

Semileptonic and Leptonic decays in the BaBar experiment

Joao Firmino da Costa (now at DESY) for the BaBar Collaboration

DISCRETE 2010 - Rome

Outline

$D^{\scriptscriptstyle +} \to K^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +} \, e^{\scriptscriptstyle +} \, \nu$ - Motivation

S-wave : phase variation with $K\pi$ mass

P-wave : $K^*(892)$ resonance parameters, $D \rightarrow K^* e \nu$ form factors

Study $K\pi$ composition and contribution from higher-mass states

$D^{\scriptscriptstyle +} \to K^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +} \, e^{\scriptscriptstyle +} \, \nu \,$ - Reconstruction and Strategy

· define two hemispheres.

impose K^{-},π^{+},e^{+} in the same hemisphere.

- compute the D⁺ direction $(-\overrightarrow{p}_{all tracks \neq K, \pi, e})$.
- compute the missing energy in the lepton hemisphere.
- mass constraint fit $\vec{p}_D^+ = \vec{p}_K^+ + \vec{p}_\pi^- + \vec{p}_e^+ + \vec{p}_v^-$.
- compute kinematical variables $(m_{K\pi}, q^2, \cos \theta_{e}, \cos \theta_{K}, \chi)$.

 $q^2 = (P_D - P_{K\pi})^2 = (P_e + P_v)^2$

$$d^{5}\Gamma = \frac{G_{F}^{2} \left|\left|V_{cs}\right|\right|^{2}}{(4\pi)^{6} m_{D}^{3}} X \beta \mathcal{I}(m^{2}, q^{2}, \theta_{K}, \theta_{e}, \chi)$$
$$dm^{2} dq^{2} d\cos\left(\theta_{K}\right) d\cos\left(\theta_{e}\right) d\chi.$$

Function of form factors (e.g. 3 for P-wave : $(V(q^2), A_1(q^2), A_2(q^2))$ Expanded in partial waves

Fit of decay rate in full 5D phase space (make use of all angular correlations)

Separation of S,P,D contributions

347 fb⁻¹, 554*10⁶ cc

$D^+ \rightarrow K^- \pi^+ e^+ \nu - Results$

Measured quantity	This analysis	PDG
$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)(\%)$	$4.04 \pm 0.03 \pm 0.04 \pm 0.09$	4.1 ± 0.6
$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{\overline{K}^{*0}}(\%)$	$3.80 \pm 0.04 \pm 0.05 \pm 0.09$	3.66 ± 0.21
$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{S-wave}(\%)$	$0.234 \pm 0.007 \pm 0.007 \pm 0.005$	0.21 ± 0.05
$\mathcal{B}(D^+ \to \overline{K}^*(1410)^0 e^+ \nu_e)(\%)$	$0.30 \pm 0.12 \pm 0.18 \pm 0.06$ (< 0.6 at 90% C.L.)	
$\mathcal{B}(D^+ \to \overline{K}_2^*(1430)^0 e^+ \nu_e)(\%)$	$0.023 \pm 0.011 \pm 0.011 \pm 0.001$ (< 0.05 at 90% C.L.) very low limit

S-wave = low mass component + K_0^* (1430)

$D^+ \rightarrow K^- \pi^+ e^+ \nu - Results$

$D^+ \rightarrow K^- \pi^+ e^+ \nu - Results$

Fixing the K^{*}(892) parameters, signal and background fitted previously, the S-wave is measured in bins of $m_{K\pi}$

BaBar in agreement with LASS (K π scattering experiment) with a difference of π radians This may help in the understanding the effect of the spectator pion in D⁺ \rightarrow K⁻ $\pi^+ \pi_7^+$

Important test of the SM picture of CP-violation: consistency of UT

$$\frac{B(b \to u \, l \, \nu)}{B(b \to c \, l \, \nu)} \approx \frac{\left| V_{ub} \right|^2}{\left| V_{cb} \right|^2} \approx \frac{1}{50}$$

Precision achieved on V_{ub} depends both on experimental and theoretical FF errors

Two approaches to determine V_{ub} :

Exclusive : study of decays into specific final states $(B \rightarrow \pi/\eta/\rho/\eta' \ l \nu)$

Inclusive : study of decays into charmless final states ($B \rightarrow X_u e \nu$)

ub

Exclusive V_{ub} - Motivation

- Measure V_{ub}
- Test QCD calculations of form factors

- Selected signal sample is untagged, i.e. neutrino is identified as the missing massless particle in the whole event
- New BABAR result $(B \rightarrow \pi/\eta \ l \nu)$ as well as BABAR analysis $(B \rightarrow \pi/\rho \ l \nu)$ from earlier this year

