

Lepton universality and lepton flavor violation in Y decays

Elisa Guido

Università & INFN Genova

(on behalf of **BABAR Collaboration**)

DISCRETE 2010 – Roma, 7th December 2010

Outline

- BABAR $\Upsilon(3,2S)$ datasets have led to recent results in:
 - ✓ Lepton Universality test
 in Y(1S) decays

PRL 104, 191801 (2010) [arXiv:1002.4358]

- ✓ Search for Charged Lepton Flavor Violation (LFV) in $\Upsilon(3,2S) \rightarrow e^{\pm}\tau^{\mp}$, $\mu^{\pm}\tau^{\mp}$ decays [arXiv:1001.1883]
- SM precision tests and New Physics (NP) probes

BABAR data samples

- PEP-II asymmetric energy e⁺e⁻-collider operating at the Y resonances \checkmark
- **BABAR** recorded luminosity \checkmark

Lepton Universality test

1. Theory

PRL 104, 191801 (2010)

- ✓ Next to Minimal Super-symmetric SM (NMSSM) foresees a light pseudo-scalar Higgs boson $A^0 = cos(\theta_A)a_{MSSM} + sin(\theta_A)a_{singlet}$
 - \checkmark Not excluded by LEP limits
 - ✓ Light -> accessible to B-factories
- ✓ Radiative decays of narrow Y resonances have predicted BRs up to $\sim O(10^{-4})$:
 - \checkmark Y(nS) \rightarrow YA⁰, with A⁰ \rightarrow l⁺l⁻ (l= μ , τ) or A⁰ \rightarrow invisible

(with the different A⁰ decays dominant for different mass regions)

✓ If the photon is energetic enough, its energy spectrum can be measured

A set of searches at BABAR: see Y.Kolomensky's talk

 $M(A^{0})<2M(\tau)$ $2M(\tau)<M(A^{0})<7.5 \text{ GeV/c}^{2}$ $7.5<M(A^{0})<8.8 \text{ GeV/c}^{2}$ $8.8<M(A^{0})<9.2 \text{ GeV/c}^{2}$ $10^{-3} PRD 76,051105 (2007)$

- In the SM couplings between gauge bosons and leptons are independent of lepton flavor
- ✓ SM expectation for R_{ll'} = BR(Y(1S)→l⁺l⁻)/BR(Y(1S)→l'⁺l'⁻) is ~ 1 (except for small lepton-mass effects, R_{Tµ} ~ 0.992)
- NMSSM: deviations of $R_{ll'}$ from SM expectation are possible due to the existence of the A⁰
- \checkmark A⁰ may mediate the decay chain of the Y(1S):

Υ(1S)→A⁰γ, A⁰→l⁺l⁻

 $\Upsilon(1S) \rightarrow \eta_b(1S)\gamma, \ \eta_b(1S) \leftrightarrow A^0 \rightarrow l^+l^-$

- \checkmark If the **photon** is **low energy**, the lepton pair would be counted as an Y(1S)
- ✓ It can result in a deviation of R_{ll}'
 from SM expectation (lepton
 universality breaking) -> NP effect
- ✓ Effect more evident when one of the leptons is a τ (up to 4%) -> $R_{\tau\mu}$

2. Strategy

- \checkmark 122.10⁶ Y(3S) from BABAR
- ✓ Tag Y(1S) exploiting Y(3S)→Y(1S)π⁺π⁻, with Y(1S)→T⁺T⁻ or Y(1S)→ $\mu^+\mu^-$ events:
 - ✓ BF($\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$) ~ 4.5%
 - \checkmark select τ 1-prong decays
 - ✓ 4-charged tracks final state topology
- \checkmark Any number of extra photons allowed
- ✓ Separate selections for $\Upsilon(1S) \rightarrow \tau^+ \tau^-$ and $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ events
- ✓ Bkg: $q\bar{q}$ events, τ -pairs, QED events, $\Upsilon(1S)$ generic decays
- \checkmark A multivariate analysis approach in $\tau^+\tau^-$ channel
- ✓ Signal extraction efficiencies (estimated using MC simulations):

where $\mathbf{x}^{\pm} = \mu^{\pm}$ or $\mathbf{x}^{\pm} =$ charged track from τ^{\pm} decay (accompanied by neutral particles)

