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The SM as an effective theory:

How large is the New Physics scale "?
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�
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From the Flavour sector
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THE FLAVOUR STRUCTURE OF THE SM

Large global symmetry in the gauge sector

Gq = (SU(3)⊗ U(1))3

This specific symmetry + symmetry-breaking pattern is responsible 
for all the successful SM predictions in the quark flavour sector.
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MINIMAL FLAVOUR VIOLATION

Yu ∼ (3, 3̄, 1)SU(3)3 Yd ∼ (3, 1, 3̄)SU(3)3

Flavour symmetry is formally recovered by promoting the Yukawa couplings to spurions

MFV does not:

represent a theory of flavour violation;

explain the size of fermion masses and mixing 
angles.

MFV does:
provide additional suppression factors for NP 
flavour transitions;
imply correlations between different flavour 
observables;
reduce the free parameters in NP flavour sector;
allow to formulate flavour violation within 
effective theory approach.

Minimal Flavour Violation hypotesis:

A theory satisfies the MFV criterion if it is formally invariant under      .

MFV requires that the dynamics of flavour violation is completely determined by the 
structure of the SM Yukawa couplings.

Gq
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INTRODUCTION: TWO-HIGGS-DOUBLET MODELS

MOTIVATIONS

In the SM the chioce of only one Higgs doublet is not the 
only possible, but just the most economical.

Several New Physics models contain more Higgs doublets.

Adding more Higgs doublet brings many interesting phenomenological features:

New sources of CP violation Dark matter candidates Axion phenomenology
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Possible but not necessary: ruled out by Occam’s Razor?
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: 3 × 3 matrices with a generic flavour structureXi
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S1 S2 S3
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dR

H
+

q�L q�L

−LY = Q̄L

�√
2
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MdΦv + ZdΦH

�
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2
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MuΦ

c

v
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c

H

�
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�
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2
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�
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�
H
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�

Mu,d =
v√
2
(cosβ Xu,d 1 + sinβ Xu,d 2)

Zu,d = cosβ Xu,d 2 − sinβ Xu,d 1

(cannot be diagonalized simultaneously!)



INTRODUCTION: TWO-HIGGS-DOUBLET MODELS

GENERAL FEATURES

−LY = Q̄LXd1DRH1 + Q̄LXu1URH
c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 +h.c.

The most general renormalizable and gauge-invariant Yukawa interaction is

: 3 × 3 matrices with a generic flavour structureXi

6/17

Flavour Changing Neutral Currents
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PROTECTION MECHANISMS FOR FCNCS

FLAVOUR SYMMETRIES VS. FLAVOUR-BLIND SYMMETRIES

Gq = (SU(3)⊗ U(1))3

Suppression of FCNCs  obtained by protecting the 
breaking of one of these types of symmetry:

flavour symmetries

flavour-blind symmetries

Minimal Flavour Violation

Natural Flavour Conservation

flavour-blind symmetriesflavour symmetries
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For a two-Higgs doublet model:
assumption that only one Higgs field can couple to a given quark species.
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−LY = Q̄LXd1DRH1 + Q̄LXu1URH
c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 +h.c.

Continuous symmetry U(1)PQ

must be broken beyond the tree level:

Xd2 = �d ∆d

the consistency with experimental data requires

|�d|× |Im[(∆d)
∗
21(∆d)12]|1/2 � 3× 10−7 × cosβ MH

100 GeV

Discrete Z2 symmetry
Z2 could be exact in principle

but it allows higher-dimensional operators:
qL

qR

H1

H2

H2

X(6)
q

ci
Λ2

Large amount of fine tuning needed to suppress FCNCs!
Buras, MVC, Gori and Isidori, 2010



Beyond the lowest order in the Yukawas the only relevant non-diagonal structures are

YuY
†
u , YdY

†
d ∼ (8, 1, 1)SU(3)3q

⊕ (1, 1, 1)SU(3)3q

Xd1 = Yd

Xd2 = Pd2(YuY
†
u , YdY

†
d )× Yd = �0Yd + �1YdY

†
d Yd + �2YuY

†
uYd + . . .

Xu1 = Pu1(YuY
†
u , YdY

†
d )× Yu = ��0Yu + ��1YuY

†
uYu + ��2YdY

†
d Yu + . . .

Xu2 = Yu

Renormalization group invariant.

