon               | A  | Octet   | 1+      | 0.05          | 9 <u>9</u>                       |
| Coloron                | C  | Octet   | 1-      | 0.05          | qq                               |
| Excited Quark          | q* | Triplet | 1/2+    | 0.02          | 98                               |
| E <sub>6</sub> Diquark | D  | Triplet | 0+      | 0.004         | 99                               |
| <b>RS</b> Graviton     | G  | Singlet | 2+      | 0.01          | 99,88                            |
| Heavy W                | W  | Singlet | 1-      | 0.01          | qq                               |
| Heavy Z                | Z  | Singlet | 1-      | 0.01          | qq                               |





expected mass limits



## Di-jet resonances



## **Di-jet centrality: systematics**

Table 1: Systematic uncertainties on  $R_{\eta}$  related to the measurement of  $R_{\eta}$  (detector uncertainties) and to the QCD model (model uncertainties). For each source of uncertainty, we show the range of values over the entire  $m_{jj}$  range and at a representative point in the signal region.

| Source                | Full Range     | $m_{jj} = 1.6 \text{ TeV}$ |
|-----------------------|----------------|----------------------------|
| Detector uncertainty  |                |                            |
| Relative JES          | 0.02-0.05      | 0.032                      |
| Absolute JES          | 0.00-0.03      | 0.003                      |
| Jet Energy Resolution | 0.003          | 0.003                      |
| Other                 | 0.01           | 0.010                      |
| Total Detector        | 0.02-0.05      | 0.034                      |
| Model uncertainty     |                |                            |
| PYTHIA6-NLO           | 0.00-0.05      | 0.032                      |
| Offset                | 0.021          | 0.021                      |
| Scale                 | +(0.01-0.05)   | +0.029                     |
| PDF                   | +(0.002-0.004) | +0.002                     |
|                       | -(0.002-0.007) | -0.003                     |
| MC Statistics         | 0.005          | 0.005                      |
| Non-pert. Corr.       | 0.002-0.014    | 0.002                      |
| Total Model           | +(0.02-0.07)   | +0.044                     |
|                       | -(0.01-0.05)   | -0.034                     |
| Total                 | +(0.03-0.09)   | +0.055                     |
|                       | -(0.03-0.08)   | -0.048                     |

Discrete 2010 - Rome

P.Azzurri - New Physics Searches at CMS

## **Di-jet centrality: systematics**



## HSCP dE/dx MIP estimator

MIP hypothesis dE/dx estimator based on Smirnov - Cramer - von Mises

$$I_{as} = \frac{3}{N} \left( \frac{1}{12N} + \sum_{i=1}^{N} \left[ P_i \left( P_i - \frac{2i-1}{2N} \right) \right]^2 \right)$$

 $P_i$ : probability a MIP produces a equal or smaller ionization charge in layer-i taking into account the actual MIP energy loss distribution (with ADC the cutoff), ordered in increasing  $P_i$ . For an ideal HSCP all  $P_i=1$  and  $I_{as}=1$ .

## **HSCP Cluster cleaning**

Clusters capacitive coupling of neighboring strips ~10%. (10<sup>-n</sup> at n-strips distance) Clusters with multiple charge maxima are discarded.