 $\epsilon_{\mu\mu} \sim 45\%$ $\epsilon_{ au au} \sim 17\%$

3. Signal extraction

- Extended and unbinned maximumlikelihood fit:
 - √ in μ⁺μ⁻ channel a 2-dim likelihood
 based on M_{π+π-}^{reco} and M_{μ+μ-}
 - ✓ in T⁺T⁻ channel a 1-dim likelihood
 based on M_{π+π-}^{reco}

 $M_{\mu+\mu-} \text{ invariant } \mu^{+}\mu^{-} \text{ mass}$ $M_{\pi+\pi-}^{\text{reco}} = \sqrt{s + M_{\pi^{+}\pi^{-}}^{2} - 2 \cdot \sqrt{s} \cdot \sqrt{M_{\pi^{+}\pi^{-}}^{2} + p_{\pi^{+}\pi^{-}}^{*2}}}$

(momentum of the $\pi\pi$ -system in the CM frame)

- PDFs chosen from a data sub-sample
 (~1/10 of the total) and applied to the remaining data
- ✓ Fit performed simultaneously to the 2 datasets

Correction for known differences between data and simulation efficiencies

 \checkmark

- \checkmark Systematic uncertainty contributions (2.2%):
 - ✓ event selection efficiency
 - \checkmark μ identification
 - ✓ trigger efficiency

- imperfect knowledge of signal and bkg shapes
- ✓ peaking background yield

 $R_{\tau\mu}(\Upsilon(1S))$: 1.005 ± 0.013 (stat.) ± 0.022 (syst.)

✓ Significant improvement in precision

[Previous best result by CLEO: R_{τμ}(Y(1S)) : 1.02 ± 0.02 (stat.) ± 0.05 (syst.)]

PRL98, 052002 (2007)

✓ No significant deviations w.r.t. SM expectations ($R_{\tau\mu}(\Upsilon(1S)) \sim 0.992$)

5. Constraints on NP

Excluded M(A⁰)<9 GeV/c² @90%C.L. (for large couplings)

Charged LFV as a NP probe

- \checkmark In the SM with ν oscillations LFV can occur
 - Never observed in processes involving charged

leptons, for instance $\Upsilon \rightarrow II'$ decays: tree-level

contribution suppressed by $(\Delta m_{
u}^2/M_W^2)^2 \lesssim 10^{-48}$ to undetectable levels

 Enhancements close to experimental sensitivity (BR~ $\mathcal{O}(10^{-8})$) in many extensions of the SM

- ✓ Observation of charged LFV: clear signature of NP
- ✓ Search for charged LFV at BABAR in several other decays

LFV in Y decays

PRL 104, 151802 (2010)

1. Strategy

- ✓ Search for $\Upsilon(nS) \rightarrow l^{\pm}T^{\mp}$ with n=2,3 and l=e,µ
- ✓ Signature:
 - 1 primary lepton (e or μ)

– 1 τ detected through a leptonic (μ or e) or hadronic ($\pi^{\pm}+\pi^{0})$ decay

 ✓ in case of a leptonic ⊤ decay, the ⊤daughter is different in flavor w.r.t.
 the primary lepton

Process	т decay	Channel	
Ү(3,2S)→ет	τ→μνν	leptonic et	
Ү(3,2S)→ет	$\tau \rightarrow \pi^{\pm} \pi^{0} \vee / \pi^{\pm} \pi^{0} \pi^{0} \vee$	hadronic et	
Ύ(3,2S)→µт	T→evv	leptonic µT	
Ύ(3,2S)→µт	$\tau \rightarrow \pi^{\pm} \pi^{0} \vee / \pi^{\pm} \pi^{0} \pi^{0} \vee$	hadronic μτ	