In $(B \to \pi/\eta \ l \ v) \ q^2$ is determined as $(P_B - P_{meson})^2$ in three decay modes: $B^0 \to \pi^- l^+ \upsilon, B^+ \to \eta l^+ \upsilon, B^+ \to \eta' l^+ \upsilon$ while in $(B \to \pi/\rho \ l \ v) \ q^2$ is determined as $(P_1 + P_{\upsilon})^2$ in four decay modes: $B^{0/+} \to \pi^{-/0} l^+ \upsilon, B^{0/+} \to \rho^{-/0} l^+ \upsilon$

Exclusive V_{ub} - Results on q² spectra

Loose neutrino reconstruction (π - η analysis)

Neutrino reconstruction (π - ρ analysis)

Lumi:	422.6 fb ⁻¹	349 fb ⁻¹
#BBpairs	464 * 10 ⁶	377 * 10 ⁶
q ² bins	12	6
# modes	1 per fit	4 in same fit
B/S	11.5	6.3

Theory extrapolations have large uncertainties

Exclusive V_{ub} - Results from combined fit to LQCD and BABAR data

Boyd, Grinstein, Lebed (BGL)

$$f_{+}(q^{2}) = \frac{1}{\mathcal{P}(q^{2})\phi(q^{2}, q_{0}^{2})} \sum_{k=0}^{k_{max}} a_{k}(q_{0}^{2})[z(q^{2}, q_{0}^{2})]^{k}$$
3 free parameters $\mathbf{a_{k}}$: $\sum_{k} a_{k}^{2} \leq 1$

Fit based on BGL (z-expansion) uses measured q^2 shape over the whole q^2 spectrum and shape + normalization from LQCD, highly correlated theory values!

Determination of q^2 shape dominated by BABAR data

Theory error on $|V_{ub}|$ reduced to 8.5% (traditional method: +17%-11%) $|V_{ub}|$ sensitive to data and theory in the specific q² range where they overlap

 $|V_{ub}| = (2.95 \pm 0.31) * 10^{-3} \text{ FNAL/MILC} (4 \text{ points})$

Exclusive V_{ub} - Results on Br and V_{ub}

Branching ratios :

<u>π-η analysis</u>

$$\frac{\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.42 \pm 0.05_{stat} \pm 0.08_{syst}) \times 10^{-4}}{\mathcal{B}(B^+ \to \eta \ell^+ \nu) = (3.61 \pm 0.45_{stat} \pm 0.44_{syst}) \times 10^{-5}} \\
\mathcal{B}(B^+ \to \eta' \ell^+ \nu) = (2.43 \pm 0.80_{stat} \pm 0.34_{syst}) \times 10^{-5}$$

$$\begin{aligned} \pi - \rho \text{ analysis} \\ \mathcal{B}(B^0 \to \pi^- \ell^+ \nu) &= (1.41 \pm 0.05 \pm 0.07) \times 10^{-4} \\ \mathcal{B}(B^0 \to \rho^- \ell^+ \nu) &= (1.75 \pm 0.15 \pm 0.27) \times 10^{-4} \end{aligned}$$

V_{ub} extraction : π - ρ analysis π - η analysis q^2 (GeV²) $|V_{ub}|$ (10⁻³) $3.24 \pm 0.13 \pm 0.16 \ ^{+0.57}_{-0.37}$ $3.21 \pm 0.17^{+0.55}_{-0.36}$ HPQCD > 16 $3.14 \pm 0.12 \pm 0.16 \ ^{+0.35}_{-0.29}$ FNAL > 16 $3.70 \pm 0.07 \pm 0.09 \, {}^{+0.54}_{-0.39}$ $3.78 \pm 0.13^{+0.55}_{-0.40}$ LCSR < 12

 π - ρ analysis + LQCD $|V_{ub}| = (2.95 \pm 0.31) * 10^{-3}$ FNAL/MILC (4 points)

Much smaller theory errors !