D’Ambrosio, Giudice, Isidori and Strumia, 2002 
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LFCNC
MFV =

1

sinβ
d̄iL

��
a0V

†λu
2V + a1V

†λu
2V∆+ a2∆V †λu

2V
�
λd

�
ij
djR

S2 + iS3√
2

+ h.c.

double CKM suppression + down-type Yukawa suppression

PROTECTION MECHANISMS FOR FCNCS

MFV STRUCTURE
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PROTECTION MECHANISMS FOR FCNCS

FCNCS IN MFV

|a0| tanβ
v

MH

< 18 from �K
�
|(a∗0 + a∗1)(a0 + a2)| tanβ

v
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= 10 from ∆Ms

�
|a0 + a1| tanβ

v
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< 8.5 from Br
�
Bs → µ+µ−�
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v

MH

= 10 from ∆Ms

�
|a0 + a1| tanβ

v

MH

< 8.5 from Br
�
Bs → µ+µ−�

Parameter constraints from experiments:

Perfectly natural values.
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In the SM the Yukawa couplings are the only sources of

However, the mechanisms of flavour and CP violation do not necessary need to be related.

ai complex                    MFV with flavour-blind CP-violating phases

LFCNC
MFV =

1

sinβ
d̄iL

��
a0V

†λu
2V + a1V

†λu
2V∆+ a2∆V †λu

2V
�
λd

�
ij
djR

S2 + iS3√
2

+ h.c.

In the two-Higgs-doublet models with MFV:

VCKM =

� �flavour breaking CP breaking

VCKM =




c1c3 s1c3 s3e−iδ

−s1c2 − c1s2s3e−iδ c1c2 − s1s2s3eiδ s2c3
s1s2 − c1c2s3eiδ −c1s2 − s1c2s3eiδ c2c3
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MFV WITH FLAVOUR-BLIND PHASES

ΔF = 2   EFFECTIVE HAMILTONIANS

H
|∆S|=2 ∝ − |a0|2

M2
H

ms

v

md

v

��mt

v

�2
V ∗
ts
Vtd

�2
(s̄RdL)(s̄LdR) + h.c.

H
|∆B|=2 ∝ − (a∗0 + a∗1)(a0 + a2)

M2
H

mb

v

mq

v

��mt

v

�2
V ∗
tb
Vtq

�2
(b̄RqL)(b̄LqR) + h.c.
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Key properties:

K - K   !  ms md

Bd - Bd !  md mb

Bs - Bs  !  ms mb

New phases affects 
!B = 2 but not !S = 2

New phases affects equally
Bd and Bs systems

possibility to solve the anomaly 
in the Bs mixing phase

possibility of sizable non-standard 
contributions to the Bs system without 

serious constraints from K and Bd mixing

correlation between
the Bs and Bd the mixing phases
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CORRELATION OF THE MIXING PHASES

Sψφ = sin (2βs + |θs|)SψKS = sin (2β − θd)

MFV implies a definite relation between %d and %s.

φBs

φBd SψKS

Sψφ

possibility to 
accommodate

a large 
mixing phase

better agreement
with experimental data
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MFV WITH FLAVOUR-BLIND PHASES

Bd,s  →  ' '   :   A “SMOKING GUN” FOR MFV

Br(Bs → µ+µ−)

Br(Bd → µ+µ−)
=

B̂Bd

B̂Bs

τ(Bs)

τ(Bd)

∆Ms

∆Md
r

1010 · Br
�
Bd → µ+µ−�

109 · Br
�
Bs → µ+µ−�

16/17

Buras, MVC, Gori and Isidori, 2010
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Two-Higgs-doublet models: interesting features but dangerous FCNCs.

Two mechanisms to protect from FCNCs:

Natural Flavour Conservation            not stable under quantum corrections

Minimal Flavour Violation                  natural and renormalization group invariant

With MFV and flavour-blind CP-violating phases we can describe the recent !F = 2 
anomalies.

CONCLUSIONS
17/17



THANKS



BACKUP



INTRODUCTION: TWO-HIGGS-DOUBLET MODELS

GENERAL FEATURES - I

H2 =

� 1√
2
(v2 + ρ2 + iη2)

φ−
2

�
H1 =

�
φ+
1

1√
2
(v1 + ρ1 + iη1)

� v ≡
�

v21 + v22 = 246 GeV

tanβ =
v2
v1

L =
�

i=1,2

DµHiD
µ
H

†
i + LY − V (H1, H2)

A0 ≡ S3 h
0
, H

0 = R(S1, S2)Masses eigenstates:

Φv =

�
G+

1√
2
(v + S1 + iG0)

�

ΦH =

�
H

+

1√
2
(S2 + iS3)

��
Φv

ΦH

�
=

�
cosβ sinβ
− sinβ cosβ

��
H1

H
c

2

�
A rotation to a more convenient basis:

−LY = Q̄LXd1DRH1 + Q̄LXu1URH
c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 +h.c.

The most general renormalizable and gauge-invariant Yukawa interaction is

: 3 × 3 matrices with a generic flavour structureXi



INTRODUCTION: TWO-HIGGS-DOUBLET MODELS

GENERAL FEATURES - II

Mu,d =
v√
2
(cosβ Xu,d 1 + sinβ Xu,d 2) Zu,d = cosβ Xu,d 2 − sinβ Xu,d 1

−LY = Q̄L

�√
2

v
MdΦv + ZdΦH

�
DR + Q̄L

�√
2

v
MuΦ

c

v
+ ZuΦ

c

H

�
UR +h.c.