## HSCP 95%CL limits (tracker only)

| gluino mass (GeV/ $c^2$ )      | 200  | 300  | 400   | 500   | 600     | 900   |
|--------------------------------|------|------|-------|-------|---------|-------|
| Total acceptance (%)           | 11   | 16   | 21    | 26    | 28      | 20    |
| Expected 95% C.L. limit (pb)   | 161  | 109  | 81    | 66    | 61      | 85    |
| Observed 95% C.L. limit (pb)   | 156  | 105  | 78    | 63    | 59      | 83    |
| Theoretical cross section (pb) | 606  | 57.2 | 8.98  | 1.87  | 0.46    | 0.013 |
| stop mass (GeV/ $c^2$ )        | 130  | 200  | 300   | 500   | 800     |       |
| Total acceptance (%)           | 4    | 13   | 20    | 29    | 27      |       |
| Expected 95% C.L. limit (pb)   | 409  | 131  | 87    | 57    | 63      |       |
| Observed 95% C.L. limit (pb)   | 395  | 127  | 84    | 55    | 61      |       |
| Theoretical cross section (pb) | 109  | 11.9 | 1.23  | 0.047 | 0.00123 |       |
| stau mass (GeV/ $c^2$ )        | 100  | 126  | 156   | 200   | 247     | 308   |
| Total acceptance (%)           | 4    | 12   | 23    | 38    | 48      | 56    |
| Expected 95% C.L. limit (pb)   | 461  | 146  | 74    | 45    | 35      | 31    |
| Observed 95% C.L. limit (pb)   | 445  | 141  | 72    | 43    | 34      | 29    |
| Theoretical cross section (pb) | 1.32 | 0.33 | 0.105 | 0.025 | 0.008   | 0.002 |

## HSCP 95%CL limits (tracker+muon)

| gluino mass (GeV/ $c^2$ )      | 200  | 300  | 400   | 500   | 600     | 900   |
|--------------------------------|------|------|-------|-------|---------|-------|
| Total acceptance (%)           | 17   | 21   | 25    | 29    | 29      | 20    |
| Expected 95% C.L. limit (pb)   | 106  | 84   | 69    | 60    | 60      | 89    |
| Observed 95% C.L. limit (pb)   | 98   | 77   | 64    | 56    | 52      | 83    |
| Theoretical cross section (pb) | 606  | 57.2 | 8.98  | 1.87  | 0.46    | 0.013 |
| stop mass (GeV/ $c^2$ )        | 130  | 200  | 300   | 500   | 800     |       |
| Total acceptance (%)           | 12   | 19   | 24    | 30    | 25      |       |
| Expected 95% C.L. limit (pb)   | 139  | 91   | 74    | 58    | 72      |       |
| Observed 95% C.L. limit (pb)   | 128  | 85   | 68    | 53    | 67      |       |
| Theoretical cross section (pb) | 109  | 11.9 | 1.23  | 0.047 | 0.00123 |       |
| stau mass (GeV/ $c^2$ )        | 100  | 126  | 156   | 200   | 247     | 308   |
| Total acceptance (%)           | 23   | 34   | 44    | 55    | 63      | 67    |
| Expected 95% C.L. limit (pb)   | 76   | 53   | 40    | 32    | 28      | 27    |
| Observed 95% C.L. limit (pb)   | 70   | 49   | 37    | 30    | 26      | 25    |
| Theoretical cross section (pb) | 1.32 | 0.33 | 0.105 | 0.025 | 0.008   | 0.002 |

## HSCP searches systematic errors

| Source of Systematic Error             | Relative Uncertainty (%)                   |  |  |
|----------------------------------------|--------------------------------------------|--|--|
| Theoretical cross section              | 15 ( $	ilde{t}_1$ and $	ilde{g}$ )         |  |  |
| Expected background                    | 36(Tk) ; 40 (Tk+Mu)                        |  |  |
| Integrated luminosity                  | 11                                         |  |  |
| Trigger efficiency                     | 15                                         |  |  |
| Muon reconstruction efficiency         | 5                                          |  |  |
| Track reconstruction efficiency        | < 5                                        |  |  |
| Momentum scale                         | < 5                                        |  |  |
| Ionization energy loss scale           | < 3 (8 for 100 GeV/ $c^2 \tilde{\tau}_1$ ) |  |  |
| Total uncertainty on signal acceptance | 20                                         |  |  |

## HSCP searches: $p_T$ spectrum



Discrete 2010 - Rome

## HSCP searches: projected reach



# **Stopped gluinos**

Discrete 2010 - Rome

P.Azzurri - New Physics Searches at CMS

 $\square$