To be compared with inclusive value of $V_{\mu b} = (4.27 \pm 0.38) * 10^{-3}$

Inclusive V_{ub} with hadronic tag - Overview

Possibility to set limits on the size of weak annihilation decays (non-tree level effects) (not covered here)

Inclusive V_{ub} with hadronic tag - Reconstruction

\mathcal{O}

Fit the distribution of different kinematic variables in several regions of phase space :

- $M_X < 1.55 \text{ GeV/c}^2$
- $M_x < 1.70 \text{ GeV/c}^2$
- $P_{+} < 0.66 \text{ GeV/c}$
- $M_X < 1.70 \text{ GeV/c}^2, q^2 > 8 \text{ GeV}^2/c^4$
- $M_{X}, q^{2} p_{l} > 1 \text{ GeV/c}$
- $p_l, p_l > 1.0 2.3 \text{ GeV/c}$

Signal yield extracted with a χ^2 shape fit

- We adjust ratio $N_{D^{**}}/(N_D + N_{D^*} + N_{D^{**}})$ based on signal-depleted sample, to correct for poorly known BF :
 - Fit quality improves;
 - N_{D**}/(N_D+N_{D*}+N_{D**}) smaller in data than in MC

15

Normalized to semileptonic sample to reduce experimental systematic uncertainty

 $\Delta R_{u/sl} = \frac{(N_u^{fit})/(\epsilon_{sel}^u \epsilon_{kin}^u)}{N_{SL}^{meas} - BG_{sl}} \times \frac{\epsilon_l^{sl} \epsilon_t^{sl}}{\epsilon_l^u \epsilon_t^u} \qquad \qquad \Delta R_{u/sl} \times (10.66 \pm 0.15)\%$ $\Delta B(\bar{B} \to X_u l \bar{\nu})$

Inclusive V_{ub} with hadronic tag - Results

Belle analysis PRL 104:021801 (2010)

	Signal yield	$\Delta {\cal B}(\overline{B} o X_u \ell ar{ u}) \ (10^{-3})$	$\Delta {\cal B}(\overline{B} o X_u \ell ar{ u}) \ (10^{-3})$
$M_X < 1.55$	$1033\pm73_{\it stat}$	$1.08\pm0.08_{\mathit{stat}}\pm0.06_{\mathit{sys}}$	
$M_X < 1.70$	$1089\pm82_{stat}$	$1.15\pm0.10_{stat}\pm0.08_{sys}$	
$P_{+} < 0.66$	$902\pm80_{stat}$	$0.98 \pm 0.09_{\it stat} \pm 0.08_{\it sys}$	
$M_X < 1.70$ and $q^2 > 8$	$665\pm53_{stat}$	$0.68\pm0.06_{\mathit{stat}}\pm0.04_{\mathit{sys}}$	
$(M_X, q^2), \ p_\ell^* > 1.0$	$1441 \pm 102_{\it stat}$	$1.80\pm0.13_{stat}\pm0.15_{sys}$	
$ ho_\ell^* > 1.0$	$1462\pm137_{\it stat}$	$1.76 \pm 0.16_{\it stat} \pm 0.18_{\it sys}$	1.963*±0.17 _{stat} ±0.16 _{stat}
$p_\ell^* > 1.3$	$1326\pm118_{\it stat}$	$1.50\pm0.13_{\it stat}\pm0.14_{\it sys}$	stst syst

reference

Signal model systematic dominates most inclusive analyses

Inclusive V_{ub} with hadronic tag – Results - V_{ub}

Use all possible theoretical calculations to extract V_{ub} : BNLP, GGOU, DGE, ADFR

For **BNLP**_{(shown),} **GGOU**, **DGE** one may use the following relation to extract V_{ub} :

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \cdot \Delta \Gamma_{theory}}}$$

Agreement found between different calculations

Total uncertainties on the average for $V_{ub} \sim 6.5$ % (dominated by theory error) ¹⁷

$B^+ \rightarrow \tau^+ \nu$ - Overview

Can be used to measure V_{ub} , knowing the decay constant or vice-versa.

Can be used as probe for New Physics (NP) assuming external results for SM parameters

Helicity suppressed channel :

1st order prediction using PDG results for the SM \rightarrow Br = (1.2 ± 0.2) * 10⁻⁴

Previous results (e.g. BaBar with hadronic tags: Br = $(1.8^{+0.9}_{\pm 0.8} \pm 0.4 \pm 0.2) * 10^{-4})_{18}$

$B^+ \rightarrow \tau^+ \nu$ - Reconstruction and Strategy

 $B \rightarrow D^{(*)}X$ and $B \rightarrow J/\psi X$ with single mode purity P > 10 % (optimized)

In case of multiple B candidates select the one with smallest $|\Delta E|$

Fit with standard distributions|

Combinatorial background

Most discriminating variable residual energy in the calorimeter (E_{extra})

- Defined as the total energy of clusters passing a minimum energy requirement of 60 MeV
- Used in a maximum likelihood fit to determine the Br. Fraction

Optimized aiming at the smallest stat.+syst. uncertainty

• By means of toy MC experiments

E_{extra} validation made on double tags (had-had,had-SL)

