

CMS B Physics Results and prospects for the future

Franco Ligabue SNS and INFN, PISA On behalf of The CMS Collaboration

Franco Ligabue

CMS B Physics

B physics at LHC

- b quark in pp collisions:
 - high cross section
 - efficient tagging possibilities
 - provide a test of QCD higher order corrections
 - (production mechanism)
 - weak (production and) decay:
 - tool for testing also the weak sector

Flavor Creation

B physics at LHC

- Early B physics at CMS (low luminosity):
 - Quarkonia production
 - inclusive b-jet production
- Later, with higher statistics:
 - exclusive b-hadron decays
 - test SM and BSM physics (CP, rare decays)
- Main tools:
 - muons (semileptonic b, quarkonia ID)
 - secondary vertexing (b-jet tagging)

LHC and CMS performance

Very good LHC performance and rapid Improvement

LHC instantaneous pp luminosity 2x10³² cm⁻²s⁻¹

end of 2010 pp run:

43 pb⁻¹ collected by CMS

Low p_T dimuon triggers initially optimized for J/ ψ and Upsilon

Only a fraction of the collected data is used for the results presented here

Franco Ligabue

CMS B Physics

relevant detectors for B physics (b-tagging and quarkonium detection): •Silicon Tracker •Muon Chambers

tracker performance

Di-lepton invariant mass

Stricter triggers now in place to limit storage rates.

down to low masses and p_T, (especially low p_T muon triggers)

(lower instantaneous luminosities at LHC start-up)

Muon Trigger

allows detection

of low-p₊

quarkonia

- Two trigger levels
 - Level 1 (hardware)
 - (fast) based on calorimeters & muon system (not combined)

- trigger requirements changing with increasing luminosity (due to total rate issues)
 - Single muon:
 - p₁ > 3 GeV at start-up
 - increasing to
 - $p_{T} > 7 \text{ GeV at } L \approx 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

- High Level Trigger (software)
 - matches different subdetectors
 - based on fast local tracking for muons

- Double muon:
 - No p_T threshold at start-up!
 - at L ≈ 10³¹ cm⁻²s⁻¹ ad-hoc strategies for quarkonia (combination of different single muon triggers)

CMS muon detectors

pseudorapidity reach

Franco Ligabue

Muon identification

Global muon (outside-in):

Muon reconstructed in Muon detectors

matched to

reconstructed track

High purity Low efficiency for low momentum muon

Tracker muon (inside-out):

Track reconstructed in Silicon detectors

matched to

Track element in Muon detectors

lower purity (high fake rate) Higher efficiency for low momentum muon

muon identification performance

Franco Ligabue

CMS B Physics

muon identification performance

Tracker Muons

muon efficiencies: Tag & Probe method

prompt and non-prompt J/ψ production

- motivations:
 - prompt production:

CERN-PH-EP/2010-046 18 Nov 2010 Submitted to EPJC arXiv:1011.4193

- test theoretical models (e.g. color singlet vs octet)
- historical discrepancies with Tevatron data
- non prompt: from b hadron decays
 - test B production and decay models at high energies
 - test QCD and PDFs

prompt and non-prompt J/ψ production

prompt J/w cross section

Figure 2: Left: Acceptance as a function of the $J/\psi p_T$ and rapidity. Right: Number of muon pairs within $\pm 100 \text{ MeV}/c^2$ of the nominal J/ψ mass, in bins of p_T and |y|.

non-prompt J/y cross section

Y(nS) production:

comparison with theory and Tevatron

exclusive B channels

Analysis ongoing, based on larger statistics (measuring differential cross section)

fit: 3 gaussians + exponential bkg

Also:

 $B^0 \rightarrow J/\psi K^0_s$ $B^0 \rightarrow J/\psi K^{*0}$

b semileptonic decays

larger transverse momentum relative to jet axis than with lighter flavour

use p_{T}^{rel} template shapes to fit for the b fraction in the selected events

signal template: MC validated on data with benriched sample

light flavour templates: from hadron spectra in data combined with muon faking probability from MC

charm template: from MC

b semileptonic decays

charm and light-flavours merged into a single template (shapes too similar)

binned log-likelihood fit (bins of muon p_{τ} and η)

non-lumi systematics 11-16% dominated by

- underlying event simulation
- light flavour template shape

MC@NLO consistently underestimates the cross section larger discrepancies in the central region and at low transverse momentum