- ✓ Background events:
 - Bhabha and μ -pair (and mis-ID)
 - τ-pair
 - multiple π and additional γ
- ✓ Selection partially common to the 4 channels, partially channel-specific (particle-ID, T-daughter kinematics)

2. Signal extraction and results

- \checkmark Discriminating variable: **x** = primary lepton momentum/beam energy
- Unbinned extended maximum-likelihood fit

3. Constraints on NP

- ✓ NP constraint using effective field theory
- ✓ Charged LFV-Y decays parameterized as a $b\bar{b}l^{\pm}\tau^{\mp}$ contact interaction with a NP coupling constant ($\alpha_{l\tau}$) and a mass scale ($\Lambda_{l\tau}^2$)

Conclusions

- ✓ BABAR $\Upsilon(3S)$ and $\Upsilon(2S)$ data have led to several important results:
 - \checkmark Lepton Universality in Y(1S) decays
 - \checkmark LFV searches in Y(3,2S) decays
- ✓ BABAR results have:
 - \checkmark improved the precision of Lepton Universality measurement in Υ decays
 - ✓ put important constraints on physics beyond the SM

BACKUP SLIDES

The BABAR detector

Lepton Universality Test

 $\checkmark \quad \text{Likelihood written as:} \qquad \mathcal{L}_{ext} = \mathcal{L}_{ext}^{\mu} \cdot \mathcal{L}_{ext}^{\tau}, \qquad \mathcal{L}_{ext}^{i} = \frac{e^{-N'_{i}}(N'_{i})^{N_{i}}}{N_{i}!} \prod_{k=1}^{N_{i}} \mathcal{P}_{k}^{i}$

$$\mathcal{P}_{k}^{\mu} \equiv \frac{N_{sig\mu}}{N_{\mu}'} \mathcal{P}_{k}^{\mu}(M_{\pi^{+}\pi^{-}}) \cdot \mathcal{P}_{k}^{\mu}(M_{\mu^{+}\mu^{-}}) + \frac{N_{bkg\mu}}{N_{\mu}'} \mathcal{P}_{k}^{bkg\mu}(M_{\pi^{+}\pi^{-}}) \cdot \mathcal{P}_{k}^{bkg\mu}(M_{\mu^{+}\mu^{-}})$$

$$\mathcal{P}_{k}^{\tau} \equiv \frac{\epsilon_{\tau\tau}}{\epsilon_{\mu\mu}} \frac{N_{sig\mu}}{N_{\tau}'} R_{\tau\mu} \mathcal{P}_{k}^{\tau} (M_{\pi^{+}\pi^{-}}^{reco}) + \frac{N_{bkg\tau}}{N_{\tau}'} \mathcal{P}_{k}^{bkg\tau} (M_{\pi^{+}\pi^{-}}^{reco})$$

✓ Asymmetric Gaussian with non-Gaussian tails functional form:

$$\mathcal{F}(x) = exp\Big\{-\frac{(x-\mu)^2}{2\sigma^2(L,R) + \alpha(L,R)(x-\mu)^2}\Big\}$$

 ✓ Summary of systematic uncertainties:

	$\mu^+\mu^-$	$\tau^+\tau^-$	
event selection	1.2%		
PID	1.2%		
Trigger	0.18%	0.10%	
BGF	negl.	negl.	
PDFs parameters		1.1%	
Bkg PDF		0.22%	
Agreement $\mu^+\mu^- vs. \tau^+\tau^-$ in $MassPiPiReco$	0.6%		
Peaking bkg		0.4%	
MC statistics	0.08%	0.09%	
TOTAL	2.2%		
Corrections to efficiency:			
PID		—	
Trigger		1.020	
Corrections to signal yield:			