$B^+ \rightarrow \tau^+ \nu$ - Results

Simultaneous fit on the four decay modes :

Decay Mode	$\epsilon \times 10^{-4}$	Branching Fraction (×10 ⁻⁴)	Significance σ
$\tau^+ \rightarrow e^+ \nu \bar{\nu}$	2.73	$0.39^{+0.89}_{-0.79}$	0.5
$\tau^+ \rightarrow \mu^+ \nu \bar{\nu}$	2.92	$1.23^{+0.89}_{-0.80}$	1.6
$\tau^+ \rightarrow \pi^+ \nu$	1.55	$4.0^{+1.5}_{-1.3}$	3.3
$\tau^+ \rightarrow \rho^+ \nu$	0.85	$4.3^{+2.2}_{-1.9}$	2.6
combined	8.05	$1.80^{+0.57}_{-0.54}$	3.6

$$\mathcal{B}(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$$

Combining with the measurement with semi-leptonic tags (Phys. Rev. D 81, 051101(R) 2010) we present an average BABAR result of : preliminary

B(B
$$\rightarrow \tau \nu$$
) = (1.76 ± 0.49) * 10⁻⁴

Summary

$D^{\scriptscriptstyle +} \to K^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle +} \, e^{\scriptscriptstyle +} \, v$:

- \bullet Precise determination of $K^{\ast 0}$ lineshape and form factors
- Determination of the S-wave phase variation in SL decays (similar mass dependance as elastic scattering experiments up to a difference of π)

Exclusive V_{ub} :

- Two new precise measurements of $Br(B \rightarrow \pi l \nu)$, statistically largely independent
- Precise measurements of $Br(B \rightarrow \rho/\eta^{(\prime)} \, l \, \nu \,)$
- Results on $|V_{ub}|$ based on same extraction method are highly consistent
- Theory errors greatly reduced in fit BABAR + LQCD fit (theoretical uncertainties reduced by a factor 2)

Inclusive V_{ub} :

- Agreement found for V_{ub} using different calculations
- Total uncertainty on $V_{ub} \sim 6 \%$ (3.5 % exp/ error and 5.3 % theory error)

$B^+ \rightarrow \tau^+ \nu$:

- Updated analysis with full BaBar dataset with hadronic B tags;
- Excludes the null hypothesis at the 3.6 σ level;

Very competitive results !!

 $D \rightarrow l^+ \nu$

HPQCD (2010) give $f_{D_s} = (248 \pm 2.5)$ MeV (arXiv:1008.4018)

Taken from Aidan Randle-Conde, Charm2010

$$B^{\text{-}} \rightarrow D_{s}^{(*)} \operatorname{K}^{\text{-}} l^{\text{-}} \nu$$

Known discrepancies between V_{cb} exclusive and inclusive. Content of high mass X_c states in $B \rightarrow X_c e^+ v$ not fully understood.

Motivation : Determine Br of this decay.

From the shape of hadronic mass spectrum, one expects $Br \sim 10^{-3}$

- Decay channel measured with over 5 sigmas significance
- Confirms the expected rapid decrease of the hadronic mass distribution at high values. ²⁴