Franco Ligabue

CMS B Physics

Inclusive b-jet production

b-jet tagging exploiting secondary vertices (pixel detector)

complementary to semileptonic tagging (different systematics)

data/MC = 0.98±0.08(stat)±0.08(syst)

Inclusive b-jet production

29

Inclusive b-jet production

Ratio of b-jet to all jets.

Jet energy corrections and luminosity systematic uncertainties cancel out

Pythia in perfect agreement in measured range

Indicates shape discrepancies with NLOJet++ (used to generate inclusive jets) to MC@NLO ratio

- Analysis of the entire 2010 data set going on
- Many results expected:
 - b-jet angular correlations to study production mechanism
 - quarkonia production updates and **polarization** measurements (smaller systematics, also from increased statistics and finer binning)
 - integrated B meson mixing parameter
 - χ_c observation
 - b hadron exclusive decays: $(B^+ \rightarrow J/\psi K^+, B^0 \rightarrow J/\psi K_s, B_s \rightarrow J/\psi \phi, \Lambda_b \rightarrow J/\psi \Lambda)$

Conclusions

- CMS has recorded more than $40pb^{-1}$ of data at $\sqrt{s} = 7$ TeV
- only a fraction used for the results shown here (basically data collected before the summer)
- Quarkonia production measurements already allow the comparison with theoretical models and with other experiments
 - systematics will go down with increasing statistics
- **b quark inclusive production** measured with complementary techniques: semileptonic decays and secondary vertexing
 - hints of discrepancies with theoretical models (errors comparable)
- some exclusive decays reconstructed
- more results to come with full 2010 statistics!

Backup

CMS detector

Figure 2: Left: Acceptance as a function of the $J/\psi p_T$ and rapidity. Right: Number of muon pairs within $\pm 100 \text{ MeV}/c^2$ of the nominal J/ψ mass, in bins of p_T and |y|.

J/ψ from b-hadrons: comparison with other LHC experiments and with Tevatron

quarkonia to electrons

b quark production mechanisms

• LO:

- Flavour creation
- Large NLO contributions:
 - Flavour Excitation
 - Gluon splitting
- Test benchmark for perturbative QCD, MC tools and detector performance
 - Long standing problems with lower energy data resolved
 - Measurements could have smaller errors than NLO QCD predictions currently available

b-jet ansatz fit

assumed jet production shape:

$$f(p_T) = N_0 \left(p_T / \text{GeV} \right)^{-\alpha} \left(1 - \frac{2p_T \cosh(y_{\min})}{\sqrt{s}} \right)^{\beta} \exp(-\gamma/p_T).$$

smeared with a gaussian resolution function

$$F(p_T^{\text{meas}}) = \int_0^\infty f(p_T^{\text{gen}}, y; p_i) g(p_T^{\text{meas}} - p_T^{\text{gen}}, y; \sigma) dp_T^{\text{gen}}$$