Flavour Changing Neutral Currents

−LY = Q̄LV

�√
2

v
DdΦv +NdΦH

�
DR + Q̄L

�√
2

v
DuΦ

c

v
+NuΦ

c

H

�
UR + h.c.

qL qLqR
qR qR qR

S1 S2 S3

uL

dR

H
+

q�L q�L

Mu,d and Zu,d cannot be diagonalized simultaneously!

U †
u,d LMu,dUu,d R = Du,d ≡ diag (mu,d,mc,s,mt,b)

U†
u,dLZu,dUu,dR = Nu,d (non diagonal)



PROTECTION MECHANISMS FOR FCNCS

NFC BY  A CONTINUOUS SYMMETRY

U(1)PQ: the symmetry under which DR and H1 have opposite 
charge, while all the other fields are neutral.

−LY = Q̄LXd1DRH1 + Q̄LXu1URH
c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 +h.c.

U(1)PQ must be broken beyond the tree level to avoid a massless Higgs:

Xd2 = �d ∆d

O(10-2), typical loop suppression 3 × 3 flavour-breaking matrix with O(1) entries

But the consistency with experimental data requires

|�d|× |Im[(∆d)
∗
21(∆d)12]|1/2 � 3× 10−7 × cosβ MH

100 GeV

Large amount of fine tuning needed to suppress FCNCs!

(from #K)



PROTECTION MECHANISMS FOR FCNCS

NFC BY A  DISCRETE SYMMETRY

Z2 under which H1 " - H1 , DR " - DR and all other fields are unchanged.

−LY = Q̄LXd1DRH1 + Q̄LXu1URH
c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 +h.c.

Z2 could be exact in principle

but

it allows higher-dimensional operators such as

∆LY =
c1

Λ2
Q̄LX

(6)
u1 URH2|H1|2 +

c2

Λ2
Q̄LX

(6)
u2 URH2|H2|2

+
c3

Λ2
Q̄LX

(6)
d1 DRH1|H1|2 +

c4

Λ2
Q̄LX

(6)
d2 DRH1|H2|2

ci = O(1) " = O(1 TeV)

Too large FCNCs even at loop level!



PROTECTION MECHANISMS FOR FCNCS

FCNCS IN MFV - I

FCNCs at “tree” level

LFCNC
MFV =

1

sinβ
d̄iL

��
a0V

†λu
2V + a1V

†λu
2V∆+ a2∆V †λu

2V
�
λd

�
ij
djR

S2 + iS3√
2

+ h.c.

∆ =




0

0
1



 λu =
1

sinβ




mu
v

mc
v

mt
v



 λd =
1

cosβ




md
v

ms
v

mb
v





double CKM suppression + down-type Yukawa suppression

ai = O(1)

(real? complex?)

D’Ambrosio, Giudice, Isidori and Strumia, 2002 



MFV WITH FLAVOUR-BLIND PHASES

BASIC OBSERVABLES IN  ΔF=2  TRANSITIONS

Neutral mesons systems:

2� 1012 4� 1012 6� 1012 8� 1012
t �GeV�1�

0.2

0.4

0.6

0.8

1.0

P � Bs�t� �

B B̄

b̄d̄

t̄t

b dW

W

Flavour Eigenstates

Mass Eigenstates

CP Eigenstates

Main observables:

Mass differences

CP asymmetries

af (t) =
Γ
�
M̄(t) → f

�
− Γ (M(t) → f)

Γ
�
M̄(t) → f

�
+ Γ (M(t) → f)

∆m = mMH
−mML

K0 − K̄0

KL −KS

K1 −K2



MFV WITH FLAVOUR-BLIND PHASES

MORE ON ASYMMETRIES

�K =
Γ (KL → (ππ)I=0)

Γ (KS → (ππ)I=0)

af (t) = −
Adir

f cos (∆mt) +Amix
f sin (∆mt)

cosh
�
∆Γ t
2

�
+A∆Γ

f sinh
�
∆Γ t
2

�

Bd → ψKS

Bs → ψφ

SψKS

Sψφ



MFV WITH FLAVOUR-BLIND PHASES

THE ROLE OF M12

∆mM = 2
��MM

12

�� asymmetries ∝ Arg
�
MM

12

�

2mMMM
12 = �M |Heff

��M̄
�

Parametrization of New Physics:

�
Md

12

�
SM

=
���Md

12

�
SM

�� e2iβ

(Ms
12)SM = |(Ms

12)SM | e2iβs

Md
12 =

�
Md

12

�
SM

CBde
iθd

Ms
12 = (Ms

12)SM CBse
iθs