$D^+ \rightarrow K^- \pi^+ e^+ \nu$ – Results projection in 5D

Joao Firmino da Costa, DISCRETE 2010

 $0.19 \pm 0.09 \pm 0.00$

0

D-wave

$D^+ \rightarrow K^- \pi^+ e^+ \nu$

Measured quantity	This analysis	PDG
K ^{*0} lineshape $m_{K^*(892)^0}(MeV/c^2)$ parameters $\Gamma^0_{K^*(892)^0}(MeV/c^2)$ $r_{BW}(GeV/c)^{-1}$	$\begin{array}{c} 895.4 \pm 0.2 \pm 0.2 \\ 46.5 \pm 0.3 \pm 0.2 \\ 2.1 \pm 0.5 \pm 0.5 \end{array}$	$\begin{array}{c} 896.00 \pm 0.25 \\ 50.3 \pm 0.6 \\ 2.72 \pm 0.55 \end{array}$
Form factor parameters r_V (single-pole appr./) r_2 $m_A(\text{GeV}/c^2)$	$\begin{array}{c} 1.463 \pm 0.017 \pm 0.031 \\ 0.801 \pm 0.020 \pm 0.020 \\ 2.63 \pm 0.10 \pm 0.13 \end{array}$	1.62 ± 0.08 0.83 ± 0.05 no result
$ \begin{array}{c} \mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)(\%) \\ \mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{\overline{K}^{*0}}(\%) \\ \mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{S-wave}(\%) \end{array} $	$\begin{array}{c} 4.04 \pm 0.03 \pm 0.04 \pm 0.09 \\ 3.80 \pm 0.04 \pm 0.05 \pm 0.09 \\ 0.234 \pm 0.007 \pm 0.007 \pm 0.005 \end{array}$	$\begin{array}{c} 4.1 \pm 0.6 \\ 3.66 \pm 0.21 \\ 0.21 \pm 0.05 \end{array}$
$ \mathcal{B}(D^+ \to \overline{K}^* (1410)^0 e^+ \nu_e)(\%) \mathcal{B}(D^+ \to \overline{K}^*_2 (1430)^0 e^+ \nu_e)(\%) $	$0.30 \pm 0.12 \pm 0.18 \pm 0.06 \ (< 0.6 \text{ at } 90\% \text{ C.L.})$ $0.023 \pm 0.011 \pm 0.011 \pm 0.001 \ (< 0.05 \text{ at } 90\% \text{ C.L.})$	

Exclusive V_{ub} -- Strategies

Analysis	π- η	π- ρ
Luminosity onpeak Y (45)	422.6 fb-1	349.0 fb-1
Number of BB pair events	464 millions	377 millions
q ² evaluation	(PB-Pmeson) ²	(P,+P,) ²
Cut strategy	q² dependent, cuts	q² dependent, NN
Cut selection	Loose v cuts	Tighter v cuts
Signal efficiency	8% to 15%	6% to 7%
Background/Signal	11.5	6.3
$B \rightarrow \pi \ell v$ yield	11778 ± 435	10604 ± 376
Number of q ² bins	12	6
Fit strategy	1-mode (π ⁻,η,η')ℓν	4-modes (π -,π ⁰ ,ρ -,ρ ⁰) ℓν
Systematic uncertainties	Full gaussian	±1σ

Statistical correlation between both data sets is fairly low (<20%)

Exclusive V_{ub}

Exclusive V_{ub}

elle has a new preliminary branching fraction for $B^0 \to \pi^- \ell^+ \overline{\nu}_\ell$

 $\mathcal{B} = (1.49 \pm 0.04_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-4}$

rtial BFs are extracted in 13 bins of q^2

ub is extracted by two methods

In a model dependent way e.g. using LCSR

 $|V_{ub}| = (3.64 \pm 0.06_{stat} \pm 0.09_{syst}^{+0.60}) \times 10^{-3}$

In a model independent way combining Belle and MILC data

 $|V_{ub}| = (3.43 \pm 0.33_{stat+syst}) \times 10^{-3}$

c.f. BaBar+MILC $|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3}$ arXiv:1005.3288v1 [hep-ex]

Slide taken from Kevin Varvell from Belle, at CKM2010 Warwick

Inclusive V_{ub} with hadronic tag - Validation

Good agreement between data and simulation in both subsamples

Inclusive V_{ub} with hadronic tag – WA limits

 $= \int_{f_{WA}}^{f_u} R^{+/0},$

These contributions could cause asymetries in Br between B^0 and B^+ that may affect $|V_{\mu\nu}|$

$$R^{+/0} = \frac{\Delta \Gamma^+}{\Delta \Gamma^0} = \frac{\tau^{\rm o}}{\tau^+} \cdot \frac{\Delta \mathcal{B}(B^+ \to X_u \ell \nu)}{\Delta \mathcal{B}(B^0 \to X_u \ell \nu)}$$

 f_u : fraction of signal in fit region

	$R^{+/0} - 1$	C.L. (90%)
$M_X \le 1.70, \ q^2 \ge 8$	$0.042 \pm 0.066 \pm 0.009$	-0.07 $\leq \gamma_{W\!A}/\Gamma \leq 0.15$
$M_X \leq 1.55$	$-0.020 \pm 0.066 \pm 0.003$	-0.13 $\leq \gamma_{W\!A}/\Gamma \leq$ 0.09
$M_X \leq 1.70$	$0.071 \pm 0.117 \pm 0.011$	-0.12 $\leq \gamma_{WA}/\Gamma \leq 0.26$
$(M_X, q^2) \ ho_\ell^* > 1.0$	$0.109{\pm}0.157{\pm}0.019$	-0.15 $\leq \gamma_{W\!A}/\Gamma \leq 0.37$

$B^+ \rightarrow \tau^+ v$

Simultaneous fit projections

:

:

 $B^+ \rightarrow \tau^+ v$

UTFit for 2HDM-II, preICHEP