unfolding correction

$$C_{\text{smear}}(p_T) = \frac{f(p_T)}{F(p_T)}$$

Franco Ligabue

CMS B Physics

CMS muon system

J/psi B fraction absolute systematics

$p_T^{J/\psi}$	Misalign-	B-lifetime	Vertex	Background	Resolution	Efficiency
(GeV/c)	ment	model	estimation	fit	model	-
y < 1.2						
4.5 - 6.5	0.0045	0.0041	0.0038	0.0007	0.0129	0.0020
6.5 – 10.0	0.0017	0.0000	0.0008	0.0120	0.0073	0.0010
10.0 - 30.0	0.0021	0.0004	0.0012	0.0004	0.0032	0.0036
1.2 < y < 1.6						
2.0 - 4.5	0.0067	0.0040	0.0181	0.0032	0.0191	0.0019
4.5 - 6.5	0.0020	0.0086	0.0002	0.0169	0.0024	0.0007
6.5 - 10.0	0.0019	0.0006	0.0027	0.0000	0.0002	0.0010
10.0 - 30.0	0.0056	0.0004	0.0101	0.0051	0.0098	0.0011
1.6 < y < 2.4						
0.00 - 1.25	0.0052	0.0064	0.0375	0.0022	0.0172	0.0001
1.25 - 2.00	0.0051	0.0041	0.0206	0.0011	0.0049	0.0002
2.00 - 2.75	0.0044	0.0047	0.0085	0.0168	0.0027	0.0001
2.75 - 3.50	0.0019	0.0061	0.0004	0.0001	0.0068	0.0011
3.50 - 4.50	0.0017	0.0024	0.0043	0.0027	0.0109	0.0018
4.50 - 6.50	0.0067	0.0003	0.0016	0.0021	0.0083	0.0041
6.50 - 10.00	0.0017	0.0035	0.0033	0.0004	0.0105	0.0040
10.00 - 30.00	0.0057	0.0008	0.0045	0.0008	0.0015	0.0019

LHC in 2011

2011: "reasonable" numbers

- 4 TeV (to be discussed at Chamonix)
- 936 bunches (75 ns)
- 3 micron emittance
- 1.2 x 10¹¹ protons/bunch
- beta* = 2.5 m, nominal crossing angle
- Hubner factor 0.2

Peak luminosity	6.4 x 10 ³²		
Integrated per day	11 pb ⁻¹		
200 days	2.2 fb ⁻¹		
Stored energy	72 MJ		

Usual warnings apply – see problems, problems above

Franco Liga 12/11/10

LHC status

tracker resolutions

- Select opposite sign di-muon combinations,
- Select combination/event with mass closest to the J/psi mass
- Select events with a di-muon vertex Probability >0.1%
- Muons satisfying quality criteria (require a muon chamber segment matching in position and direction with the prediction of the associated track extrapolation)
- At least one muon required to fire the trigger
- Both muons required to have $p_{\tau}(mu)>3$ GeV/c, |eta(mu)|<2.4
- Combine J/psi candidate with tracks (p_{τ} >0.9 GeV/c)
- Kinematic fit with J/psi mass constraint
- Require vertex probability > 0.1%
- If multiple candidates/event, choose highest $p_{\scriptscriptstyle T}$ B candidate

Single Muon trigger (p_T >3 GeV/c cut at HLT level) ct/sigma_{ct} >1

ct:transverse decay length of J/psiK⁻ vertex relative to primary vertex sigma_{ct}=error on transverse decay length

1-d fit to J/psiK⁻ invariant mass:
Signal: sum of three Gaussians (means and widths fixed to MC)
Mean: 5.280 GeV/c²
Resolution = 32 MeV/c² (weighted sum of gaussian resolutions)
Background is fitted with exponential function (slope floated in the fit)
N sig = 48 ± 8

$Bs \to J/\Psi\phi \ mass \ peak$

Only certified BPAG good runs [140042 - 149442]. Scraping and GoodVertex filters on each event applied;

Triggers: HLT_doubleMu0_OR_HLT_DoubleMu0_Quarkonium_v1;

Muons: used Global or Tracker, if Tracker muon arbitration/selection TMLastStationOptimizedBarrelLowPtTight is applied, $p(\mu)>3$ GeV/c and $|\eta|<2.4$;

Selected a pair of opposite-sign muons, both muons required to fire the trigger. Track/muon and muon/muon overlaps removed; J/ ψ : candidate mass within 150 MeV/c² around the J/ ψ mass PDG value, p_T(J/ ψ)>0.5 GeV/c;

Kaons: transverse momentum p_{τ} (K)>0.6 GeV/c and $|\eta|$ <2.5; **\phi:** candidate mass within 10 MeV/c² around the mass PDG value;

Kinematic fit of the four tracks with the J/ ψ PDG mass constraint, cut on vertex probability > 2%; Significance cut ct_{2D}/ σ_{2D} >3, where ct_{2D} is transverse decay length of J/ $\psi\phi$ vertex relative to primary vertex and σ_{2D} is the error on transverse decay length;

